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The electronic structure of graphene causes its charge carriers to behave like relativistic particles. For a perfect graphene sheet free
from impurities and disorder, the Fermi energy lies at the so-called ‘Dirac point’, where the density of electronic states vanishes. But
in the inevitable presence of disorder, theory predicts that equally probable regions of electron-rich and hole-rich puddles will arise.
These puddles could explain graphene’s anomalous non-zero minimal conductivity at zero average carrier density. Here, we use a
scanning single-electron transistor to map the local density of states and the carrier density landscape in the vicinity of the neutrality
point. Our results confirm the existence of electron–hole puddles, and rule out extrinsic substrate effects as explanations for their
emergence and topology. Moreover, we find that, unlike non-relativistic particles the density of states can be quantitatively accounted
for by considering non-interacting electrons and holes.

The kinetic energy of Dirac particles in graphene increases linearly
with momentum1–5. The total energy per particle however, also
referred to as the chemical potential, µ, contains further exchange
and correlation contributions that arise from the Coulomb
interaction µ = EK + Eex + Ec (refs 6–11). Here, EK, Eex and
Ec are the kinetic, exchange and correlation terms respectively.
Therefore, the chemical potential and its derivative with respect to
density provide direct insight into the properties of the Coulomb
interaction in such a system. The derivative is known as the
inverse compressibility (that is, the inverse of the density of
states). Compressibility measurements of conventional, massive,
two-dimensional (2D) electron systems made for example of Si
or GaAs have been carried out by several groups8,12–15. For these
2D systems it has been shown that at zero magnetic field, the
chemical potential may be described accurately within the Hartree–
Fock approximation. Quantitatively, Coulomb interactions add
a substantial negative contribution to the compressibility and
become dominant at low carrier densities. Although transport
measurements in graphene indicate high mobilities even at low
carrier densities16–18, many questions pertaining to disorder19–30

remain unanswered. In a perfectly uniform and clean graphene
sample, the inverse compressibility is expected to diverge at the
Dirac point in view of the vanishing density of states. This
divergence, however, is expected to be rounded off by disorder
on length scales smaller than our spatial resolution. Long-range
disorder on the other hand will cause local shifts in the Dirac
point indicative of a non-zero local density. Here, we measure
the spatial dependence of the local compressibility versus carrier
density across the sample. Fluctuations in the Dirac point across

the sample are translated into carrier density maps through which
quantitative information about the degree and length scale of
disorder is obtained.

The preparation of graphene monolayers is carried out in
a similar manner as in refs 16,31. We use Nitto tape to peel
a large graphite flake from a highly oriented pyrolytic graphite
crystal and press it onto a Si/SiO2 wafer. The conducting Si
substrate serves as a back-gate to vary the carrier density in the
graphene sheet16. Once a suitable monolayer is selected in an optical
microscope, two electrical contacts to the layer are patterned with
optical lithography. Typical dimensions of our monolayers are
10 × 4 µm2. After lift-off of the ohmic contact metal (3 nm Cr,
30 nm Au), the graphene flakes typically exhibit their neutrality
point at back-gate voltages larger than 100 V. Therefore, the
sample surface is cleaned by an ozone treatment and an ammonia
dip. As-prepared flakes typically have their neutrality point at
back-gate voltages of around 30 V. The sample is then mounted
in the preparation chamber of the ultrahigh-vacuum scanning
system and subsequently annealed by heating it above 100 ◦C at
a background pressure of 5 × 10−7 mbar. The entire annealing
procedure apparently removes most of the doping adsorbates
introduced during fabrication and water, as the neutrality point
shifts close to zero back-gate voltage32. A back-gate voltage
difference of 1 V corresponds to a density change of 7×1010 cm−2.
This conversion factor has been extracted from magnetotransport
data (Fig. 1a). The unorthodox Hall quantization in graphene
monolayers allows us to distinguish them from multilayer flakes17,18.
Figure 1a shows the two-terminal conductance G2pt as a function of
density and magnetic field. Maxima in G2pt can be clearly seen at

144 nature physics VOL 4 FEBRUARY 2008 www.nature.com/naturephysics

© 2008 Nature Publishing Group 

mailto:yacoby@physics.harvard.edu
http://www.nature.com/doifinder/10.1038/nphys781


ARTICLES

n2D (1012 cm–2)

n2D (1012 cm–2)

–3 –2 –1 0
0

2

4

6

8

10

1 2

–2 –1 0 1 2

3 –30 –20 –10 0 10 20 30

B
 (

T
)

0.1

0.2

0.3

0.4

G
2

p
t  (m

S
)

14

1010 66 22

Back-gate voltage (V)

0

1

2

3

4

/ 
  
 2

D
 (

m
eV

⋅1
0

–
1

0
 c

m
2
)

VBG

a b

∂
∂
n

µ

Figure 1 Characterization of a graphene monolayer with transport and inverse compressibility measurements. a, Colour rendering of the two-terminal conductance

G2pt of a graphene monolayer in the density versus magnetic field plane. The conductance maxima follow slopes corresponding to integer fillings of 2,6,10 and so on, an

unequivocal signature for a single monolayer. b, The inverse compressibility measured at an arbitrary fixed location on the graphene sample as a function of the back-gate

voltage or carrier density (blue line). The red line is a best fit to the data using an effective Fermi velocity as a single fit parameter in the kinetic energy contribution predicted

from the graphene band structure. The inset shows the experimental arrangement consisting of an aluminium-based SET evaporated on a glass-fibre tip of a scanning probe

microscope. The graphene monolayer is contacted with two leads (typically 10µm apart) on top of an oxidized and heavily doped Si wafer. A back-gate voltage induces

charge carriers and modulates the density for the measurement of the local compressibility.

filling factors of 2,6,10 and so on for both electrons and holes. This
behaviour conclusively identifies the flake as a monolayer.

The local compressibility measurements of graphene described
here are carried out using a scanable single-electron transistor
(SET). Previous scanning tunnelling microscopy (STM) studies
on bulk graphite surfaces in strong magnetic fields already
demonstrated the power of local methods to probe this class of
materials33–35. Recently, atomic-resolution STM and non-contact
atomic force microscopy studies on graphene flakes were reported.
These studies revealed, among other things, the atomic structure
of graphene and structural corrugations that partially conform to
the underlying silicon oxide36. Scanning tunnelling spectroscopy
studies were also carried out on epitaxially grown graphene
on silicon carbide substrates. These studies highlighted in-plane
defects as a dominant source of backscattering37. Unlike STM,
which probes the single-particle density of states, the inverse
compressibility, addressed here, measures the many-body density
of states that includes information on the exchange and correlation
energies as well. The experiments are carried out at 0.3 K. A
schematic diagram of the experimental set-up is shown in the
inset to Fig. 1b. Details of our experimental method are described
in refs 38,39. The diameter of the SET is about 100 nm and the
distance between the SET and the sample is roughly 50 nm. The
SET tip is capable of measuring the local electrostatic potential with
microvolt sensitivity and a high spatial resolution close to its size.
The inverse compressibility can be measured by monitoring the
change in the local electrostatic potential, Φtotal, when modulating
the carrier density in the graphene flake with the back-gate,
∂Φtotal/∂n. We note that the small size of the graphene flake requires
us to consider position-dependent direct pick-up from the fringing
electric fields between the back-gate plane and the graphene flake as
discussed in Supplementary Information part A. In the absence of
any transport current, any change in the local electrostatic potential
is equal in magnitude and opposite in sign to the changes in the
local chemical potential of the graphene, e(∂Φtotal/∂n)=−∂µ/∂n.
Figure 1b shows the inverse compressibility for a fixed location of
the SET as a function of the back-gate voltage at zero magnetic field.

On the basis of the linear dispersion of the graphene band structure,
the kinetic energy contribution to the inverse compressibility
is expected to exhibit an unusual density dependence with a
singularity at the neutrality point given by h̄vF ·

√

π/|n|gs. Here
vF is the Fermi velocity, gs is the band degeneracy and |n| is
the carrier density measured from the neutrality point. At zero
magnetic field gs = 4 owing to both spin and band symmetries. The
maximum in the experimental ∂µ/∂n trace clearly identifies the
position of the Dirac point at this particular location. The absence
of a singularity at the Dirac point in the experiment is ascribed
to disorder broadening. As the kinetic term in graphene has the
same density dependence as the leading exchange and correlation
terms, it is instructive to fit the data to the kinetic term with a
single fit parameter that may be thought of as an effective Fermi
velocity. The red line in Fig. 1b shows the result of such a fit and
yields veff

F = 1.1 × 106± 0.1×106 m s−1. The indicated uncertainty
reflects the accuracy with which the direct pick-up correction can
be carried out. It is noteworthy that infrared spectroscopy studies
of Landau levels in graphene also obtained a band velocity of
about 1.1×106 m s−1 (ref. 40). The velocity increase compared with
band-structure calculations, which predict vF = 1×106 m s−1, was
attributed to electron–electron correlations. Here, the predicted
band-structure value1 lies within our experimental uncertainty and
so we conclude that the compressibility data can be described
quantitatively by the kinetic term alone. The exchange and
correlation contributions to the compressibility are either weak
or cancel each other out. Theory too has suggested only weak
modifications of the compressibility due to exchange9–11. This is
in marked contrast to massive 2D systems such as GaAs where at
low densities the exchange term dominates8,12–14. Moreover, in these
conventional 2D electron systems, quantitative agreement between
experiment and theory is only accomplished when taking into
account the non-zero thickness of the 2D layer8,13. The finite width
is responsible for a softening of the Coulomb interaction between
the electrons as well as a Stark-like shift of the confinement energies
in the potential well when the density is tuned. Both effects produce
non-generic changes to the compressibility terms, which depend on
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Figure 2 The Dirac point measured as a function of position. a, Colour rendering

of the inverse compressibility measured along a line across the sample as a function

of the back-gate voltage. The dashed black line marks the location of the Dirac point

obtained from a fit of the kinetic energy term to each line scan. b, Comparison of the

spatial variation of the Dirac point extracted using two methods: the inverse

compressibility (black dashed line, identical to the dashed line in a) and through

subtracting surface potential scans at high and zero average carrier density (blue

line). The bar marks the smallest length scale (approximately 150 nm) on which

density variations are observed.

the details of the heterostructure. These complications however do
not arise for graphene as its thickness is negligible.

The peaked behaviour of the inverse compressibility as a
function of back-gate voltage or density may be used to map
out the density fluctuations in the graphene sheet. At different
locations across the sample, the local density is added to the
externally induced density by the back-gate. Therefore, different
back-gate voltages are required to zero the density at each location
and reach the Dirac point. In practice this means that the entire
inverse compressibility curve is shifted along the back-gate voltage
axis as we move from one point across the sample to another.
Figure 2a shows a measurement of the inverse compressibility along
an arbitrarily chosen line across the sample. The Dirac point
is located within the red coloured band, which corresponds to
reduced compressibility. As expected, it appears at different back-
gate voltages for different locations. The black dashed line shows
the dependence of the Dirac point on position, obtained by fitting
the kinetic term of the compressibility to each back-gate voltage
line scan. The smallest length scale on which density variations are
observed is roughly 150 nm. This scale is most likely limited by
our spatial resolution, that is, the size of the SET. The underlying
density fluctuations are therefore bound to occur on even smaller

length scales and with higher amplitudes. Direct evidence for that
is given below.

The chemical potential variations within the graphene are
probably due to charged impurities above and below the layer.
In the process of scanning the SET above the layer, we pick
up not only the spatial variations in the chemical potential but
also the potential emanating directly from the charges above
the layer along with their image charges in the layer. As these
potentials are much larger than the chemical potential variations
it would be desirable to find means to subtract them and be
left with only the chemical potential variations. This can be
readily achieved by subtracting the measured potential at zero
average density from that at a high carrier density. As the
carrier density in the graphene sheet increases it is expected
to screen better. Hence, at large carrier density, the potential
landscape in the graphene should be nearly constant and the only
potential seen by the SET is that due to static charges above
the layer. Using this method, we can extract the local carrier
density from the measurements of the surface potential alone. A
formal description of this subtraction process, which validates this
method, is given in Supplementary Information part B. Figure 2b
shows a comparison of the density variations as extracted from
the inverse compressibility measurements (black dashed line, which
is identical to the one in Fig. 2a) with those extracted from the
surface potential (blue solid line). There is striking quantitative
agreement between the two methods. Figure 3a shows a 2D map
of the density variations of the graphene sheet when the average
carrier density is zero. It was obtained from surface potential
measurements. The red regions correspond to electrons and the
blue regions correspond to holes. These data constitute direct
evidence for the puddle model25,41. These puddles may account
for the anomalous minimal conductivity observed at zero average
density42–44. A statistical analysis of the density fluctuations present
in this 2D map is shown in Fig. 3b. The histogram plots the
number of patches in which the density lies within a certain density
interval. From the standard deviation of a fit with a gaussian
distribution, we extract that the density fluctuations are of the order
of 1n2D,B=0 T = ±3.9×1010 cm−2.

To verify the influence of the substrate on the disorder
landscape observed in graphene, potential fluctuations were
recorded as seen by the SET on a nearby patch of the bare
silicon oxide surface. An example of a 2D scan is shown in
Fig. 4a when the SET scanning tip is placed at a distance of
approximately 150 nm from the bare silicon oxide surface. This
distance is slightly larger that the distance used to image the
surface of graphene (50 nm). The distance primarily affects the
spatial resolution and for a random potential landscape the r.m.s.
value will appear smaller by the square root of the change in area
(namely another factor of 1.5, as our resolution is limited to about
100 nm at short distances). Figure 4b shows a histogram of the
potential distribution across the scanned region. A gaussian fit to
the distribution yields a variance of 50 mV. This corresponds to a
variation in the electron charge on the SET island of approximately
1/2e. This is obtained from the charge periodicity of the SET in
the present configuration where 100 mV of back-gate voltage is
needed to add a single electron to the SET. Had the graphene
monolayer been there instead of the SET, similar charge variations
would have been induced in it. To determine the corresponding
density variations, we estimate the effective area integrated by
the SET. The distance of the SET from the surface sets a lower
bound on the substrate area probed by it and we conclude that
2×109 cm−2 represents an upper limit for the density fluctuations
caused by trapped charges within the oxide or at the oxide surface.
We find a value very similar to the above value in measurements
of the bare substrate potential that are taken at a closer distance
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Figure 3 Spatial density fluctuations and electron/hole puddles. a, Colour map

of the spatial density variations in the graphene flake extracted from surface

potential measurements at high density and when the average carrier density is

zero. The blue regions correspond to holes and the red regions to electrons. The

black contour marks the zero density contour. b, Histogram of the density

distribution in a.

similar to the distance used when imaging the compressibility of
the graphene layer. This result suggests that density fluctuations in
graphene do not primarily originate from trapped oxide charge.
Studies of the nanoscale morphology of silicon oxide and graphene
using non-contact atomic force microscopy have revealed that the
graphene flake partially conforms to substrate corrugations and
that without further treatment acrylic resists used in the fabrication
may leave a residue on the graphene flake36. Both substrate-induced
structural distortions as well as chemical doping from resist residue
are conceivable sources of density fluctuations. Even though our
sample was not exposed to an acrylic resist, we cannot exclude
that photoresist too leaves a residue despite ozone and ammonia
treatment. In addition, atmospheric species trapped in between the
flake and substrate as well as chemical adsorbants on top of the flake
may represent an important source of disorder, even though the
large shift of the neutrality point on annealing in vacuum indicates
that these chemical absorbates can to a large extent be removed.
STM studies on epitaxial graphene grown on SiC suggested in-
plane defects as an important source of disorder37. It is beyond
the scope of this work to identify the precise origin of disorder.
Instead, this work intends to unveil the typical characteristics of
density fluctuations present in graphene flakes obtained through
mechanical exfoliation procedures and with similar quality to
the ones used in previously reported transport and spectroscopy
studies of graphene.

The fluctuations in density discussed thus far have been
resolution limited by our technique. However, the intrinsic density
fluctuations may be extracted by going into the quantum Hall
regime (intrinsic here is used synonymously with not resolution
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Figure 4 Potential variations on the substrate. a, Colour map of the spatial

fluctuations in the surface potential measured above a patch of the bare silicon

oxide surface near the graphene flake. b, Histogram of the potential fluctuation

distribution in a. The variance is approximately equal to 50mV.

smeared). A large magnetic field applied perpendicular to the
sample produces bands of localized and extended states that are
manifested in universal transport properties45. Our previous studies
on GaAs 2D electron systems have shown that at sufficiently large
magnetic fields, the width in density of the band of localized
states, also referred to as the incompressible band, becomes field
and also filling factor independent. This width constitutes a direct
measure of the density fluctuations in the sample46. Figure 5 shows
a colour rendering of the ∂µ/∂n measured on our graphene
flake as a function of the magnetic field and density. A single
density scan at the fixed field of 11 T is shown in Fig. 5b. It is
composed of a series of maxima at the integer fillings 2,6,10
and so on, corresponding to regions of low compressibility. These
maxima can be fitted well by gaussians of identical variance,
which is in accordance with the filling-independent width of the
incompressible bands observed in conventional 2D systems. The
variance may serve as a measure for the disorder amplitude. A
best fit to the data is obtained assuming density fluctuations of
approximately 1n2D,B=11 T = ±2.3 × 1011 cm−2. A similar analysis
at lower magnetic fields shows that the variance still drops slightly
with decreasing magnetic field and hence the value 1n2D,B=11 T is a
lower bound for the disorder strength as bands of localized states
are not well separated yet. The disorder amplitude extracted from
these measurements in the presence of a magnetic field is about a
factor of six larger than the disorder estimate 1n2D,B=0 T from the
B = 0 T measurement in Fig. 3. This difference allows us to deduce
the intrinsic disorder length scale, ldisorder. For the zero field estimate,
the density fluctuations are averaged over an area determined by the
tip size with a characteristic dimension of approximately 150 nm
(see Fig. 2b). The ratio of these averaged density fluctuations and
the intrinsic ones is simply the square root of the ratio of the
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Figure 5 Estimate of the disorder from high magnetic field measurements.

a, Colour rendering of the inverse compressibility as a function of density and

magnetic field. The black dashed lines demarcate the incompressible band centred

around filling factor 2. The incompressible band maintains a constant width as the

magnetic field and density increase. b, A single line scan from plot a of the

measured inverse compressibility (blue line) at a magnetic field of 11 T. The red

curve is a fit to the data composed of gaussians with equal variance for each

maximum. This variance measures the width of the incompressible regions

(maxima) centred around integer fillings and provides an estimate for the intrinsic

amplitude of the density fluctuations.

disorder area to the averaged area. Therefore, we end up with an
upper bound for the intrinsic disorder length scale of about 30 nm.
We note as a curiosity that a similar number is obtained from
the Einstein relation between conductivity and compressibility,
σ = e2D(∂n/∂µ), for the mean free path when plugging in the
expression for the diffusion constant valid for conventional 2D
systems: D = vF l/2. Here, l is the mean free path. The conductivity
near the neutrality point is approximately σ ≈ 4e2/h and ∂n/∂µ is
shown in Fig. 1.

We conclude that the intrinsic disorder length scale in graphene
is approximately 30 nm. Whereas at high carrier density the high
compressibility of graphene smooths out the disorder landscape,
screening becomes poor and the intrinsic disorder length becomes
relevant as we approach the neutrality point. A carrier landscape
with co-existing electron and hole puddles emerges. Hence, charge
carriers are omnipresent despite vanishing average carrier density,
which may provide the most natural explanation for the minimal
conductivity and Hall resistance behaviour near the neutrality
point reported in graphene transport studies42–44.
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