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André Schirotzek, Cheng-Hsun Wu, Ariel Sommer, and Martin W. Zwierlein

Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 17 February 2009; revised manuscript received 9 April 2009; published 8 June 2009)

We have observed Fermi polarons, dressed spin-down impurities in a spin-up Fermi sea of ultracold

atoms. The polaron manifests itself as a narrow peak in the impurities’ rf spectrum that emerges from a

broad incoherent background. We determine the polaron energy and the quasiparticle residue for various

interaction strengths around a Feshbach resonance. At a critical interaction, we observe the transition from

polaronic to molecular binding. Here, the imbalanced Fermi liquid undergoes a phase transition into a

Bose liquid, coexisting with a Fermi sea.
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The fate of a single impurity interacting with its environ-
ment determines the low-temperature behavior of many
condensed matter systems. Awell-known example is given
by an electron moving in a crystal lattice, displacing
nearby ions and thus creating a localized polarization.
The electron, together with its surrounding cloud of lattice
distortions, phonons, forms the lattice polaron [1]. It is a
quasiparticle with an energy and mass that differ from that
of the bare electron. Polarons are central to the under-
standing of colossal magnetoresistance materials [2], and
they affect the spectral function of cuprates, the parent
material of high-TC superconductors [3]. Another famous
impurity problem is the Kondo effect, where immobile spin
impurities give rise to an enhanced resistance in metals
below the Kondo temperature [4]. In contrast to the elec-
tron moving in a phonon bath, a bosonic environment, in
the latter case the impurity interacts with a fermionic
environment, the Fermi sea of electrons.

Here we study a small concentration of spin-down im-
purities immersed in a spin-up Fermi sea of ultracold
atoms. This system represents the limiting case of spin-
imbalanced Fermi gases and has been recognized to hold
the key to the quantitative understanding of the phase
diagram of imbalanced Fermi mixtures [5–16]. Unlike in
liquid 3He, the s-wave interaction potential between the
impurities and the spin-up atoms in this novel spin-
imbalanced Fermi liquid is attractive. The vicinity of a
Feshbach resonance allows tuning of the interaction
strength at will, characterized by the ratio of the interpar-
ticle distance�1=kF to the scattering length a, where kF is
the spin-up Fermi wave vector [17]. Figure 1 depicts the
scenario for a single impurity: For weak attraction
(1=kFa � �1) the impurity propagates freely in the
spin-up medium of density n" ¼ k3F=6�

2 [Fig. 1(a)]. It

merely experiences the familiar attractive mean field en-
ergy shiftE# ¼ 4�@2an"=m < 0. However, as the attractive
interaction grows, the impurity can undergo momentum
changing collisions with environment atoms, and thus
starts to attract its surroundings. The impurity ‘‘dressed’’
with the localized cloud of scattered fermions constitutes

the Fermi polaron [Fig. 1(b)]. Dressing becomes important
once the mean free path �1=n"a2 of the bare impurity in

the medium becomes comparable to the distance �1=kF
between environment particles or when ðkFaÞ2 � 1.
Collisions then reduce the bare impurity’s probability of
free propagation, the quasiparticle residue Z, from unity.
The dressed impurity can instead move freely through the
environment, with an energy E# shifted away from the

simple mean field result. This polaronic state is stable until,
for strong attraction (1=kFa� 1), equivalent to a deep
effective potential well, the spin-down impurity will bind
exactly one spin-up atom, thus forming a tightly bound
molecule [Fig. 1(c)]. This molecule is itself a dressed
impurity, albeit a bosonic one [13].
To prepare and observe Fermi polarons, we start with a

spin-polarized cloud of 6Li atoms in the lowest hyperfine
state j1i (spin-up), confined in a cylindrically symmetric
optical trap (125 �m waist, 145 Hz=22:3 Hz radial/axial
trapping frequency) at a magnetic field of 690 G [17]. A
two-photon Landau-Zener sweep transfers a small fraction
into state j3i (spin-down), and further cooling results in a
cloud containing 2% j3i impurities immersed in a degen-
erate Fermi gas of 5� 106 j1i atoms at a temperature T ¼
0:14ð3ÞTF, where TF is the Fermi temperature. A 100 G
wide Feshbach resonance for scattering between these
states is centered at 690 G. For various fields around the

FIG. 1 (color online). From polarons to molecules. (a) For
weak attraction, an impurity (blue) experiences the mean field
of the medium (red). (b) For stronger attraction, the impurity
surrounds itself with a localized cloud of environment atoms,
forming a polaron. (c) For strong attraction, molecules of size a
form despite Pauli blocking of momenta @k < @kF � @=a by the
environment.
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resonance, we perform rf spectroscopy on the impurity
species j3i and on the environment particles in j1i by
transferring atoms into the empty state j2i, accessible to
either hyperfine state. This state is sufficiently weakly
interacting with the initial states to allow a direct interpre-
tation of the resulting spectra [18]. As in previous work,
spectra are spatially resolved and tomographically 3D
reconstructed [19] via an inverse Abel transform, and are
thus local and free from broadening due to density inho-
mogeneities. In addition, phase contrast images yield the
in situ density distribution n", n# and thus the local Fermi

energy �F of the environment atoms and the local impurity
concentration x ¼ n#

n"
. The Rabi frequencies �R for the

impurity and environment rf transitions are measured (on
fully polarized samples) to be identical to within 5%.

Figure 2 shows the observed spectra of the spin-down
impurities and that of the spin-up environment at low local
impurity concentration. The bulk of the environment spec-
trum is found at zero offset, corresponding to the free
(Zeeman plus hyperfine) energy splitting between states
j1i and j2i. However, interactions between impurity and
spin-up particles lead to a spectral contribution that is
shifted: The rf photon must supply additional energy to
transfer a particle out of its attractive environment into the
final, noninteracting state [17]. In Fig. 2(a), impurity and
environment spectra above zero offset exactly overlap,
signaling two-body molecular pairing. The steep threshold
gives the binding energy, the high-frequency wings arise
from molecule dissociation into remnants with nonzero
momentum [17,20,21]. As the attractive interaction is re-
duced, however, a narrow peak appears in the impurity
spectrum that is not matched by the response of the envi-
ronment [Figs. 2(b)–2(d)]. This narrow peak, emerging
from a broad incoherent background, signals the formation
of the Fermi polaron, a long-lived quasiparticle. The nar-
row width and long lifetime are expected: At zero tem-
perature the zero momentum polaron has no phase space
for decay and is stable. At finite kinetic energy or finite
temperature T it may decay into particle-hole excitations
[13], but phase space restrictions due to the spin-up Fermi
sea and conservation laws imply a decay rate / ðT=TFÞ2 �

1% in units of the Fermi energy. Indeed, the width of the
polaron peak is consistent with a delta function within the
experimental resolution, as calibrated by the spectra of
fully polarized clouds. The background is perfectly
matched by the rf spectrum of the environment. This is
expected at high rf energies @! � �F that are probing high
momenta k � kF and thus distances short compared to the
interparticle spacing. Here, an impurity particle will inter-
act with only one environment particle, leading to over-
lapping spectra.
Chevy has provided an instructive variational wave

function [5,9] that captures the essential properties of the
polaron, even on a quantitative level [16] when compared
with Monte Carlo (MC) calculations [6,12,13]:

j�i¼’0j0i#jFSi"þ
X

jqj<kF<jkj
’kqc

y
k"cq"jq�ki#jFSi" (1)

The first part describes a single impurity with a well-
defined wave vector (k# ¼ 0) that is not localized and free

to propagate in the Fermi sea of up spins jFSi". In the

second part the impurity particle recoils off environment
particles that are scattered out of the Fermi sea and leave
holes behind. This describes the dressing of the impurity
with particle-hole excitations. The probability of free
propagation is given by the first, unperturbed part, Z ¼
j’0j2. According to Fermi’s golden rule [11,15,17,22], the
two portions of j�i give rise to two distinct features of the
impurity rf spectrum �ð!Þ (! is the rf offset from the bare
atomic transition):

�ð!Þ ¼ 2�@�2
RZ�ð@!þ E#Þ þ �incð!Þ: (2)

The first part in j�i contributes a coherent narrow quasi-
particle peak to the minority spectrum. Its position is a
direct measure of the polaron energy E#, its integral gives
the quasiparticle residue Z. The particle-hole excitations in
the second part give rise to a broad, incoherent background
�incð!Þ / P

q;kj’qkj2�ð@!� �q�k � �k þ �q þ E#Þ: The
polaron energy E# is released as the impurity at momentum

q� k is transferred into the final state, leaving behind an
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FIG. 2 (color online). rf spectroscopy on polarons. Shown are spatially resolved, 3D reconstructed rf spectra of the environment
(blue, state j1i) and impurity (red, state j3i) component in a highly imbalanced spin-mixture. (a) Molecular limit; (b),(c) Emergence of
the polaron, a distinct peak exclusively in the minority component. (d) At unitarity, the polaron peak is the dominant feature in the
impurity spectrum, which becomes even more pronounced for 1=kFa < 0 (not shown). For the spectra shown as dashed lines in (d) the
roles of states j1i and j3i are exchanged. The local impurity concentration was x ¼ 5ð2Þ% for all spectra, the interaction strengths
1=kFa were (a) 0.76(2), (b) 0.43(1), (c) 0.20(1), and (d) 0 (unitarity).
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environment particle in k above and a hole within the
Fermi sea at q [22]. These two spectral features are recov-
ered in theoretical rf spectra for a finite number of impu-
rities, i.e., a Fermi liquid [15,23]. For our analysis we do
not rely on a theoretical fit to the spectra.

To measure the polaron energy E#, we determine the

peak position of the impurity spectrum as a function of the
local interaction parameter 1=kFa. The data for 5% impu-
rity concentration are shown in Fig. 3(a), along with the
variational upper bound given by the wave function Eq. (1)
[22] and the diagrammatic MC calculation of [13]. As final
state interactions are weak, they can be included as a
simple repulsive mean field shift 4�@2afen"=m, with afe
the scattering length between the final state and the envi-
ronment atoms [24]. Polaron energies have been predicted
via the variational ansatz [5], the T-matrix approach
[9,10,15,16], the 1=N expansion [11], fixed-node MC
[6,12] and diagrammatic MC calculations [13]. With the
exception of the 1=N expansion, these all agree with each
other and with the present experiment to within a few per-
cent. In particular, in the unitary limit where 1=kFa ¼ 0we
find a polaron energy of E# ¼ �0:64ð7Þ�F ð�0:72ð9Þ�FÞ
when state j3i (j1i) serves as the impurity [25]. This agrees
well with the diagrammatic MC calculation, �0:615�F
[14], and the analytical result �0:6156ð2Þ�F [16]. Analy-

sis of experimental density profiles yields a value of
�0:58ð5Þ�F [26].
The relatively large value for E# directly implies that the

normal state, modeled as a Fermi sea of weakly interacting
polarons, is favored over the superfluid state up to a critical
concentration (44%), much higher than that predicted by
mean field theories (4%) [27]. These neglect interactions in
the normal state and therefore imply a polaron binding
energy of zero.
We have so far considered the limit of few impurities. By

increasing their density, we can study the effect of inter-
actions between polarons. In Fig. 3(b) we show that the
quasiparticle peak position depends only weakly on the im-
purity concentration in the unitarity limit. Polarons are thus
weakly interacting quasiparticles, despite the strong inter-
actions between the bare impurity and its environment.
The peak position could be modified due to the effective

mass m� of polarons, larger than the mass of the bare
impurity. Transfer of a moving polaron into the free final
state then requires additional kinetic energy. This leads to
an upshift and a broadening on the order of the Fermi
energy difference between initial and final state,

x2=3�Fð1� m
m�Þ. On resonance, this is 0:04�F for x ¼ 0:1.

The effect could be partially masked by the predicted weak
repulsion between polarons [12] that would downshift the
resonance frequency by �0:02�F for x ¼ 0:1.
The spectral weight of the polaron peak directly gives

the quasiparticle residue Z, a defining parameter of a Fermi
liquid. Experimentally, we determine the area under the
impurity peak that is not matched by the environment’s

2.5

2.0

1.5

1.0

0.5

pe
ak

 p
os

iti
on

 / 
ε F

0.8 0.4 0.0
1 / kF a

0.9

0.8

0.7

pe
ak

 p
os

. /
 ε

F

0.150.100.050.00
impurity concentration x = n↓ / n↑

a)

b)

FIG. 3 (color online). Peak position of the impurity spectrum
as a measure of the polaron energy E#. (a) peak position for

various interaction strengths in the limit of low concentration
x ¼ 5ð2Þ% (solid circles). Open circle: Reversed roles of impu-
rity and environment. Dotted line: polaron energy from varia-
tional ansatz Eq. (1) [5], the solid line including weak final state
interactions. Dashed line: Energy of a bare, isolated molecule in
vacuum. Blue dash-dotted line: Mean field limit for the energy of
an impurity atom. Solid (open) diamonds: Diagrammatic MC
energy of the polaron (molecule) [13]. (b) Peak position at
unitarity (1=kFa ¼ 0) as a function of impurity concentration
(solid circles). The line shows the expected peak position,
@!p=�F ¼ Aþ ð1� m

m�Þx2=3 � 6
5Fxþ 4

3� kFafe, using the MC

value A ¼ 0:615 [13], the analytic result m� ¼ 1:2 [16], the
weak repulsion between polarons with F ¼ 0:14 [12] and
weak final state interactions with scattering length afe.
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FIG. 4 (color online). Quasiparticle residue Z as a function of
interaction strength and impurity concentration. The color cod-
ing indicates the magnitude of Z and is an interpolation of the
data points shown in the graph. Open circles: Data points
consistent with zero (Z < 0:03), solid circles: Z > 0:03, the solid
line marking the onset of Z. Blue cross: Critical interaction
strength for the Fermi liquid—molecular BEC transition for x !
0 [12]. Inset: Z as a function of interaction strength in the limit of
low impurity concentration x ¼ 5ð2Þ%. Open circle: Reversed
roles, j1i impurity in j3i environment. The spectrum in the inset
illustrates the determination of Z [22].
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response and divide by the total area under the impurity
spectrum (see spectrum in Fig. 4 and [22]). Figure 4
presents Z as a function of interaction strength and impu-
rity concentration x, the inset shows Z for x ¼ 5%. As
expected, Z approaches 100% for weak attractive interac-
tion kFa ! 0�, where the bare impurity only rarely recoils
off environment atoms. As the mean free path shortens and
the bare impurity starts to surround itself with environment
atoms Z decreases. On resonance, we find Z ¼ 0:39ð9Þ for
x ¼ 5%, with only a weak dependence on x (Fig. 4).
Theoretical values for Z vary: ansatz Eq. (1) predicts Z ¼
0:78 for a single impurity, while Ref. [11] predicts Z ¼
0:47 (0.30) for vanishing (5%) impurity concentration. Our
procedure might yield a lower bound on the actual value of
Z, as the incoherent part of the impurity spectrum might be
depleted around threshold. Eventually, for strong attraction
between the impurity and particles of the medium, Z
vanishes and we observe complete overlap of the impurity
and environment spectra. This signals the formation of a
two-body bound state between the impurity and exactly
one environment atom. For a spin-down concentration of
5% we determine the critical interaction strength where the
polaron peak vanishes to be 1=ðkFaÞc ¼ 0:76ð2Þ. This is in
good agreement with the independently determined critical
interaction 1=kFa ¼ 0:74ð4Þ beyond which one finds a
superfluid even for the smallest impurity concentration
[28]. This is a multicritical point [12,13,29] where a
Fermi liquid of weakly interacting polarons undergoes a
phase transition into a Bose liquid of molecular impurities.
Fixed-node MC calculations place this transition at a value
of 1=kFa ¼ 0:73 for x ! 0 [12]. Our 1=ðkFaÞc is lower
than the value 0.90(2) from diagrammatic MC [13] for a
single impurity. Ansatz Eq. (1) does not predict a transi-
tion, as it does not test for the formation of molecules. In
Fig. 4, the color coding reveals where molecular behavior
is observed (yellow), and where the spectra show polaronic
behavior (red to black). It can be seen that the critical
interaction strength for the formation of molecules depends
only weakly on the impurity concentration x.

In conclusion, we have observed Fermi polarons in a
novel, attractive Fermi liquid of spin-down impurity atoms
immersed in a spin-up Fermi sea. The energy and residue
of this quasiparticle was determined and interactions be-
tween quasiparticles were found to be weak. Polarons thus
emerge as the quasiparticles of a Landau Fermi liquid
description of this strongly interacting Fermi mixture. To
study first the impurity limit of N þ 1 interacting particles
before dealing with the fullN þMmany-body system will
be a fruitful approach for other strongly correlated systems
realized with cold atoms. An intriguing question is how the
limit of a weakly interacting polaron liquid containing few
impurities connects to the physics of a hydrodynamic,
balanced Fermi gas containing Cooper pair fluctuations
above the critical temperature for superfluidity. In light
of our findings, fermion pair condensation could be viewed
as condensation of pairs of polarons with opposite spin.
This is also suggested by the large normal state interaction

measured by quasiparticle spectroscopy on the superfluid
state [30].
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In this supplemental material we state, starting with the variational Ansatz by Chevy, key prop-
erties of the polaron, such as the energy E↓ and the quasiparticle residue Z, and we calculate its RF
spectrum using Fermi’s Golden Rule. We connect this approach and its implication for finite impu-
rity concentration to the results of Fermi liquid theory and the T-matrix formalism used in [1–4].
Furthermore, details are provided about the extraction of the quasiparticle residue Z.

Polaron wavefunction, energy and quasiparticle
residue

We start with the hamiltonian for a dilute two compo-
nent mixture of fermionic atoms interacting via the van-
der-Waals potential V (r) [5]. Thanks to the diluteness of
the system, the potential is of short range R compared
to the interparticle distance 1/kF , so kF R ¿ 1. Its
Fourier transform V (k) is thus essentially constant, g0,
below kF and rolls off to zero at a momentum on the or-
der of 1/R À kF . The many-body Hamiltonian for the
system is then

Ĥ =
∑

k,σ

εkc†kσckσ +
g0

V
∑

k,k′,q

c†
k+ q

2 ↑
c†−k+ q

2 ↓
ck′+ q

2 ↓c−k′+ q
2 ↑

(1)
Here, the label σ denotes the spin state ↑,↓, εk =
~2k2/2m, V is the volume of the system and the c†kσ,ckσ

are the usual creation and annihilation operators for
fermions with momentum k and spin σ. The trial wave-
function for the Fermi polaron with zero momentum pro-
posed by F. Chevy in [6] is

|Ψ〉 = ϕ0 |0〉↓ |FS〉↑ +
k>kF∑

q<kF

ϕkqc†k↑cq↑ |q− k〉↓ |FS〉↑
(2)

The energy is then minimized under variation of the pa-
rameters ϕ0 and ϕkq, with the constraint of constant
norm 〈Ψ|Ψ〉 = |ϕ0|2 +

∑k>kF

q<kF
|ϕkq|2 = 1. That is,

the quantity to minimize is
〈
Ψ|Ĥ|Ψ

〉
− E↓ 〈Ψ|Ψ〉. The

derivation can be found in [6], here we quote the result for
the particle-hole excitation amplitudes ϕkq, the quasipar-
ticle weight |ϕ0|2 = Z, and the energy E↓ due to addition
of the down spin impurity:

ϕkq = ϕ0
1
V

f(E↓,q)
E↓ − εk + εq − εq−k

(3)

1
|ϕ0|2

≡ 1
Z

=


1− ∂

∂E

1
V

∑

q<kF

f(E,q)




E=E↓

(4)

E↓ =
1
V

∑

q<kF

f(E↓,q) (5)

These all depend on the function f(E,q) with

f−1(E,q) =
1
g0

+
1
V

∑

k>kF

1
εk − εq + εq−k − E

(6)

It is a measure of the interaction strength between spin
up and spin down, modified by the presence of the spin up
Fermi sea. As usual, g0 can be replaced by the physically
observable scattering length a for collisions between spin
up and down via [5] 1

g0
= m

4π~2a − 1
V

∑
k

1
2εk

.

f−1(E,q) =
mkF

2π2~2

(
π

2kF a
− 1

)
+ (7)

1
V

∑

k>kF

(
1

εk − εq + εq−k − E
− 1

2εk

)

The integral in above expression is convergent and gives

f−1(E,q) =
mkF

2π2~2

{
π

2kF a
− 1 + I

(
E

EF
,

q

kF

)}
(8)

I(ε, y) =
∫ ∞

1

dx

(
x

2y
ln

(
2x2 + 2xy − ε

2x2 − 2xy − ε

)
− 1

)

An analytic expression for the integral exists but does not
provide additional insight. The equation for E↓ becomes

E↓
EF

= −2
∫ 1

0

dy
y2

1− π
2kF a − I

(
E↓
EF

, y
) (9)

This implicit equation for E↓ can be easily solved nu-
merically. The result is shown as the dashed line in
Fig. 3 of the main paper. Clearly, E↓ is negative due
to the attractive interactions with the medium. In the
weakly interacting limit 1/kF a → −∞, we can neglect
the integral in the denominator and immediately obtain
E↓ = 2

3
2kF a

π EF = 4π~2an↑/m, which is the mean field
result [7].

The approach turns out to be equivalent to a T-Matrix
description, as shown in [7]. In that language, f(E,q)



2

is (up to a constant) the scattering amplitude in the
medium (i.e. the vertex) for the scattering process with
total energy and momentum E and q of the colliding
particles. Σ(0, E) ≡ 1

V
∑

q<kF
f(E↓ + E,q) is the self-

energy at zero momentum and frequency E/~. It is real
in this approximation. The expression for the quasipar-
ticle residue Z of a single spin down impurity in Eq. 4
is immediately seen to be equivalent to the well-known
relation [3]

Z−1
↓ =

(
1− ∂

∂E
ReΣ(kF↓, E)

)

E=0

(10)

for a spin down quasiparticle on top of a spin down Fermi
sea, in the limit of vanishing Fermi momentum kF↓.

RF spectrum from the variational Ansatz

Fermi’s Golden Rule allows us to directly predict the
shape of the impurity RF spectrum. This topic has been
studied in detail since the early days of RF spectrosocpy,
and for the problem of highly imbalanced Fermi gases
in [1–4], among others. Chevy’s wavefunction offers a
simple way of calculating the RF spectrum of a single
impurity.

The RF operator V̂ = ~ΩR

∑
k c†k,fck,↓+h.c. promotes

the impurity into the free final state |f〉 (energy Ef ) with-
out momentum transfer [5]. In the experiment, the final
internal state is the second lowest hyperfine state of 6Li.
Fermi’s Golden Rule for the impurity starting in state
|Ψ〉 is

Γ(ω) =
2π

~
∑

f

∣∣∣
〈
f |V̂ |Ψ

〉∣∣∣
2

δ(~ω − (Ef − E↓)) (11)

Where ω is the RF offset from the bare atomic transition
frequency between the internal states labeled by ↓ and
f . One possible final state is |0〉 ≡ |0〉f |FS〉↑, i.e. a
zero momentum particle in the final state plus a perfect
Fermi sea of up spins, with energy E|0〉 = 0 relative to the
Fermi energy EF of the environment. Other possible final
states are |q,k〉 ≡ |q− k〉f c†k↑cq↑ |FS〉↑ with q < kF

and k > kF , i.e. a particle with momentum q − k in
the final state and a Fermi sea with a hole at q and
an excited environment particle above the Fermi sea at
k. The energy of these states is E|q,k〉 = εk − εq + εq−k

relative to the environment Fermi energy EF . The matrix
elements are

〈
0

∣∣∣V̂
∣∣∣ Ψ

〉
= ~ΩR ϕ0

〈
q,k

∣∣∣V̂
∣∣∣ Ψ

〉
= ~ΩR ϕkq

This leaves us with two components in the RF spectrum:

Γ(ω) = 2π~Ω2
R

(
Zδ(~ω + E↓) + (12)

k>kF∑

q<kF

|ϕkq|2 δ(~ω + E↓ − εk + εq − εq−k)
)

The first part is a delta-peak shifted by the quasiparticle
energy. As E↓ < 0, it is shifted to higher frequencies: The
RF photon has to supply additional energy to transfer the
impurity out of its attractive environment. The weight
of this peak is Z, the quasiparticle residue, allowing the
experimental determination of Z by simply integrating
the area under the prominent peak. Such a delta-peak
is typically called ”coherent”, as a broadband excitation
around this energy would not dephase over time. The
second part of the spectrum is incoherent, it consists of a
broad continuum of frequencies. Broadband excitations
of this continuum would rapidly dephase, over a timescale
given by the inverse width of the continuum.

RF spectrum in Fermi Liquid theory

This structure of the RF spectrum is a generic fea-
ture of quasiparticle spectra. In Fermi liquid theory, the
propagator of a quasiparticle is approximated as a pole
at energy E(k) > 0 (relative to the ground state energy),
lifetime 1/γ(k) and residue Z plus an incoherent spec-
trum [3, 8]

GR
−(k, ω) =

Z

~ω + E(k) + i~γ(k)
+ GR,inc

− (k, ω) (13)

The spectral function is given by A−(k, ω) =
− 1

π ImGR
−(k, ω) = Z 1

π
~γ(k)

(~ω+E(k))2+~2γ(k)2 + Ainc
− (k, ω)

which tends to

A−(k, ω) = Zδ(~ω + E(k)) + Ainc
− (k, ω) (14)

in the limit of small damping of the quasiparticle.
A−(k, ω) measures the probability that removing a par-
ticle with momentum k will cost an energy −~ω. The
RF spectrum in linear response is given by [2]

Γ(ω) = 2π~Ω2
R

∑

k

A−(k, εk − µ− ~ω)nF (εk − µ− ~ω)

(15)
where µ is the chemical potential of the quasiparticle and
nF (x) = 1/(eβx + 1) is the Fermi function that tends to
θ(−x) at zero temperature. This is intuitively under-
stood: For a given momentum k, the RF photon with
energy ~ω has to provide the energy εk − µ (relative to
the initial chemical potential µ) to create a free parti-
cle in the final state. The rest, ~ω − εk + µ, is used
to remove a particle from the initial state (probability
A−(k, εk−µ− ~ω)) if there exists such a particle (factor
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nF (εk−µ−~ω)). Eq. 15 is equivalent to Fermi’s Golden
Rule Eq. 11 [9]. In the case where the spectral func-
tion is dominated by a quasiparticle peak, the spectrum
becomes

Γ(ω) = 2π~Ω2
RZ

∑

k

δ(εk + E(k)− µ− ~ω)

× nF (εk − µ− ~ω) + Γinc(ω) (16)

Connecting to our case of a single quasiparticle with µ =
E↓ and k = 0, this directly gives

Γ(ω) = 2π~Ω2
RZδ(~ω + E↓) + Γinc(ω) (17)

identical to the prediction via the trial wavefunction.

Polaron spectral function

To connect the single particle and the Fermi liquid de-
scription, we calculate the propagator GR

−(k, ω) for the
removal of a single spin down impurity from the wave-
function |Ψ〉. By definition,

iGR
−(k, t) = 〈Ψ| c†k↓eiĤt/~ck↓ |Ψ〉 θ(t) (18)

Inserting a complete set of eigenstates, this gives

iGR
−(k, t) =

∑

f

|〈f | ck↓ |Ψ〉|2 eiEf t/~θ(t) (19)

The state ck↓ |Ψ〉 is void of any spin down impurity and
has non-vanishing matrix elements only with either the
unperturbed spin up Fermi sea, |FS〉↑ (if k = 0), or with
particle-hole excitations |q,k′〉 = c†k′↑cq↑ |FS〉↑ (in the
case k = q − k′). These matrix elements are ϕ0 =

√
Z

and ϕk′q resp., the corresponding energies Ef = 0 and
Ef = εk′ − εq relative to EF . So one has:

iGR
−(k, t) = (Zδk,0+

k′>kF∑

q<kF

δk,q−k′ |ϕk′q|2 ei(εk′−εq)t/~)θ(t)

Finally, GR
−(k, ω) = Z

~ω+iη δk,0 + GR,inc
− (k, ω) with in-

finitesimal η > 0. This is just the Fermi liquid form
of GR

− but for a single quasiparticle with zero momentum
(E(0) = 0 in (13)), as described by |Ψ〉. The spectral
function is

A−(k, ω) = Zδ(~ω)δk,0 +
k′>kF∑

q<kF

δk,q−k′ |ϕk′q|2 δ(~ω + εk′ − εq)

With Eq. 15 this exactly gives the RF spectrum of Eq. 12.

Calculation of the incoherent background

Using Eq. 3, we can write the incoherent part of the
spectrum as:

Γinc(ω) ≡ 2π~Ω2
R

k>kF∑

q<kF

|ϕkq|2 δ(~ω + E↓ − εk + εq − εq−k)

=
2πΩ2

R

~
Z

ω2

1
V2

k>kF∑

q<kF

f(E↓,q)2δ(~ω + E↓ − εk + εq − εq−k)

The integral over k exists in analytic form:

1
V

∑
k>kF

δ(~ω + E↓ − εk + εq − εq−k) =

mkF

8π2~2 K(~ω+E↓
2EF

, q
kF

)

with K(ε, y) =





y2
+−y2

−
y for y− > 1 ,

y2
+−1

y for y− < 1 < y+ ,

0 for 1 > y+ .

and y± = ±y
2 +

√
y2

4 + ε (20)

The incoherent spectrum is then

Γinc(ω) = πΩ2
R

ZEF

~ω2

∫ 1

0

dy
y2K

(
~ω+E↓
2EF

, y
)

(
1− π

2kF a − I
(

E↓
EF

, y
))2(21)

One can check that the total spectrum obeys the sum
rule

∫ ∞

−∞
dωΓ(ω) = 2π~Ω2

R (22)

and in particular that the total weight of the incoher-
ent background is proportional to 1 − Z, which is not
obvious from the form in Eq. 21. For RF frequencies
close to threshold ~ω + E↓ ¿ 2EF , the hole momen-
tum q and the particle momentum k must be close to
each other to fulfill energy conservation, i.e. they have
to be close to the Fermi momentum. The double sum
over q and k thus gives a phase space suppression on
the order of (~ω + E↓)2, i.e. the spectrum starts like
(~ω + E↓)2/ω2. This is in contrast to the dissociation
spectrum of a molecule of binding energy EB , where the
density of states above threshold gives a spectrum pro-
portional to

√
~ω + EB/ω2. For large RF energies, large

particle momenta k are involved, the suppression due to
the Fermi sea becomes negligible and the spectrum be-
haves like

√
~ω + E↓/ω2, as for a molecule of binding

energy E↓. This is natural as for large momenta, we are
probing short-range physics which involves at most two
particles, a spin up environment atom and the impurity.
In particular, at RF energies ~ω À E↓, we recover the
ω−3/2 behavior of the RF spectrum that is universal for
short-range interactions.
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RF Spectrum of a finite concentration of impurities

Since polarons are found to be weakly interacting, they
will form a Fermi sea filled up to the impurity Fermi mo-
mentum kF↓. The fact that the dispersion of polarons
E(k) = m

m∗ εk differs from that of a free particle due to
the effective mass m∗ 6= m leads to broadening of the RF
spectra. The RF photon has to supply the difference in
kinetic energies (1 − m

m∗ )εk between the initial and the
final state, with a maximal shift (1− m

m∗ )~2k2
F↓/2m. The

spectral shape is easily obtained: The spectral function
at momentum k will be dominated by polarons that oc-
cupy that momentum state. The coherent part of the
spectral function is thus Acoh

− (k, ω) = Zδ(~ω + E(k))
with E(k) = −~2k2/2m∗ = − m

m∗ εk relative to the im-
purity Fermi energy. The coherent part of the spectrum
then becomes

Γcoh(ω) = 2π~Ω2
R

∑

k

Acoh
− (k, εk − E↓ − ~ω)

where the sum extends up to the impurity Fermi momen-
tum kF↓. With the free, 3D density of states ρ(ε), this
is

Γcoh(ω) = 2π~Ω2
R

∫ EF↓

0

dε ρ(ε)Zδ(ε− E↓ − ~ω − m

m∗ ε)

= 2π~Ω2
R

Z

1− m
m∗

ρ

(
~ω + E↓
1− m

m∗

)
×

θ
(
(1− m

m∗ )EF↓ − ~ω − E↓
)

(23)

This coherent part of the spectrum starts at the polaron
ground state energy ~ω = |E↓|, then grows like a square
root and jumps to zero when ~ω − |E↓| = (1− m

m∗ )EF↓.
On resonance, where m∗ ≈ 1.2, this occurs at ~ω−|E↓| =
0.2x2/3EF↑ ≈ 0.04EF↑ for x = 0.1. This is still smaller
than the Fourier width of the RF pulse used in the exper-
iment of about 0.1EF . The size of the jump is given by
2π~Ω2

R
Z

1− m
m∗

ρ(EF↓) and reflects the impurity Fermi sur-
face in the RF spectrum. This behavior of the coherent
part of the spectrum was found in [1] and was discussed
recently in [4]. It is intriguing that the sharpness of the
Fermi surface and its discontinuity should, at least in
principle, be observable in the RF spectrum.

Determination of Z from experimental spectra

In order to extract the quasiparticle residue Z, we de-
termine the area under the peak that is not matched by
the environment’s response and divide by the total area
under the impurity spectrum (see spectrum in the inset
of Fig. 4 in the main body of the paper). Due to the
Fourier width of the probe pulse, the strong response of

the environment around zero RF offset (the resonance for

at
om
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sf
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 / 
a.

u.

543210
rf offset / ε F

FIG. 1: Determination of the quasiparticle residue Z. Impu-
rity spectrum (red), environment spectrum (blue) and spec-
tral response of non-interacting atoms (black dashed), folded
over from negative RF offsets.

non-interacting atoms) adds some weight to the environ-
ment background at the position of the polaron peak. To
remove this effect in the determination of Z, the part of
the environment’s response at negative frequency offset
is folded towards the positive side (dashed line in Fig. 1)
and subtracted from the environment spectrum. As it
turns out, this procedure changes the value for Z by less
than 5% for all spectra in Fig. 2 of the main paper.
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