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Observation of Hofstadter butterfly and topological
edge states in reconfigurable quasi-periodic
acoustic crystals
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Emil Prodan 5 & Alexander B. Khanikaev 1,2

The emergence of a fractal energy spectrum is the quintessence of the interplay between two

periodic parameters with incommensurate length scales. crystals can emulate such interplay

and also exhibit a topological bulk-boundary correspondence, enabled by their nontrivial

topology in virtual dimensions. Here we propose, fabricate and experimentally test a

reconfigurable one-dimensional (1D) acoustic array, in which the resonant frequencies of

each element can be independently fine-tuned by a piston. We map experimentally the full

Hofstadter butterfly spectrum by measuring the acoustic density of states distributed over

frequency while varying the long-range order of the array. Furthermore, by adiabatically

changing the phason of the array, we map topologically protected fractal boundary states,

which are shown to be pumped from one edge to the other. This reconfigurable crystal serves

as a model for future extensions to electronics, photonics and mechanics, as well as to quasi-

crystalline systems in higher dimensions.
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T
he almost Mathieu operator Hϕ;θ ¼ T þ Ty þ
λ cosð2πϕX þ θÞ was introduced by Peierls in 19331, in his
study of electron dynamics under magnetic fields. It acts

on a 1D lattice, where T and X are the translation and position
operators, respectively. When λ= 2, the operator connects to
Harper's equation2, which expresses the 2-dimensional (2D)
magnetic Schrödinger operator in the Landau gauge, with ϕ
representing the magnetic flux through the primitive cell. Ever
since the work of Hofstadter from 19763, material scientists are
well aware of the spectral properties of this operator, which were
further investigated with semianalytical methods by Aubry and
Andre4, and with rigorous methods by many mathematical
physicists5,6. It is known, for example, that for all irrational values
of ϕ, the spectrum is a Cantor set whose size measures to
Spec Hð Þj j ¼ j4� 2λj. Furthermore, for λ > 2, the eigenmodes are
localized in space with exponentially decaying profiles, while the
eigenmodes are extended for λ > 2. At the transition point λ= 2,
the spectrum is fractal and its measure vanishes, hence it consists
mostly of gaps. As we shall see, all these gaps are topological in
the sense that they all support nontrivial bulk-boundary corre-
spondences, a statement that actually remains valid even when
the potential and the couplings are replaced by generic quasi-
periodic functions7.

Fractal spectra encode interesting patterns of self-similarity,
and large efforts have been devoted to their experimental obser-
vation. Several groups have proposed indirect methods to chase
the butterfly spectrum, for example, by measuring quantization
Hall conductance in magnetotransport8,9 or by using ultra cold
atoms as a tool of mapping Haper Hamiltonian10–12 to obtain
evidence of fractal spectrum. The first realization of a butterfly
spectrum was carried out by measuring microwave as well as
acoustic transmittance through an array of scatterers13,14. Years
later, several groups independently reported evidence of butterfly
spectra by investigating the electronic behavior of graphene
super-lattices under the modulation of long-range periodic
potential and magnetic field perpendicular to graphene super-
lattices15–17, and fractal magnetic Bloch states were revealed18. A
more recent work used nine superconducting qubits as a tool
to demonstrate the spectroscopic signature of this energy
spectrum19.

In Harper’s equation, the parameter θ represents the electron
quasimomentum in a chosen direction. As such, by varying θ over
the full interval [0, 2π], one essentially recovers the physics of
electrons on a 2D lattice subjected to a perpendicular magnetic
field20. These quantum systems display the Integer Quantum Hall
Effect (IQHE), hence it is not difficult to understand why the
almost Mathieu operator possess a nontrivial bulk-boundary
correspondence. Nevertheless, the possibility of implementing the
operator with quasiperiodic 1D platforms opens up new ways to
observe and study the associated topological phenomena. A

number of theoretical and experimental works have recently
induced quasiperiodicity in a broad variety of systems7,21–27 to
explore topological phase transitions and edge states. Even more,
topological phases in higher dimensions23,28–31 have been pre-
dicted and the those characterized by second class Chern number
in 2D quasiperiodic crystals observed experimentally21,22.

Despite all these advances, reconfigurable experimental plat-
forms were missing to construct the exact quasiperiodic lattice
and to emulate the topological effects, yet they are much needed
for a thorough exploration of their physics, such as the obser-
vation of the Hofstadter butterfly spectrum or pumping the edge
states from one boundary to the other. In this paper, we present
our design and 3D-printed realization of a reconfigurable 1D
acoustic metamaterial, made of resonators with tunable onsite
frequency. The reconfigurable design allows us to construct
arbitrary phason configurations of the quasiperiodic array, thus, it
enables experimentally mapping Hofstadter butterfly spectrum
and topological edge states for sound in a straightforward way by
simply tuning the piston of resonators. Compared to the previous
works which mapped the fractal bulk spectrum in the classical
system13,14 through simulating “onsite potential” by a step
function, our structure can mimic the variation of the “onsite
potential” in Harper/Aubry–André equation in a “sinusoidal”
manner. In addition, both adiabatic pumping (mapping edge
states spectrum) and nonadiabatic pumping (mapping Hofstadter
butterfly spectrum) can be easily emulated in our reconfigurable
acoustic platform, which are very hard to achieve in the solid
states of matter.

Results
Reconfigurable acoustic metamaterial design. The array consists
of tunable acoustic resonators connected via circular channels,
called bridges hereafter. The height of each resonator can be
adjusted by rotating a piston inserted inside a thread, which is
printed both on the inner side of the resonator and on the surface
of the piston itself. The reconfigurable resonators are shown in
Fig. 1a, and the geometry of the structure was optimized to
observe the acoustic spectrum with high resolution (see Meth-
ods). For example, in order to realize high and stable quality
factors for the resonant modes (~50), the unperturbed height of
the resonators is chosen as h0= 40 mm and the modulation depth
as δh0 ¼ 0:12h0. The diameter of the connecting bridges affects
the size of the fractal gaps in the butterfly spectrum, therefore an
effort was put into optimizing the diameter value to maximize the
size of these gaps. The details of the structure optimization can be
found in Supplementary Note 1.

The first-order acoustic pressure mode of the single resonator
oscillating in the axial direction of the cylinder (~4.5 kHz) (shown
in Supplementary Fig. 1c), with one node at the center of the
cavity, is one of the interests for our experiment. The coupling
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Fig. 1 1D tunable acoustic quasicrystal. a Schematics of a single resonator with a piston. b Photograph of 8 (out of 37) tunable resonators of the fabricated

quasiperiodic acoustic crystal. The maximum height of a single cylinder in Fig. 1a is chosen as ht ¼ h0 þ δh0, where h0= 40mm is the unperturbed height,

δh0 ¼ 0:12h0 is the modulation depth, and variable δh is modulated by the sinusoidal function in the range of ½�δh0; δh0�. The diameter of cylinder d0=

20mm. The connectors between the cylinders have a diameter dc= 10 mm, with a vertical distance to the bottom of the hollow chamber hc= 5.2 mm
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bridges are placed at the bottom of the resonators to minimize the
effect on the coupling strength κ of the varying height through the
pistons at the top. As long as the modulation depth of height δh is
not very large, this assumption holds well, as experimentally
confirmed by testing the frequency response of two-coupled

resonators (for details see S.M. Section. II). Therefore, if δh
h0

�

�

�

�

�

�
� 1,

and the variation of the resonators’ height follows the modulation
protocol hn ¼ h0 þ δh sin 2πnϕþ θð Þ, where n is the site index of
the resonators, the recursive equations describing an infinite
chain of coupled resonators assume the form

ωφn ¼ ω0 � γ sin 2πnϕþ θð Þð Þφn þ κφn�1 þ κφnþ1; n ϵZ;

ð1Þ

where ω0 ffi
πc
h0

is the resonator unperturbed onsite angular

frequency, c is the speed of sound, γ ffi δh
h0
ω0, and φn is the

amplitude of the collective resonant mode at site n. The parameter
θ is a phase factor often referred to as phason. The value of the
coupling constant κ is determined by the position and the
diameter of the connecting bridges and it can be adjusted by
moving the bridges up or down as well as by varying their
diameter. The numerical value of κ was experimentally deter-
mined from the hybridization of the modes in a dimer
configuration (Supplementary Note 2), and the position and
geometry of the bridges was adjusted until κ= γ/2, hence tuning
the system at the transition λ= 2, where the spectrum is mostly
composed of gaps.

Bulk-boundary correspondence. We can encode the data of the
collective mode in the vector jφi ¼

P

n φnjni, in which case
Eq. (1) reduces to the eigensystem problem for the almost Mathieu
operator Hϕ,θ. It is known that, if ϕ is irrational, the spectrum of
Hϕ,θ is actually independent of θ, but this is not the case if ϕ is
rational. Hence it is more convenient and appropriate to work
with the reunion of the spectra Spec ϕð Þ ¼ ∪ θ SpecðHϕ;θÞ, since,

as we shall see, the topological gaps occur in Spec(ϕ). For example,
the individual spectra Spec(Hϕ,θ) can display additional gaps for
which it is not possible to define topological invariants, as shown
by the midgap in the Fig. 2a. As subsets of the real axis, Spec (ϕ)
are known to depend continuously of ϕ and, as such, by sampling
ϕ over rational values we can compute an accurate representation
of the spectral butterfly, as shown in Fig. 2b. As one can see, in all
cases there is a fractal network of spectral gaps. If ϕ is irrational,
then between any pair of such gaps there is an infinite number of
additional gaps, hence counting the gaps in an orderly fashion is
futile. Nevertheless, each gap can be uniquely labeled32 by the
value of the integrated density of states (IDS) inside the gaps,
defined as the number of eigenvalues below that gap divided by
the length of the system, as the length is taken to infinity. For our
context, IDS is known30 to be quantized as

IDS ¼ nþmϕ; n;m 2 Z; ð2Þ

Furthermore and very importantly, there is the constraint
0 � IDS � 1. The integer m is connected to the first Chern

number C, a fact that can be seen from Streda’s formula ∂IDS
∂ϕ ¼ C

(The details of applying this formula in the aperiodic case are
presented in ref. 33). Given the constraints on IDS, one can
immediately see that C ≠ 0 for all gaps except for two cases,
namely for the gaps above and below the spectral butterfly. In
other words, every true gap of the butterfly is topological. The
Chern numbers are continuous (hence constant) functions of ϕ as
long as one navigates inside a spectral gap34, and hence does not
cross any spectrum of the butterfly. As such, the Chern number

can be evaluated for each gap using rational approximants p/q of
ϕ (the analytic form of the Chern number for both irrational and
rational ϕ is presented in Supplementary Note 3). e.g., by turning
Eq. (2) into the Diophantine equation35,36

j ¼ nqþ Cp; ð3Þ

where j is the index of the minigap counted from the lowest
frequency gap. Alternatively, one can integrate the Berry
curvature of the gap projection PG over the magnetic Brillouin
zone (detailed in Supplementary Note 3). Both methods lead to
the same answers and some of the computed Chern values are
shown in Fig. 2b for (p, q)= (1, 6).

As was shown by Hatsugai37, the edge of a halved IQHE system
carries a topological invariant whose numerical value coincides
with the bulk Chern number. Furthermore, this edge topological
invariant counts the difference between the positively and
negatively dispersing edge bands38. In our context, this means
that, at the edge of a half acoustic quasiperiodic chain, we should
observe a number of chiral bands equal to the value of bulk Chern
number as θ is varied. This is indeed confirmed by our explicit
calculations reported in Fig. 2b. Importantly, the stability of this
bulk-boundary correspondence against disorder was established
in ref. 30.

Furthermore, we demonstrate in Fig. 2c the spectacular change
in the spatial profile of the resonant modes as the system
transitions between the localized and de-localized regimes by
tuning κ, for example, changing the diameter of the bridges dc.
When κ

f0
< 0:06 (corresponding to the case λ > 2), the eigenstates

are localized and exponentially decay, in the example of dc= 8
mm, the acoustic pressure waves in the array are indeed localized
(Fig. 2c). However, when κ

f0
> 0:06 (corresponding to the case λ <

2), as shown in Fig. 2e, for dc= 12 mm, the acoustic pressure
waves extend at every site along the array. Contrary to what one
will expect, based on the fact that topological invariants are
usually carried by the extended states, the topological bulk-
boundary correspondence is not affected by these qualitative
differences. The reason is that the topological bulk Chern
number, defined above, involves also the virtual dimension of
the phason6.

Observation of the Hofstadter butterfly spectrum. In order to
observe the fractal structure of the butterfly spectrum, the num-
ber of degrees of freedom of the system has to be large, namely
the number of resonators should be sufficient to resolve the
fractal features. However, the resonance peaks of the system have
finite bandwidth due to unavoidable radiation and material loss
(e.g., introduced by holes drilled to probe the system and the resin
absorption). In addition, acoustic viscosity also contributes to the
loss since the size scale of the resonator is in the centimeter.
Therefore, it is impossible to resolve the higher-order minigap as
the corresponding peaks overlap with each other if the bands are
too close (with the separation less than ~70 Hz). Here we choose a
number of cells q= 37, as a compromise between the require-
ments of high resolution and time needed to take measurement
for different configurations of the array, while being aware of the
finite Q factor of each resonance that would fundamentally limit
the observation of higher-order gaps.

For the first time, we mapped the Hofstadter butterfly through the
acoustic density of states (DOS) instead of measuring the acoustic
wave transmittance/reflectance for each value of p. We extracted
DOS by measuring the frequency responses of each resonator in the
quasiperiodic array, in such way the boundary effects on the bulk
spectrum can be reduced by excluding DOS of the boundary sites
from the spectrum. In the measurement, the speaker is placed at the
bottom of each resonator, and the directional microphone is placed at
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the top of the piston screwed into the same resonator. Both speaker
and microphone are placed next to the probe holes, which are
intentionally introduced into the geometry as seen in Fig. 1a. The
frequency response range from 3600 to 5800Hz was measured for
every resonator, except for the boundary ones. The normalized DOS
is obtained through these data (see Methods Section for details). As
shown in Fig. 3a, the phason is set as π

3
, the integer p varies from 1 to

q= 37, and its variation changes the spatial periodicity of the
sinusoidal function in the array. For example, if p= 8, the sinusoidal
wave in the array undergoes eight cycles, and the corresponding
measured DOS, shown in Fig. 3b, clearly reveals the main gap m0 in
the butterfly spectrum, where the indexing method of Hofstadter’s
work is adopted3. The higher-order fractal gaps c

−1 in the c
−1 region,

and one in the r
−1 sub-region of the c

−1 region are also clearly
observed. These results allow us to conclude that at least three orders
of fractal gaps in the spectrum can be resolved in our setup.

Normalized DOS for all p values have been measured, and their
logarithmic scale amplitude is presented in Fig. 3c, with the
brighter part of the spectrum indicating higher DOS in that
region. As expected, the spectrum is overall symmetric in the
horizontal direction within the range of tolerance due to
experimental errors. However, a slight asymmetry present in
the vertical direction can be observed, and it is attributed to the
fact that the height variation has a minor effect on the hopping
strength κ, which has also been verified by our first-principle
calculations (shown by red colored dots in Fig. 3d). To better
resolve the minigap in the spectrum, the positions of the
resonance peaks are extracted from each site for all p values
and depicted in blue colored circles in Fig. 3d, and match the
simulation results in a precise way. The legality of taking the open
boundary in the bulk spectrum measurement comes from several
aspects. First of all, frequency responses at boundary sites were
not taken into account to generate the butterfly spectrum,
therefore, we do not observe many edge states existed inside the

bandgaps in the butterfly spectrum (there are few in the lower
right main gap of the spectrum). Second, the bulk states, due to
the existence of loss in the acoustic structure, cannot propagate
over a large distance when they are excited by the source, thus,
the effects of boundary conditions on the exited bulk states are
lessen because of the reduced propagation length of bulk states.

Pumping topological edge states. To explore the fractal gaps and
edge states associated with them in our acoustic quasicrystal, we
fix the magnetic flux to ϕ= 1/6. In order to resolve the fractal
edge state spectrum, a large number of cells are required. We
choose p= 4 and q= 24 in our experimental setup. The field
profiles distributed in the arrays shown in Fig. 4a reveals the to-
pological pumping of boundary mode from one side of the array
to the other side, as the phason θ varies in the range indicated by
red colored lines in Fig. 4b. The phason θ acts similar to a
momentum vector, although we present the variation of the
arrays in real space. Although the field profiles of the arrays are
depicted schematically, they closely reflect the results from first-
principle calculations. Only half of the energy spectrum calculated
from COMSOL simulations is presented in Fig. 4b due to the
spectrum symmetry. Because of the bulk-edge correspondence,
one and two gapless edge states are expected in the m0 and c

−1

gaps at each boundary.
Compared to the work27, there is no limitation on the number

of phason configuration, though we found that taking measure-
ment for 48 phason values is sufficient to clearly resolve the edge
spectrum with better resolution than the one in ref. 27. Followed
the same procedure as one in measuring butterfly spectrum, the
acoustic DOS for each value was obtained. The reconstructed
energy spectrum for all phasons is plotted in Fig. 4c, and it is
found consistent with our first-principle calculations. One and
two edge states are observed in m0 and c

−1 gaps, respectively, as
indicated by dashed lines in Fig. 4c. When compared to the
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theoretical results, the crossing of these edge spectra shifts to
higher frequency because of the effect of different boundary
conditions, specifically, perfectly matched layer boundary condi-
tions are applied in the simulations, while in reality the boundary
cells are open to the ambient air environment, which emulates the
open boundaries set in the numerical calculation39. However, the
edge states emerge irrespective of the boundary conditions, and
always retain their gapless and asymmetric character with respect
to the phason variation, which vividly demonstrates the
robustness of the topological edge states.

The logarithmic scale field profiles of the edge states shown in
the Fig. 4d, e confirm their localization at the boundaries both in
simulations and in the experimental results, respectively. The
edge state profile lines in Fig. 4e are color coded to agree with
colors in Fig. 4c. In addition, as can be seen from Fig. 4e, the edge
states present in the m0 gap (yellow colored) are found to be more
localized than those present in the c

−1 gap (blue colored),
although the edge states in both gaps have the same distance to
the nearest (upper) bulk bands, which excludes the effect of decay
length due to bulk-edge frequency difference. Interestingly, a
power-law behavior is discovered in the decay profile of the edge
states, which reveals the modal property of the quasiperiodic
crystals, as predicted theoretically in ref. 40.

Discussion
In this work, we experimentally mapped the Hofstadter butterfly
and fractal edge spectra using a 3D-printed reconfigurable
acoustic quasicrystal, and first time used DOS instead of the

transmittance/reflectance of the acoustic waves to construct the
butterfly spectrum. Our approach can be easily extended to other
systems, such as LC circuits, or arrays of silicon ring resonators41,
which may possess higher-quality factors, thus offering the ability
of mapping richer features in the spectrum. For example, if the
parameter ϕ is an irrational number, or the integer p (coprime
with q) is very large, the very high order fractal gaps and their
associated edge states can be observed in the spectrum for the
case of high-quality factor resonators [see Supplementary Fig. 4].
Thus, the larger the quality factor of the modes, the finer fractal
features may be observed. In addition, the idea of reconfigurable
design can be generalized to systems emulating higher dimen-
sions, for example by mapping the effects of second or third
Chern number in 4- and 6-dimensional spaces, implemented in
2- and 3-dimensional quasicrystals, respectively. Such systems
may enable the exploration of even more subtle phenomena,
which may be unfeasible in periodic topological systems. Our
work opens up the possibility of realizing topological devices with
robust performance stemming from the fundamental physics of
quasiperiodic topological systems.

Methods
Experimental details. The reconfigurable quasiperiodic array in Fig. 1b has a
lattice period a0= 30 mm modulated by the spatial periodic parameter p. The
maximum height of a single cylinder in Fig. 1a is chosen as ht ¼ h0 þ δh0 , where
h0= 40 mm is the unperturbed height, δh0 ¼ 0:12h0 is the modulation depth, and
variable δh is modulated by the sinusoidal function in the range of ½�δh0; δh0�. The
diameter of cylinder d0= 20 mm. The connectors between the cylinders have a
diameter dc= 10 mm, with a vertical distance to the bottom of the hollow chamber

b

dc

p

a

3.6 5.2

Frequency (kHz)

0

0.01

0.02

0.03

0.04

0.05

D
e
n
s
it
y
 o

f 
s
ta

te
s
 (

a
.u

.)

m0
c–1

b–1

m0

c–1

� �

5.6

5.2

4.8

F
re

q
u
e
n
c
y
 (

k
H

z
)

F
re

q
u
e
n
c
y
 (

k
H

z
)

4.4

4

3.6

5.6

5.2

4.8

4.4

4

3.6
0.5 1 0.5 1

2

1.5

1

0.5

0

4 4.4 4.8 5.6 5.8

Fig. 3Measurement of Hofstadter butterfly spectrum. a Schematics of a quasiperiodic lattice with variable long-range order. b Normalized density of states

(DOS) for the case p= 8 with fractal bandgaps labeled. c Hofstadter butterfly spectrum mapped from the measured DOS for different p values, the

colorbar shows the magnitude of DOS in arbitrary unit. d Peaks of resonance frequencies extracted from the frequency responses for sites 2–36 and for all

p values. The red arrow indicates the position p= 8, considered as an example in the text. The axis ϕ= p/q, where q= 37 in the experiment

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-019-0151-7 ARTICLE

COMMUNICATIONS PHYSICS |            (2019) 2:55 | https://doi.org/10.1038/s42005-019-0151-7 | www.nature.com/commsphys 5

www.nature.com/commsphys
www.nature.com/commsphys


hc= 5.2 mm. Narrow probe channels were intentionally introduced on top and
bottom sides of each of the cylinders to excite and measure local pressure field at
each site. The diameter of the port is d0= 2 mm.

B9Creator v1.2 3D printer was used to print the reconfigurable model. All
resonators and pistons were made with acrylic-based light-activated resin, a type of
plastic that hardens when exposed to UV light. The shell of the resonator was
printed with a sufficient thickness (2–3 mm) to ensure a hard wall boundary
condition. Two connected cells were printed at a time and the cells were designed
in a way to interlock tightly with each other.

The frequency generator and Fast Fourier Transform (FFT) spectrum analyzer
scripted in LabVIEW were used in the data processing. For the details of
measurement, the speaker was placed at the bottom port and the microphone at the
top port of the same site. Both the speaker and microphone were closely touched
with the ports to achieve the maximum coupling between source and the system, as
well as maximum amplitude of signal. The frequency generator was used to run a
sweep from 3600 to 5800 Hz in 20 Hz intervals and with the dwell time of 0.5 s
which is enough for the FFT spectrum analyzer to obtain the stable amplitude
responses φ(f) at each frequency. For the calculation of normalized DOS,
field distributions φ(i, f) are obtained by repeating this process for each site
i 2 ½2; q� 1�. The data for each site was normalized on the total volume of signal
summed over frequencies and sites, as well as on the free space amplitude response

between the microphone and the speaker, Φ i; fð Þ ¼ φ i; fð Þ=
P

f ;i φ i; fð Þ=φair fð Þ.

The signal spectrum for an array of q−2 resonators Sn fð Þ ¼
P

i Φ i; fð Þ. To observe
the field distribution excited by the speaker, the speaker was placed at the port of
the site of interest, and the microphone over each site of the array to measure the
magnitude at the desired frequency. In all acoustic measurements, the noise floor in
the signal is less than −120 dB, which is much less than the signal level in the
desired frequency interval.

Numerical details. For the first-principle calculations, the finite element solver
Multiphysics COMSOL 5.2a and the Acoustic module were used to perform full-
wave simulation. In the acoustic propagation wave equation, the speed of sound
was set as c= 343.2 m/s, and density of air as ρ ¼ 1:225 kg=m3 . The dimensions of
the structure are the same as the fabricated ones. For eigenvalue calculations, the
continuity conditions were imposed along the ends of the quasiperiodic array. For
the calculations of edge states spectrum, perfect matched layer boundary conditions
were applied on the boundaries of the array. Coupled model equations were used to
fit the physical parameters of the cells, calculate the Hofstadter butterfly spectrum
and topological edge spectrum. For the two coupled resonators, the fitted onsite
frequency is f0∼ 4502 Hz, coupling strength is κ ∼ 270 Hz.
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Fig. 4 Mapping the edge spectrum using adiabatic pumping of phason θ for the case (p, q)= (4, 24). a Schematics of edge state transfer during phason θ

pumping; the range of this pumping is indicated by the orange line in Fig. 4b. b Band structure obtained from first-principle calculations. c Band spectrum

mapped from the measured normalized density of states (DOS) for each θ, the colorbar shows the magnitude of DOS in arbitrary unit. d Acoustic pressure

distributions of edge states found from first-principle simulations; these field profiles, from the bottom panel to the top panel, correspond to the edge states

marked by dots in Fig. 4b and are arranged from the lower frequency to the higher frequency, the colorbar represents the magnitude of acoustic pressure.

e Measured acoustic pressure amplitude distributions Sn in logarithmic scale at different sites of the array from 1 to 24, these field profiles correspond to

the edge states marked in dots in Fig. 4c
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