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Abstract

The main focus of this work is to investigate experimentally the transition

to turbulence of a yield stress shear thinning fluid in Hagen-Poiseuille flow.

By combining direct high speed imaging of the flow structures with Laser

Doppler Velocimetry (LDV), we provide a systematic description of the dif-

ferent flow regimes from laminar to fully turbulent. Each flow regime is

characterized by measurements of the radial velocity, velocity fluctuations,

and turbulence intensity profiles. In addition we estimate the autocorrela-

tion, the probability distribution, and the structure functions in an attempt

to further characterize transition. For all cases tested, our results indicate

that transition occurs only when the Reynolds stresses of the flow equals

or exceeds the yield stress of the fluid, i.e. the plug is broken before tran-

sition commences. Once in transition and when turbulent, the behavior of

the yield stress fluid is somewhat similar to a (simpler) shear thinning fluid.

We have also observed the shape of slugs during transition and find that

their leading edges to be highly elongated and located off the central axis of

the pipe, for the non-Newtonian fluids examined. Finally we present a new

phenomenological approach for quantifying laminar-turbulent transition in

pipe flow. This criterion is based on averaging a local Reynolds number

to give ReG. Our localised parameter shows strong radial variations that

are maximal at approximately the radial positions where puffs first appear

during the first stages of turbulent transition.
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Chapter 1

Introduction

The focus of this experimental study is an investigation of the transition to

turbulence of a yield stress shear thinning fluid in Hagen-Poiseuille flow. The

present work was motivated by both oil & gas and pulp & paper applications

where control of the inherent processes requires knowledge of the flow state

at different velocities. The fluids used in this study are (i) Newtonian (ii)

shear thinning and (iii) shear thinning with a yield stress τy. With yield-

stress fluids the axial profile in fully developed laminar flow is characterized

by an un-yielded or plug zone. The radius of the plug zone is dictated by

a balance between the frictional pressure drop and the yield stress of the

fluid. One of the remaining open scientific questions with these fluids is the

role of the plug during transition.

There is a demand from industrial applications to predict the Reynolds

number Re (Re = UbD/ν where Ub is the average or bulk velocity, D is the

diameter of the pipe and ν is the kinematic viscosity) at which transition

occurs, for a range of fluid types, so that different frictional pressure closures

may be applied to piping network design calculations. One of the earliest

attempts, and probably still the most popular for non-Newtonian fluids is

that of Metzner and Reed. Perhaps the most obvious weakness with such

phenomenological formulae is that turbulent transition occurs over a wide

range of Reynolds numbers and not at a single number. For example in

careful experiments Hof et al. [65] report retaining laminar flows in Newto-

nian fluids up to Re=24,000, whereas the common observation of transition

initiating in pipe flows is at Re 2000. Thus, there is a difficulty with inter-

preting the predictions of phenomenological formulae, many of which were

formulated before a detailed understanding of transitional phenomena has

developed. Although such a predictive guideline is a worthy goal, and one

1



Chapter 1. Introduction

we address in this thesis, it is clear that a necessary process to this is a

detailed study of transition, which we provide here.

The main objective of this work is to help elucidate the mechanism of

transition from laminar to turbulent flow in shear thinning yield stress flu-

ids. The work is experimental in which we characterize the flow state using

high-speed imaging and by measuring the mean and fluctuating components

of velocity using laser Doppler velocimetry. Here we measure the velocity

profiles across the diameter of the pipe from slow to fully turbulent flows.

In § 1.1, the pertinent literature is reviewed in which we consider the major

works outlining transition in both Newtonian and non-Newtonian fluids and

summarize the empirical correlations used to predict transition. In § 1.2,

a brief summary of the literature is given and the objectives of the thesis

are outlined. The experimental flow loop and the flow visualization system

used are presented in § 2. In § 3, we present the results in two sections. In

the first section we describe phenomenologically the behaviour of the fluids

undergoing transition. In this subsection we characterize the flow field both

using high speed video images and simple measurements of the fluctuations

of the instantaneous velocity measurements. In the next section, the tran-

sition to turbulence using higher-order statistical methods is characterized.

In § 4, we present a new definition of Re and demonstrate that transition

occurs at a common Re for all fluids tested.

1.1 Literature review

Since Reynolds’ experiment in 1883, Reynolds [112], a large number of

experimental and theoretical studies have been conducted to characterize

transition, but the mechanism of turbulence transition is still not fully un-

derstood. White [142] stated that ”There is no theory of transition. After

a century of research on the transition process,. . . , the mechanisms are still

not completely understood. . . . A dramatic example of our limited knowl-

edge is the fact that the original transition experiment (pipe flow) is still

not well understood.” The published studies can be divided into three main

groups for transition to turbulent in pipe flows. The first one deals with

2



Chapter 1. Introduction

experimental activities. The second group includes the theoretical activities

that aim to provide physical models for prediction of a critical threshold.

The last group contains numerical investigations, mainly by using Reynolds-

averaged Navier-Stokes solvers. But first, we review the early research on

turbulence, then detail on the literature of transition.

1.1.1 Mixing length theory

Transition to turbulence may be explained with growth rates and instability

amplification rates from basic linear stability theory, including nonlinear

effects. But studying the developing instability and transition to turbulence

is found to be more difficult than investigating turbulence as a state by many

researchers. Turbulence is studied in two main trends (Roshko [113]). The

first one is the search for models of the Reynolds Averaged Navier-Stokes

(RANS) equations first derived by Reynolds, which address the mean-flow

quantities. It is known that the turbulent flow is described by the unsteady

form of the Navier-Stokes equations. And the second one is called statistical

theory of turbulence first introduced by G. I. Taylor in 1930’s, which seeks

statistical descriptions of the turbulence itself, mainly through equations and

relations for correlations of the velocity fluctuations. The most common one

is Kolmogorov’s concept of a ’universal inertial range’ for a limited range of

the correlations at small scales. He uses scaling and similarity arguments

and introduces the ’fundamental’ Kolmogorov constant.

In turbulent flow, we can define an effective viscosity as the sum of the

molecular viscosity, µ and a turbulent viscosity, µt. The turbulent viscosity

accounts for momentum transport by eddies. In need determining the turbu-

lent viscosity, a model of turbulent transport is required. The first one was

Prandtl’s mixing length hypothesis. The theory of the mixing length was

first introduced, taking analogy from the mean free-path of the gas theory

by Prandtl [108]. Then several theories have been proposed by Taylor [131]

and von Karman [73] for obtaining theoretically the mean velocity profile

of turbulent pipe and channel flows. It has been used in turbulent modeling

especially for external flows to obtain the closure equations of turbulence.

3



Chapter 1. Introduction

For turbulent pipe flows, mixing length theory led to the logarithmic law in

the wall region. It is now known that instability waves, and resulting coher-

ent structures, are dominant features of mixing layers in transition and in

the fully developed turbulence.

Using the Boussinesq laminar flow analogy, the kinematic turbulent vis-

cosity (also called eddy viscosity), νt can be expressed as the product of

a velocity scale and a length scale. If the velocity scale is assumed to be

proportional to the length scale and the velocity gradient, Prandtl’s (1925)

mixing length model is derived as νt = lm
2|du/dy|. Algebraic expressions

are derived for the mixing length for internal and external flows. Mixing

length model is also used to describe the Reynolds stresses by means of sim-

ple algebraic formulae for turbulent viscosity, µt. So Reynolds stresses are

linked to the mean rate of deformation.

τij = −ρu′

iu
′

j = µt(
dUi

dxj
+

dUj

dxi
) (1.1)

The turbulent viscosity (also called the Eddy viscosity), µt has the same

unit as that of the molecular viscosity and is assumed to be isotropic. Most

of the kinetic energy of turbulence is contained in the largest eddies and

the turbulence length scale l is therefore characteristic of these eddies which

interact with the mean flow. Therefore, mixing length theory links the char-

acteristic velocity scale of the eddies with the mean flow properties. The

turbulent viscosity is used to close the momentum equations in turbulent

modeling. Hornby et al. [69] used Prandtl’s concept, together with modifi-

cations such as that proposed by van Driest [35], and extended to obtain the

wall damping factor in flow in a duct of constant cross section by considering

the oscillation of the whole of the boundary. Van Driest (1951) proposed

a damping function to slow down the growth of the turbulent stress in the

vicinity of the wall. Hornby et al. [69] considered the damping influence of

the whole of the boundary of the flow cross section and not just that of the

near wall region for plane parallel flow and axisymmetric flow in a pipe and

in an annulus.

On the base of Prandtl’s postulate that the total shear stress in a turbu-

4



Chapter 1. Introduction

lent Newtonian fluid could be written as the sum of the laminar molecular

shear and the turbulent shear stress contribution, Clapp [22] modified it

to include non-Newtonian effects. Hecht [63] investigated the velocity pro-

files for non-Newtonian power law fluids and determined the friction factor

for pipe flow at high Reynolds numbers. As in Newtonian case, the total

shear stress is equated to the sum of the laminar power law stress and the

turbulent stress based on the Prandtl mixing length as a function of power

law index n. He used van Driests’ model for variation of the mixing length

near the wall to yield a continuous velocity and shear stress distribution for

turbulent pipe flow. He found agreement with experiments if the proper

values of power law index and mixing length parameter are used.

Modeling transition to turbulence with mixing length theory can be used

for external flows. Transition is characterized with its starting and ending

value of Reynolds numbers based on effective viscosity; it assumed to be

started when the friction losses becomes larger than its laminar value for

the same Reynolds number and ended when the friction is smaller than its

turbulent value for the same Reynolds number. There are different types

of mixing-length transition models. For the intermittency-based transition

model, turbulent viscosity is computed, multiplied by the intermittency fac-

tor, and added to the laminar viscosity according to the turbulence intensity

and pressure gradient. The formulation of the intermittency model in the

Prandtl mixing length model is µt = ργl2|du/dy|, νt = γl2|du/dy| where γ

is the intermittency function. The most widely used intermittency models

are developed by Abu-Ghannam & Shah [2] and Mayle [86]. The theory is

based on that as the flow increased, the turbulent viscosity becomes signifi-

cant, increasing the value of friction loss from a laminar value to a turbulent

one. Crawford & Kays [23] modified van Driest transition model; the van

Driest damping function constant in the mixing length is controlled to sim-

ulate how the sublayer thickness decreases as the flow moves from laminar

state to turbulent state.

In Prandtl’s mixing length model, it is assumed that the shear stress

is constant and equal to the wall value (τw) and further that the viscous

contribution was negligible. So it only calculates mean flow properties and

5



Chapter 1. Introduction

turbulent shear stress. None of the previous mixing-length or eddy-viscosity

approaches takes into account the Reynolds-number dependency of the pa-

rameters of the mean velocity profiles (Buschmann & Gad-el-Hak [19]).

And today this theory is ignored because it has too many assumptions and

much better models are available.

1.1.2 Studies on Newtonian transition

Experimental studies

Understanding transition flow in yield stress fluids is difficult. Insight into

this phenomena can be gained by first examining the simpler case of Hagen-

Poiseuille flow with a Newtonian fluid. In laminar flow, fluid particles follow

straight lines that are parallel to each other called streamlines. In turbulent

flow different sizes of eddies are superimposed on the streamlines. Larger

eddies carry the fluid particles across the streamlines and smaller eddies

create stirring that causes diffusion. The onset of turbulence is not imme-

diate. There is a process of instability that makes laminar flow a turbulent

one. In this transitional zone, flow is neither laminar nor fully turbulent,

and in which the observed pressure drops are intermediate between those

for laminar and turbulent flow.

The detail of Newtonian transition is still under investigation. From

the engineering perspective, it is generally accepted that transition can be

predicted using one dimensionless parameter, the Reynolds number Re =

UbD/ν where Ub is the average velocity, D is the diameter of the pipe and ν

is the kinematic viscosity. When the Re exceeds a critical value, even small

disturbances, which always exist in a physical system, can cause instability

and transition. From a mathematical perspective, although Hydrodynamic

Stability Theory, Schmid et al. [121] is capable of predicting instability of

some flow configurations (transient growth or amplification of small distur-

bances), it is unable to predict transition (i.e. a critical Reynolds number)

for pipe flows because the flow is stable at all Reynolds numbers. So non-

linear analysis is a must to be able to have a predictive mechanism from

mathematical analysis. Hydrodynamic Stability Theory will be discussed in

6



Chapter 1. Introduction

detail in next section. For a Newtonian fluid it is known that the Reynolds

number above 2100 is generally accepted as the critical value of practical

interest to transition.

There are a number of means to characterize the onset of transition. In

the simplest case, the relation between pressure drop and velocity is also used

to identify the flow regimes. The change from the laminar to the turbulent

flow regime results in a large increase in the flow resistance. The functional

relationships and physical flow patterns are fundamentally different for the

two regimes. The Fanning friction factor; i.e. White [143], f , can be derived

exactly for laminar flow and empirically for turbulent flow. The value of f

in laminar pipe flows for Newtonian fluids is f = 64
Re . Measuring the friction

factor’s departure from 64/Re is an effective way to detect the transition.

In addition to this, characterization of the point of transition in experiments

can also be based on the statistics of the flow properties, mainly velocity and

pressure, because the motion of turbulent eddies, which are random cause

fluctuation (e.g. u(t) = u+u′(t)). Here, the root-mean-square (rms) of local

velocity

urms =
√

u′2 (1.2)

is calculated to measure turbulence strength and

I =
urms

u
(1.3)

for turbulence intensity I. The observation of the velocity and the turbulence

intensity at the centerline is a generally accepted method to detect transition

for Newtonian fluids.

In addition there is a significant body of experimental work that has

focused at flow structure in intermediate transitional regimes for Newtonian

fluids. Wygnanski and coworkers (Wygnanski & Champagne [149], Wygnanski

et al. [150]) found that flow disturbances evolve into two different turbu-

lent states during transition: puffs and slugs. They observed and described

the evolution of localized turbulent puffs and slugs in details such as their

shape, the way they propagate, their velocity profiles and the turbulence

intensities inside them. The puff is found when the Reynolds number is
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Uℓ/Ub Ut/Ub Re Structure

Wygnanski & Champagne [149] 0.92 0.86 2200 puff
Wygnanski & Champagne [149] 1.55 0.62 8000 slug
Teitgen [133] 1.40 0.73 2200 puff
Draad [31] 1.70 0.60 5800 slug
Shan et al. [124] 1.56 0.73 2200 puff
Shan et al. [124] 1.69 0.52 5000 slug
Mellibovsky & Meseguer [88] 1.57 0.68 3850 slug

Table 1.1: Reported literature values of the leading and trailing edge veloc-
ities of a puff or a slug in a flowing Newtonian fluid.

below Re ∼ 2700 and the slug appears when the Reynolds number is above

Re ∼ 3000. Both the puff and slug are characterized by a change in the lo-

cal velocity in which the flow conditions are essentially laminar outside the

structure and turbulent inside. The puff and slug are distinguished from

each other by the abruptness of the initial change between the laminar and

turbulent states. It has been reported that for a puff, the velocity trace is

saw-toothed whilst a slug has a square form on velocity-time readings. Since

these classical studies, many authors have observed and measured puff and

slug characteristics in Newtonian fluids. A summary of reported values of

the leading Uℓ and trailing Ut edge velocities of puffs and slugs are given in

Table 1.1, scaled by the mean flow velocity Ub.

Further attempts to characterize transition experimentally include the

studies of Bandyopadhyay [8], Toonder & Nieuwstadt [135], Eliahou et

al. [37], Han et al. [55] & Hof et al. [65]. Bandyopadhyay [8], reports

streamwise vortex patterns near the trailing edge of puffs and slugs. Dar-

byshire & Mullin [25], indicates that a critical amplitude of the disturbance

is required to initiate transition and this value decreases with Re. Toonder &

Nieuwstadt [135] performed LDV profile measurements of a turbulent pipe

flow with water. They found that the urms near the wall is independent

of Reynolds number. Eliahou et al. [37] investigated experimentally tran-

8
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sitional pipe flow by introducing periodic perturbations from the wall and

concluded that amplitude threshold is sensitive to disturbance’s azimuthal

structure. Han et al. [55] expanded on the work of Eliahou et al. [37]

and advanced the argument that transition is related to the azimuthal dis-

tribution of the streamwise velocity disturbances and that transition starts

with the appearance of spikes in the temporal traces of the velocity. In ad-

dition they found that there is a self-sustaining mechanism responsible for

high-amplitude streaks and indicate that spikes not only propagate down-

stream but also propagate across the flow, approaching the pipe axis. Hof et

al. [66] measured the velocity fields instantaneously over a cross-sectional

slice of a puff and showed that uniformly distributed streaks exist around

the pipe wall and slower streaks exist near the centreline in a puff. They

show that the minimum amplitude of a perturbation required to cause tran-

sition scales as the inverse of the Reynolds number. There are of course

many other experimental studies of Newtonian fluid transition.

Kanda & Yanagiya [75] repeated the Reynold’s experiments and critical

Reynolds number values obtained by previous researchers are summarized,

focusing on bellmouth entrances and a straight pipe. It is seen that the

critical Reynolds number value is of about 2030 when using a straight pipe

and that with bellmouth entrances, it increases from 2030 to 12,000 and

higher. They did their experiments with ten exchangeable pipe entrances;

namely, a straight pipe, five different quadrant-arc rounds and four different

bellmouth entrances. They observed that the transition occurs after the

parabolic velocity profile becomes artificially distorted. Then, puffs and

slugs are generated by the disturbances in the fully developed region. They

stressed that the transition from laminar to turbulent flow occurs necessarily

in the entrance region and concluded that an apparent cause of the transition

is the contraction ratio of pipe entrances, particularly that of the small

quadrant-arc rounds cut at the pipe inlet. And Reynolds’ value of 2030

could be reproduced by a method similar to Reynolds’ color-band method

when using a straight pipe.

9
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Theoretical studies

The gap between experimental and theoretical understanding of Newtonian

shear transition is drawing ever closer. The mid-1990’s saw a revival of in-

terest in linear theories with the realisation that stable linear modes could

undergo prolonged periods of (algebraic) growth before an eventual decay,

and that these slowly varying solutions may themselves be unstable. Whilst

early work looked for exact resonances, it was later appreciated that due

to non-normality of the linearised Navier-Stokes operator, transient growth

could occur for specific initial conditions without exact resonance; see Chap-

man [20], Reddy et al. [109], Trefethen et al. [136] for an overview of these

developments. At the same time, self sustaining mechanisms were proposed

by Waleffe and others, (Hamilton et al. [54], Waleffe [140]), by which energy

from the mean flow could be fed back into streamwise vortices, thus resisting

viscous decay. Self-sustained exact unstable solutions to the Navier-Stokes

equations were found by Faisst & Eckhardt [44] and by Wedin & Kerswell

[141]. Much current effort is focused at understanding the link between these

self-sustained unstable solutions and observed transitional phenomena, such

as intermittency, streaks, puffs and slugs; see e.g. Eckhardt et al. [38], Hof

et al. [66, 67], Kerswell & Tutty [78].

Studying the regions of stability and instability and knowing which pa-

rameters will influence the behavior of the system give a theoretical perspec-

tive to understand the onset of instability and transition to turbulence for

pipe flows.

Hydrodynamic stability theory

Hydrodynamic stability theory is concerned with the response of a laminar

flow to a disturbance of small or moderate amplitude. Basically, if the flow

returns to its original laminar state, we define the flow as stable, whereas, if

the disturbance grows and causes the laminar flow to change into a different

state, we define the flow as unstable. Instabilities often result in turbulent

fluid motion. Stability theory deals with the mathematical analysis of the

evolution of disturbances superposed on a laminar base flow.

10
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The linear stability theory, based on the amplification of infinitesimally

small perturbations, has wide range of applications in different fluid mechan-

ics configurations. The idea is based on the assumption that the actual flow

consists in the superposition of the considered basic flow, i.e. U = Ub + u,

P = Pb + p, with Ub(r, t) and Pb(r, t) the velocity field and the pressure of

the basic flow, respectively, and u and p the perturbation of the velocity and

pressure, respectively. Although the Navier-Stokes equations are nonlinear,

the amplitudes of u and p are assumed to be very small in comparison with

the ones of the basic flow, which allows us to treat the system linearly by

neglecting all nonlinear terms in u and p. A harmonic perturbation is intro-

duced into the linearized Navier-Stokes equations leading to an eigenvalue

problem posed as a system of partial differential equations with respect to

the spatial coordinates. If not only the zero perturbation is a solution, but

also a nonzero solution exists, it is referred to an eigenmode. If the nonzero

solution increases with respect to time, the basic flow is said to be linearly

unstable whereas if it decreases, the basic flow is said to be linearly stable.

Only some of the eigenmodes depending on frequencies and wavelengths of

the perturbation are amplified. Then, the mathematical form of the pertur-

bation can be prescribed with the mean flow velocity acting as a coefficient.

The linear theory often assumes that the mean flow is quasiparallel.

The eigenmodes predict long-term rather than short-term behaviour. The

results of the eigenmodes (eigenvalues and eigenfunctions) depend only the

Reynolds number and for large x values. Thus, Re is a constant and the

whole set of eigenvalues, called a spectrum, is fixed. Trefethen et al. [136]

summarized much of the work in this area, and stated that the classical

analysis works only for flows subject to specific destabilizing forces such as

Rayleigh-Benard convection and Taylor and Gortler vortices. But there is a

poor agreement between theory and experiment for flows when the instabil-

ity mechanism is viscous such as in pipe flows. Although a linear equation

governing the evolution of disturbances is desirable, as the disturbance ve-

locities grow above a few percent of the base flow, nonlinear effects become

important and the linear equations no longer accurately predict the distur-

bance evolution. When taking into account the nonparallel effects on the
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perturbation form leads to inconsistent results compared to the linear ap-

proach. Pipe flow is linearly stable at all Reynolds numbers by eigenvalue

analysis (Drazin & Reid [34], Schmid & Henningson [120], Trefethen et

al. [136]). Boberg & Brosa [15] showed that nonlinear studies confirm the

nonlinear and three-dimensional nature of transition in pipe flow.

The non-linear effects that drive the transition process may be induced

through a transient growth without involving any linear instability (Schmid

& Henningson [120]). Although the linear equations have a limited region

of validity, they are important in detecting physical growth mechanisms

and identifying dominant disturbance types. In practice, pipe flows are

unstable to small finite perturbation. Finite perturbations might come from

the algebraic growth of an exponentially decaying linear stability. [The form

of a linear perturbation as a function of space and time is satisfied by an

exponential solution:

Ψ = Ψ0e
i(ωt−kx) (1.4)

which is used as an indication of that the flow is stable or not.] In

Eq. (1.4), Ψ stands either for the pressure p or the velocity u. Ψ0 is the

amplitude of the original perturbation, k is the complex wave number, and

ω is the complex frequency. The growth rate of the perturbation is given

by the negative imaginary part of the complex frequency. Then the rate

of growth is determined by plotting the amplitude of the disturbance as it

propagates into the pipe, against time.

Transient growth is a linear process that relies on the non-orthogonality

between modes resulting in a growth of disturbance energy even when all

modes decay. So this transient growth mechanism may be used to explain

transition because experimentally, the energy of perturbation experiences

substantial growth. In practical applications where the initial disturbance

amplitudes are large enough, the transient growth can reach the level neces-

sary to trigger non-linear effects. This is a new theory/perspective developed

in late 1980’s, e.g. Bamieh & Dahleh [7], Boberg & Brosa [15], Mellibovsky

& Meseguer [87], Schmid et al. [121], Trefethen et al. [136, 137] & others.

These studies showed that the effect of transient growth which plays a
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major role in the stability of classical pipe flow may explain the mechanism

of transition. Trefethen et al. [136] used two basic numerical techniques

for linear transient analysis. The first one uses the classical eigenmodes to

calculate an explicit transient pseudo-mode. A flow perturbation, capable

of significant transient growth, at time t = 0 is the pseudo-mode. Then this

pseudo-mode typically attains an amplification factor Gmax proportional to

the Reynolds number, before decaying exponentially as t → ∞. The second

technique uses the pseudo-spectrum of the linear system, not the eigenspec-

trum. Physically; the pseudo-spectrum indicates the transient response of

the system to an arbitrary continuous-time perturbation signal.

Drazin & Reid [34] and Schmid & Henningson [120] determined the

critical Reynolds number as the maximum Reynolds number at which the

disturbance energy in the system monotonically decreases. But this critical

Reynolds number is much lower than that by experiments. In practice, it

is well known for pipe flows that the transition from laminar to turbulent

is not immediate and it first starts somewhere in the entry region and then

spreads out and propagates from this position. So the starting point and

the mechanism of transition and the critical Reynolds number in pipe flows

are still the questions to be answered.

As numerical solutions to the governing Navier-Stokes equations, trav-

eling waves has been studied by Wedin & Kerswell [141]. They found that

around r/R=0.6 is the critical location for transition in Newtonian pipe

flows. They also suggested that this corresponds to where the fast streaks

of traveling waves reach from the wall. The solution of traveling waves has

been confirmed by Hof et al. [66] in their experiments.

Computational studies

Analysis of transition by means of theoretical methods still needs more work

to characterize the onset of turbulence and intermittency, therefore some

researchers turn to simulation methods as an alternative approach to study

transition. Large eddy simulations (LES) and direct numerical simulations

(DNS) methods are generally used to solve the Navier-Stokes equations for

13



Chapter 1. Introduction

pipe flows, although in LES the smallest scales are modeled, whereas in a

DNS all scales are resolved and no turbulence modeling is applied.

Shan et al. [123] studied a DNS of transition from laminar to turbulent

flow excited by wall disturbances in a cylindrical pipe. The wall disturbances

are imposed by means of blowing and suction through the pipe wall with two

different cases; periodic suction/blowing (PSB) and random suction/blow-

ing (RSB). They investigated the dependence of the transition time on the

suction/blowing amplitudes and the Reynolds number. For the case of PSB

the pipe flow appears to remain stable for an axisymmetric distribution of

the disturbance even for large amplitude of the blowing/suction, whereas,

unstable for a non-axisymmetric distribution of blowing/suction. The criti-

cal value of the amplitude decreases with increasing Reynolds number. The

results for the RSB resemble those obtained for the non-axisymmetric PSB

except that the disturbance seems to develop more quickly.

Later Shan et al. [124] performed a direct numerical simulation of a

puff and a slug structure in a transitional pipe flow by using a spectral

element method. The puff or slug structure is triggered by imposing a

localized velocity disturbance on the flow for a small period of time. After

this excitation the disturbance is transported downstream and develops into

either a puff or slug. They concluded that the leading edge and trailing edge

of both a puff and a slug travel with a constant velocity equal to the bulk

velocity. They found that the turbulence within the slug is quite close to the

structure of a fully developed turbulent pipe flow and the influence of the

initial disturbance can be neglected for the development of puffs and slugs.

They also found that the growth of the disturbance energy decreases with

decreasing Reynolds number and it decays after having reached a maximum

value when Reynolds number smaller than the value of 2200. By looking at

the structures of puffs and slugs they found that the slug seems to travel at a

speed close to the bulk velocity concluding that a slug is a material property

of the flow. On the other hand, a puff travels more wave-like fashion. They

conclude that helical particle motions exist in the trailing-edge region. Other

DNS work on developing puffs and slugs in transitional flows are done by

Nikitin [93], Priymak & Miyazaki [107] and Reuter & Rempfer [111].
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Obtaining the critical Reynolds number using stability theory or com-

putational methods has been objective of transitional research (Ben-Dov &

Cohen [10]). Using the effect of the radial pressure gradient, Kanda [74]

developed a macro model which provides a minimum critical Reynolds num-

ber for laminar-turbulent transition in pipe flows on the basis of the results

of their experiments. His calculated critical Reynolds number is 2200 when

the number of radial grid points is 101. In the entrance region, the velocity

profile changes from a uniform distribution at the pipe inlet to a parabolic

one in the fully developed region. His model is based on the normal wall

strength (−∂p/∂dr at r=R). This normal wall strength causes the difference

in the radial direction and accelerates fluid particles in the central core. The

occurrence of the transition depends on the acceleration power. The mag-

nitude of the required non-dimensional acceleration power is 0.785, which is

derived from the difference in kinetic energy between the flow at the inlet

and that in the fully developed region.

1.1.3 Studies on non-Newtonian transition

In assessing the literature on non-Newtonian fluid transition, it is impor-

tant to be specific about the types of fluid that one wishes to study. For

example, there is a relatively large literature on drag-reducing polymers, see

e.g. Draad et al. [33] and the review articles by Berman [12] and White

& Mungal [144]. Frequently, in such studies, non-Newtonian features can

be interpreted as a small deviation from the Newtonian behaviour, in par-

ticular where the drag reduction is achieved via viscoelastic additives. For

the fluids we consider, viscometric non-Newtonian effects are a dominant

feature of the base laminar flow and we avoid fluids in which visco-elasticity

is very significant. Our focus is thus on generalised Newtonian fluids. Sim-

plistically, these are fluids in which the shear stress depends on the strain

rate through an effective viscosity η which is a function only of the second

invariant (γ̇) of the strain rate tensor:

τij = η(γ̇)γ̇ij . (1.5)
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These fluids generally represent those in which shear rheology dominates.

Many industrial fluids fall into this class, at least as a first order description.

Well known rheological models include the Carreau-Yasuda, Cross, Casson,

Bingham, power law, Ellis and Herschel-Bulkley models. The two main

features of such fluids are shear-thinning behaviour, (in which the effective

viscosity η decreases with γ̇), and the possible existence of a yield stress,

(a threshold in τ below which γ̇ = 0). Having said this, it is of course

impossible to eliminate entirely other rheological effects in using real fluids.

Xanthan is known to exhibit elastic effects in addition to its shear-thinning

behaviour, (and shows drag reducing properties, see e.g. Escudier et al. [40]).

Carbopol is often used as an experimental fluid for yield stress-shear thinning

behaviour, but at low shear structural thixotropic effects can be quite visible.

Other “model” lab fluids, such as Laponite suspensions, are also strongly

thixotropic.

There are many studies of these types of fluids in pipe flow. For exam-

ple, Metzner & Reed [90] considered a range of experimental data in estab-

lishing correlations for frictional pressure losses. Similarly, Hanks & Pratt

[58] present results for yield stress fluids. See also texts such as Govier &

Aziz [52] for an overview of this type of closure model and applications. In

the petroleum industry, non-Newtonian pipe flow experiments are common-

place and conducted in order to continually evolve the accuracy of hydraulic

predictions, e.g. Shah & Sutton [122], Willingham & Shah [147], or in

response to new fluid types that are being pumped, e.g. Guo et al. [53].

In the mining industry, homogeneous slurries are often modelled as visco-

plastic shear-thinning fluids, numerous experimental studies of different flow

regimes have been carried out, e.g. Abbas & Crowe [1], Turian et al. [138],

and transitional flow predictions have been developed which are popular

within that industry, e.g. Slatter [125], Slatter & Wasp [126], Wilson &

Thomas [145, 146]. Many of the approaches we have referenced above are

targeted at accurate prediction of frictional pressure losses, with transition

simply being considered as the intermediate step between fully laminar and

turbulent flows. Thus, these do not study in a direct way the phenomena

present in the transitional regime.
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In shear-thinning non-Newtonian fluids the change in friction factor is

generally much less abrupt on passing through transition, see e.g. various

fluids tested in Escudier et al. [40], Metzner & Reed [90]. Thus, although

still frequently used, and attractive since easily measurable in hydraulic sit-

uations, the accuracy of the friction factor method is certainly diminished.

Other common detection methods for Newtonian fluids are based on obser-

vations of centreline velocity (as there is a large shift between laminar and

turbulent profiles), or the rms velocity fluctuation.

Experimental studies

Park et al. [97] conducted LDA measurements for both laminar and tur-

bulent flow of an oil-based transparent slurry with visco-plastic behaviour.

They report that, due to the yield stress, there was very little difference be-

tween turbulent and laminar velocity profiles, hence detecting transition via

the centreline velocity was ineffective. They advocated use of the turbulent

intensity close to the wall, e.g. at 80% of the radius, which is also adopted by

Escudier et al. [40]. On the other hand, Peixinho [99], Peixinho et al. [100]

do manage to identify transition from centreline velocity data, although the

detection is clearer for the fluids used other than Carbopol.

Wojs [148] measures friction factors in laminar, transition and turbu-

lent flows and draws a moody diagram for some polymer solutions. He

concludes that polymer additives extend and shift the transition region to

higher Reynolds number values. The length of the transitional flow range

increases with the solution concentration and molecular weight of the poly-

mer.

Brand et al. [18] conduct an experimental study on a series of spacer

and model fluids used in the cementing of oil and gas wells and compare

their experimental results with different phenomenological criteria. Their

conclusion is that critical Reynolds number increases with increasing yield

value or power-law index, n. Only Mishra and Tripathi’s and Slatter’s cri-

teria show this dependency. And Mishra and Tripathi’s critical Reynolds

number prediction gives the best result. These criterion will be discussed in
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detail in the next section.

Flow asymmetries in the mean velocity profiles were first reported by

Escudier & Presti [39], who studied the flow of Laponite suspensions in

laminar, transitional and fully turbulent flows. They report asymmetry in

the range Re ∈ [1300, 3000]. However, under all flow conditions they find

that thixotropic effects are observable and the fluid is rarely at its equilib-

rium shear rheology, except in a very thin wall layer. This clouded any clear

interpretation of the asymmetries. Peixinho [99] conducted pipe and annu-

lar flow experiments for carboxymethyl cellulose and carbopol solutions. In

the transitional regime Peixinho [99] did not report observing flow asym-

metries, although these were apparently evident and are reported later in

Peixinho et al. [100].

Peixinho et al. [100] suggest that for yield stress fluids transition takes

place essentially in 2 stages. In the first stage the turbulence intensity is

at laminar levels on the pipe centreline whilst larger nearer the wall. It is

unclear whether or not the plug is broken or intact, but it is suggested that

due to the large fluctuations in effective viscosity, flow instabilities generated

near the wall could be damped nearer the centre of the pipe. The aspect of

flow asymmetry in transition is returned to by Escudier et al. [42]. These

authors summarize the work of Escudier & Presti [39], Peixinho et al. [100]

and a third independent study, in all of which asymmetry was observed in

the mean velocity profiles. The authors discuss the possible effect of the

Coriolis force on flow asymmetry, (following Draad & Nieuwstadt [32]),

concluding that for the more viscous non-Newtonian fluids the Ekman num-

ber is simply too large for this to be a viable explanation. Other possible

sources of experimental influence are also examined, with the conclusion that

the asymmetry has fluid mechanics origins and is not due to imperfections

in either the apparatus or measurement technique.

Theoretical studies

Questions arise related to the theoretical side of the problem, where there

have been a number of studies of shear instability in flows of visco-plastic flu-
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ids, typically for Bingham fluids. Frigaard et al. [46] studied 2-dimensional

instabilities of plane channel Poiseuille flow, providing the correct formu-

lation of the stability problem and linearisation at the yield surface, but

considered odd and even perturbations separately which is questionable for

this flow. A recent study by Nouar et al. [96], who implemented the cor-

rect conditions at the yield surface, suggests that plane Poiseuille flow is

linearly stable at all Re, as is Hagen-Poiseuille flow. Thus, the transitional

flow problem is similar in this respect to that for a Newtonian fluid. Three-

dimensional linear instabilities have been studied in Frigaard & Nouar [47]

and transient growth phenomena in Nouar et al. [96]. A key feature of

the linear stability studies is that the plug region remains unyielded for

linear perturbations. This fact can lead to interesting mathematical anoma-

lies. For example, Métivier et al. [89] consider the distinguished asymptotic

limit of linear stability with small yield stress, (vanishing slower than the

linear perturbation), which corresponds to a rigid sheet in the centre of a

plane channel and is linearly stable. They suggest that the passage to the

Newtonian limit of a yield stress fluid is ill-defined insofar as questions of

stability are concerned. These features reinforce the fundamental interest in

plug behaviour during transition, i.e. based on the linear theory the flow is

believed to be stable for all Re, but this linear theory itself is based on the

continued existence of the plug region.

Apart from the linear analysis, fully nonlinear (energy) stability results

are derived in Nouar & Frigaard [95]. As with the Newtonian fluid energy

stability results these are very conservative. For yield stress fluids the non-

linearity of the problem is not simply in the inertial terms, but also in the

shear stress and in the existence of unyielded plug regions, which are defined

in a nonlocal fashion even for simple flows. This means that the gap between

linear and nonlinear theories and between theoretical prediction and exper-

imental evidence is much wider than with Newtonian fluids. Some effort to

close this gap has been forthcoming in the form of computational work.
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Computational studies

Rudman & Blackburn [114] studied turbulent pipe flows using LES and

found that it is difficult to simulate pipe flows with LES. DNS study has been

performed on drag deduction in polymer solutions (shear-thinning effects

neglected) in turbulent flow (Sureskumar et al. [130], Angeliset al. [3] and

Toonder & Nieuwstadt [135]). Rudman et al. [116] performed a DNS

study of the weakly turbulent flow of a power law (shear-thinning) fluid

and a Herschel-Bulkley (yield stress + shear-thinning) fluid using a spectral

element-Fourier method. For the power-law fluid, as the flow index becomes

smaller for the same Reynolds number, the flow deviates further from the

Newtonian profile and the results suggest that transition is delayed. As

a result, predicted friction factors fall above those in the literature, but

below the Newtonian values when a comparison is undertaken on the basis

of the Metzner-Reed Reynolds number. They concluded that using DNS for

non-Newtonian fluids will remain a difficult task because of the difficulty in

approximating a measured rheology over a very wide range of shear rates

using any of the simple generalised Newtonian rheology models.

Later Rudman & Blackburn [117] did similar study for the same fluids

using a spectral element-Fourier method (SEM) for Direct Numerical Simu-

lation (DNS) and compared their results at the same generalised Reynolds

number. They showed that the yield stress significantly dampens turbulence

intensities in the core of the flow with larger, weaker turbulent structures

compared to ones in Newtonian flows and smaller friction factors at a fixed

generalized Reynolds number. So the addition of a yield stress to a power

law fluid weakens the structures, driving the flow more toward the transi-

tional regime. They also showed that pipe flow of yield stress fluids make the

transition to turbulence via intermittency and turbulent events like the slugs

and puffs observed in Newtonian flow. They did a simulation of a Carreau-

Yasuda fluid as well. It showed similar behaviour to the Herschel-Bulkley

results; the Carreau-Yasuda flow was transitional at similar Reynolds num-

ber. They proved that DNS has the potential to enable the effect of different

rheological parameters to be correctly quantified and understood.
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1.1.4 Review of different transitional criteria for transition

of generalized Newtonian fluids

Beyond these few detailed studies of the flow structures in yield stress flu-

ids, little is known about transition. At this point we turn our attention

to a large body of work which focuses on empirical correlations used for

engineering design purposes. Included in these correlations are estimates of

when transition occurs.

Hedstrom [64] developed criteria for yield stress fluids, postulating that

transition occurs at the point of intersection of the laminar and turbulent

friction factor curves. Hedström argued that for a fully turbulent flow the

effect of the yield stress is negligible and therefore used the well known Niku-

radse relation for the turbulent friction factor in the pipe. More commonly

this approach is known as the intersection method.

Metzner & Reed [90] and Dodge & Metzner [29] used the Fanning

friction factor f as their stability parameter. A range of data from pipe flow

experiments with different non-Newtonian fluids indicated that the data

deviated from the laminar flow curve, at approximately the same ratio of

viscous shear to inertial forces as do Newtonian fluid data in smooth pipes,

i.e. f ≈ 0.008. They therefore proposed that for all time independent non-

Newtonian fluids flowing in pipes, transition would also take place when f

drops to a critical value f = fc = 0.0076. As well as the transition criteria,

the Metzner-Reed Reynolds number, ReMR, is in common usage. This is

defined in such a way that in laminar flow, the friction factor relation is

identical to that obtained for laminar pipe flow; e.g. for power law fluids:

ReMR =
8U2

b ρ

κ′

(

8Ub

D

)n′
: κ′ = κ

[

1 + 3n

4n

]n

, n′ = n. (1.6)

The Reynolds number defined by Metzner and Reed has been generalised,

by Kozicki et al. [81], to apply to laminar flows of purely viscous non-

Newtonian fluids through ducts of arbitrary cross section. This concept

was extended to the Bingham model by Govier & Aziz [52] and can be
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straightforwardly generalised to any purely viscous non-Newtonian fluids,

by assuming transition takes place at fc = 0.0076, independent of the duct

geometry or precise fluid. This generality has made the Metzner-Reed ap-

proach popular and it is is widely used. It is worth mentioning that the

strength in the work comes from the convincing fitting of frictional pressure

data for different polymeric fluids, see e.g. Dodge & Metzner [29], rather

than a detailed examination of the transition criterion.

Pilehvari et al. [104], Reed & Pilehvari [110], extended this type of

friction factor approach to a range of fluids having application in the Oil

& Gas industry, and include wall roughness effects. In their work, which is

typical of many other modifications, they focus principally on prediction of

frictional pressures. Transition is defined as an intersection of laminar and

turbulent friction factor curves. This may thus be viewed as a combination

of the Hedström and Metzner-Reed approach.

Since the laminar and turbulent friction factors can be fitted to experi-

mental data points and then extrapolated towards transition, it is clear that

the friction factor approaches above have an inherent robustness to them.

However, they are intellectually unsatisfactory in that there is essentially

no hypothesis made about the mechanism for transition. A number of ap-

proaches have evolved that attempt to balance stabilizing and destabilizing

effects on the flow, setting a criterion based on when this balance exceeds

some critical value. Two identical predictions of transitional Reynolds num-

bers have been made by Ryan & Johnson [118] and by Hanks [56, 57], Hanks

& Pratt [58], Hanks [59, 60, 61], Hanks & Ricks [62]. What is interesting

is that these two predictions are arrived at using different approaches.

Ryan & Johnson [118] suggested using the ratio of input energy to en-

ergy dissipation for a fluid element as the stability parameter. They examine

the situations in which the energy of a disturbance increases or decreases

with time, considering the energy equation for a linear two-dimensional dis-

turbance. The rate of increase of kinetic energy is equal to the difference

between the rate at which energy is converted from the basic flow to the dis-

turbance, via a Reynolds shear stress term. A ratio ζ is formed between the

rate of increase and the rate at which energy is dissipated. The ratio ζ varies
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with radial position and thus their approach can be thought of as a local

approach. It is assumed that transitional instabilities will first appear at the

radial position where ζ is maximal, for all purely viscous non-Newtonian flu-

ids. Further, it is assumed that instability occurs when this maximal value

of ζ exceeds a critical number, ζcrit, regardless of the exact fluid type. The

critical number ζcrit is defined from the transition of a Newtonian flow and

is given by ζcrit = 808.

Hanks derives exactly the same criterion as Ryan and Johnson. How-

ever, his reasoning is different and more direct. Hanks identifies the key

mechanism leading to transitional instability as being rotational momen-

tum transfer. Hanks introduces a parameter, ζH , which is almost identical

to that of Ryan and Johnson. However, for Hanks ζH represents a bal-

ance between the rate of change of angular momentum of a deforming fluid

element and its rate of loss of momentum due to frictional drag. Hanks’

ratio ζH is exactly twice that of Ryan and Johnson. Hanks assumes that

his transition criterion does not depend on the constitutive equation, for

purely viscous fluids, or on the geometry of flow. The value of ζH,crit, where

the laminar motion becomes unstable, was determined to be 404 when the

theory was applied to axial isothermal Newtonian flow in tubes.

A related approach followed more recently is due to Desouky & Al-

Awad [28]. They consider transition to occur when the turbulent shear

stress exceeds the laminar shear stress. Although a balance approach, the

balance seems to revolve around a comparison of friction factors, for which

the Metzner-Reed Reynolds number is used. Thus, it is similar to the friction

factor approaches discussed above.

In a slightly different balance approach, Mishra & Tripathi [91] postulate

that the important factors governing transition to turbulence are the mean

kinetic energy and the wall shear stress. The onset of turbulence is assumed

to occur at the same critical ratio of these quantities for all purely viscous

non-Newtonian fluids. This ratio is fitted from its value for Newtonian fluid

transition in a pipe. Whereas the above approaches are local, this approach

considers a more global balance.

Thomas & Wilson [134], Wilson & Thomas [145] developed a new analy-
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sis for the turbulent flow of non-Newtonian fluids based on viscous sub-layer

thickening. They analyzed the near-wall structure of the velocity field in a

smooth wall pipe flow for power-law suspensions and Bingham plastics, and

reported that the viscous sub-layer for these non-Newtonian turbulent flows

is generally thicker than for the equivalent Newtonian flows. This resulted

in a much lower turbulent friction factor for the non-Newtonian fluids when

compared to a Newtonian fluid. In latter work, they extended their analysis

to include the effect of surface roughness for laminar-turbulent transition for

Bingham plastics (Wilson & Thomas [146]). Here, they showed that there

is a direct relationship between yield stress and the transition velocity, and

the conditions at transition depend only on the Hedström number,He.

A recent approach popular in the mining industry, is due to Slatter & co-

workers, Slatter [125]. He treats the unyielded region as a solid body which

has no effect on the stability of flow. Therefore, only the flow of the sheared

fluid in the annulus, between pipe wall and unyielded plug, is considered.

Slatter defines a Reynolds number based on the effective viscosity of the

annular flow, i.e. using the hydraulic diameter of the annulus and an effective

rate of strain. Slightly later, Slatter & Wasp [126], propose a correlation

for the critical Reynolds number, based on different ranges of Hedström

number.

It is interesting that although there are numerous comparative studies of

pressure drop closure relations, there are few that compare criteria of tran-

sition. In one such study, Nouar & Frigaard [95], predictive criteria were

plotted for five of the above methods, all for the case of Bingham fluids.

These predictions are calibrated to return the same values for Newtonian

fluids. It was shown that at moderate values of the Bingham number, B,

(indicating the relative importance of the yield stress to viscous stresses),

there was a significant divergence in the predictions of transitional Re. At

larger Bingham numbers it was also shown that the asymptotic limits of

these predictions exhibit very different asymptotic behaviour. It was con-

cluded that in the large B limit, only the prediction of Hanks did not violate

theoretical constraints.

The two dimensionless parameters mentioned above are the Bingham
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Figure 1.1: Critical Metzner-Reed Reynolds number as a function of power-
law index, n. Comparison between (1) Metzner and Reed criterion, (2)
Hanks criterion and (3) a criterion based on ReG = 2100

number, B, and the Hedström number, He, which are defined by

B =
τyR

Ubµp
He = ReB (1.7)

Here, R the pipe radius, Ub the mean axial velocity, µp the plastic vis-

cosity and τy the yield stress.

In Fig. 1.1 we compare transitional values (in terms of ReMR) for the

Metzner-Reed criterion, the Ryan & Johnson/Hanks criterion and a criterion

to be discussed later that states ReG = 2100. We observe that for varying

n the criteria give quite different predictions of transition.

1.1.5 Review of predictive models for Newtonian and

non-Newtonian fluids

While linear stability analysis could be useful to predict when a flow becomes

unstable by defining a threshold, it can’t describe the evolution of unstable

modes above the threshold. Weakly nonlinear theories are used in order to

study further development of instability (Drazin & Reid [34], Stewartson &
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Stuart [129]). One of the most common amplitude evolution equation is the

Ginzburg-Landau equation derived from the Navier-Stokes equations. Be-

cause of its relatively simplicity, this equation has wide range of applications

in fluid mechanics for spatio-temporal dynamics of complex flows (Aranson

& Kramer [4]).

Deissler [27] studies the time-dependent generalized Ginzburg-Landau

equation under conditions when it is convectively (spatially) unstable. In

the presence of infinitesimal disturbance, this system exhibits a selective

spatial amplification of noise resulting in spatially growing waves. These

waves in turn result in the formation of a dynamic structure that leads to

instability.

Bohr et al. [17] use the complex Ginzburg-Landau equation. The con-

vective instability and local dynamical instability combine to give the sudden

eruption of localized patches of turbulence. Their idea is a convective ex-

ponent, a Lyapunov exponent, associated with a convective velocity. While

normally small disturbances are damped out by system, convective stability

introduces instability into the system.

Fowler & Howell [45] propose a phenomenological model which explains

the difference of flow resistance in laminar and turbulent flow in a quantative

way through a hysteretic transition characterized by a disturbance amplitude

variable that satisfies a natural type of evolution equation. Their model

predicts oscillations similar to those, which occur in intermittency in pipe

flow, and naturally predicts disturbances having the characteristics of puffs

and slugs.

1.1.6 Summary

With such a range of phenomenological predictions available and an endur-

ing interest in advancing new criteria, we should question where the diffi-

culties arise in specifying transition. It appears to us that the difficulties

may be grouped into 3 distinct categories: (i) transition is not a well-defined

phenomena; (ii) the complexities of different fluids are not well understood

and accounted for; (iii) detection of transition in a flow is difficult.
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Regarding the first of these, although transitional Re for Newtonian

fluids are typically quoted at Re ≈ 2100, values between 1760 and 2300

are routinely reported, see e.g. Darbyshire & Mullin [25], Kerswel [77].

In especially constructed apparatus it has been possible to achieve stable

laminar flows at Re in the 20000-60000 range, see Draad et al. [33], Hof

[68]. Theoretically the transition is subcritical and believed linearly stable

at all Re. Thus, these high Re stable flows are essentially giving a measure

of the quality of the experimental flow loop in eliminating noise. Clearly,

the common engineering perspective that “transition” (meaning the end of

the laminar regime) will occur at a given Re is flawed, even for a Newtonian

fluid.

The second difficulty really concerns the fact that generalised Newtonian

fluid models are almost always an approximation to a more complex rheo-

logical behaviour, which may include elements of visco-elasticity, thixotropy

or multi-phase effects. Many fluids exhibit a similar laminar velocity profile

in shear flow, but are otherwise distinct. It is notable that new criteria often

are developed focused at one particular industrial setting, where inadequa-

cies in prediction have been exposed. There is little a priori reason why a

prediction of transition in say a dilute polymer solution should be valid also

for, e.g. a homogeneous slurry (multi-phase) or a pulp suspension. We feel

it is necessary to focus more clearly on the type of fluid and to incorporate

a detailed understanding of the transitional flow into any prediction.

Regarding the third difficulty, we note that for many shear-thinning

fluids, sharp changes in the frictional pressure (Moody diagram) are sup-

pressed, so there is no easily identifiable “transition point”. Equally, rapid

changes in the turbulence intensity do not necessarily occur first at the cen-

terline. Thus, the common ways of detecting transition for Newtonian fluids

are less effective.

Finally we find that the literature characterizing transition in these fluids

are relatively unexplored in comparison to its Newtonian counterpart. We

feel that a fundamental understanding of the mechanism is required before

attempting to develop empirical correlations used for design purposes.
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1.2 Research objectives

As outlined in the literature review, these are a number of motivations for

this study:

(i) Fluids of shear-thinning type with a yield stress abound in industrial

settings, as well as some natural ones. Our particular motivation here comes

from both the petroleum industry and the pulp and paper industry, where

design/control of the inherent processes often requires knowledge of the flow

state at different velocities. Similar fluid types and ranges of flows occur in

food processing, polymer flows and in the transport of homogeneous mined

slurries. Although many of these industrial fluid exhibit more complex be-

haviour, (e.g. thixotropy, visco-elasticity, etc), as noted by Bird et al. [14],

the shear-dependent rheology is often the dominant feature.

(ii) There is a demand from industrial application to predict the Reynolds

number, (Re = UD/ν, where U is the average velocity, D is the diameter of

the pipe and ν is the kinematic viscosity), or other bulk flow parameter, at

which transition occurs, for a range of fluid types, so that different frictional

pressure closures may be applied to hydraulics calculations above/below this

limit. There is a difficulty with interpreting the predictions of phenomeno-

logical formulae, many of which we note were either formulated before a

detailed understanding of transitional phenomena has developed. Although

such a predictive guideline is a worthy goal, and one we address in this

thesis, it is clear that a necessary precursor to this is a detailed study of

transition phenomena, which we provide here.

(iii) A third and most important motivation for our study is scientific.

Since Reynolds’ famous experiment (Reynolds [112]), transition in pipe

flows has been an enduring unsolved problem in Newtonian fluid mechanics.

It is thus natural that there have been far fewer studies of non-Newtonian

fluids in this regime, either experimental or numerical/theoretical. However,

those studies that have been conducted for shear-thinning visco-plastic fluids

leave unanswered a large number of intriguing questions.

With this in mind, the specific objectives in this work are:

(a) to experimentally characterize the role of the plug during transition.

28



Chapter 1. Introduction

This has been attempted in previous works (Peixinho [99], Peixinho

et al. [100]) however the dimensions of the pipe were too small to

detect the plug unambiguously near transition.

(b) to characterize systematically the differences between the flow structure

in Newtonian and non-Newtonian fluids and in an attempt to elucidate

a mechanism for transition.

(c) to develop a clear understanding of when the flow is fully turbulent and

to define a criteria which can be used for engineering purposes.

29



Chapter 2

Experimental setup and

procedures

All results reported are from tests performed in a 10 m long flow loop with an

inner diameter of 50.8 mm. The setup is illustrated schematically in Figure

2.1. The flow is generated by a variable-frequency driven screw pump fed

to a carbon steel inlet reservoir R1 of approximately 120 L capacity to an

outlet reservoir R2 of the same capacity. The pump can provide a maximum

flow rate of ≈ 22 l/s, which is equivalent to a maximal mean flow velocity

of ≈ 10 m/s. Two honeycomb sections are placed inside the reservoir R1

before the tube inlet in order to suppress any swirl or other fluid entry

effects. We used a borda style entry condition in which the pipe extended

approximately 50 cm into the tank. Two honeycomb elements were inserted

into this section. The fluid reservoir R2 is pressurized to damp mechanical

vibrations induced by the pump motor and a flexible hose is used between the

pump and reservoir in order to diminish flow pulsations. The flow channel

is constructed of 16 identical sections, 61 cm in length each, joined with

flanges and aligned horizontally with the aid of a laser.

The test section of the pipe (placed at about 5.5 m downstream) is

fitted with a “fish tank”, FT,which consists of a rectangular transparent

acrylic box filled with an index-matched fluid (glycerol) in order to minimize

the effects of refraction. Velocity measurements are made by using a laser

doppler velocimetry (LDV) system from TSI instruments (www.tsi.com).

The LDV comprises a 400 mW argon-ion laser (wavelength 457− 514 nm),

a 2-component probe (PB) housing the transmitting and receiving optics, a

color separator and a burst spectrum analyzer, BSA. The probe is mounted
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Figure 2.1: Schematic view of the experimental setup: R1,2 - fluid reservoirs,
P - pump, FM - flow meter, PT1,2 - pressure transducers, FT - fish tank,
CCD - digital camera, PB - laser Doppler velocimetry probe, PMT -
photomultiplier, BSA - burst spectrum analyzer.

on a three-axis translational stage with a spatial resolution of 10 µm. The

working fluids are seeded with silver coated hollow glass spheres, 10 µm in

diameter, in order to enhance the LDV signal. The LDV optical parameters

are as follows:

1. the probe beam diameter is 2.82 mm

2. the beam separation at its front lens is 50 mm

3. the focal length of receiving lens is 362.6 mm

4. the diameter of the measurement volume is 0.0858 mm (measured in

air).

Two pressure transducers (PT1,2) are located near the inlet and outlet

of the flow channel (Model 210, Series C from www.gp50.com). These are

bonded strain gauge transducers with internal signal conditioning to provide

a Vdc output signal in direct proportion to the input pressure. The accuracy

of each transducer is 0.2% of the full scale and they were calibrated with an
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externally mounted pressure gauge. Pressure readings were averaged over

150 s and used to estimate the radius of the plug, see Equation 3.4. Flow

rates were estimated using two methods: (i) using an electromagnetic flow

meter (FM) installed near the outlet reservoir, see Fig. 2.1; (ii) by numeri-

cally integrating the measured axial velocity profiles. The latter estimate is

used to calculate the relevant flow parameters reported through our study.

Before proceeding it is instructive to estimate if the flow is fully developed

at this measurement location. The case to consider is that of a laminar flow

of a Newtonian fluid as it is widely known that the entry length for turbulent

flows (Doherty et al. [30], Laufer [70], Nikuradse [94], Perry et al. [103])

and for flows with non-Newtonian fluids (Bogue [16], Chen [21], Soto et

al. [128], Bewersdorff [13], Froishteter et al. [50]) is smaller. Poole et

al. [106] modified the recently proposed correlation for Newtonian fluid

flows by Durst et al. [36] for inelastic non-Newtonian fluids obeying the

power-law model and proposed a unified correlation for the entry length,

which is valid in the range 0.4 < n < 1.5 for the three different definitions

of the Reynolds number. They argued that depending on the Reynolds

number definition used, different conclusions can be drawn regarding the

effect of power-law index on the entry length. Use of the ReMR allows the

development length at high Reynolds numbers to collapse onto a single curve

(i.e., independent of the power-law index n). For the laminar case, Durst et

al. [36] reports that it is widely accepted that the entry length Le/D scales

with Re/30; there is however a wide variation in this estimate (see Durst et

al. [36], Poole et al. [106]). With this, at Re =3000 the entry length in

our apparatus is roughly Le/D=100. This is significantly shorter than the

position of our measurement point, i.e. Le/D = 108. In addition to satisfying

this criterion, we examined a second criterion to establish if the flow was

fully developed. Like Durst et al. [36]and Poole et al. [106], we examined

the measured centerline velocity and compared this to an estimated velocity

using the pressure drop and viscosity of the fluid. We found that for all

cases tested there was less than a 1% deviation from these results.

The experimental procedure consisted of the following steps:
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1. Each fluid tested was mixed in situ by circulating the fluids through

the flow channel for 5 − 6 hours. The test fluid was then allowed to

rest for 4−5 days so that any entrained air bubbles may be dissipated.

A fluid sample was then obtained from the reservoir tank and used for

subsequent rheological evaluation.

2. During each run, the temperature of the fluid varied by less than one

Celcius degree. No active measures were made to control temperature

in this experiment. At the start of an experimental sequence, the

desired flowrate was set and the flow loop was then run for a period of

time until the temperature stabilized. Once stabilized data acquisition

commenced. In this case we record both the volumetric flowrate and

instantaneous pressure at a sampling rate of 500 Hz.

3. The velocity profile was measured stepwise across the diameter of the

pipe in 1.25 mm increments. At each radial position, the flow was sam-

pled for approximately 150 s at an average rate of 1000 Hz. This data

was also used to estimate the local strain rate γ̇. To do so the deriva-

tive was estimated by using a second-order finite difference scheme

with a step size of 1.25 mm (2.5% percent of the diameter of the pipe)

between adjacent nodes. The time-average value at each nodal point

was estimated from approximately one-hundred thousand readings;

the coefficient of variation was much less than one percent. Given this

large number of data points, the difference between the averages of

velocity between adjacent points were statistically significant and the

error on this time average derivative is low.

4. At the end of the traverse a fluid sample was obtained, the flowrate

increased and the measurement traverse repeated.

All the fluids used in our experiments were transparent, allowing both

LDV flow investigation and direct high-speed flow imaging. In total 11 differ-

ent fluids were tested. The experimental limits such as the mean velocities,

concentrations and the corresponding generalised Reynolds numbers, (de-

noted ReG), for all the fluids we have tested are summarized in Table 2.1.
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Fluid Concentration Velocity Ub ReG

(wt %) (m/s)

Glycerin 80 0.37 - 1.49 731 - 4442
Glycerin 65 0.06 - 1.95 342 - 14180
Xanthan 0.05 0.17 1984
Xanthan 0.1 0.38 - 2.02 1701 - 24746
Xanthan 0.2 0.46 - 2.59 451 - 5070
Xanthan 0.2 0.28 - 3.75 352 - 11272
Carbopol 0.05 (6.7 pH) 0.14 - 1.49 356 - 10960
Carbopol 0.08 (7.1 pH) 0.39 - 2.92 170 - 5134
Carbopol 0.10 (6.9 pH) 0.31 - 3.50 42 - 3309
Carbopol 0.10 (6.6 pH) 0.11 - 4.59 6 - 6032
Carbopol 0.15 (6.8 pH) 0.13 - 4.84 2.7 - 2953

Table 2.1: A summary of the experimental conditions tested. For each fluid,
at least 7 different bulk velocities were chosen to cover the range indicated
in the table.

The values given for each fluid represent the minimum flow rate (fully lam-

inar regime) and the maximum flow rate (fully developed turbulent regime)

conditions. The Reynolds number may be defined in a number of ways for

non-Newtonian fluids. We have defined a generalised Reynolds number by:

ReG =
4ρ

R

∫ R

0

ū(r)

η(γ̇(r))
rdr. (2.1)

where ρ and η are the density and effective viscosity of the fluid. The

latter depends on the strain-rate of the base flow, γ̇(r), which is calculated

locally from the mean axial velocity. For a Newtonian fluid, ReG = Re, and

algebraic relations between ReG and other commonly used non-Newtonian

Reynolds numbers may be easily derived. For laminar flows some simple

algebraic manipulations yield the expression:

ReG =
4ρu2

c

R|px|
. (2.2)
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We note here that both Xanthan and Carbopol solutions may exhibit

elasticity at low shear rates, but for the ranges of flow rates considered in

our experiments, it is the shear-rheology that dominates. As a result, in this

work the Xanthan solutions used are modeled as power-law fluids:1

τ = κγ̇n; η = κγ̇n−1. (2.3)

The yield stress fluid, Carbopol, is characterized as a Herschel-Bulkley fluid:

τ = τy + κγ̇n; η = τyγ̇
−1 + κγ̇n−1 : τ > τy. (2.4)

The parameters τy, κ and n are commonly referred to as the fluid yield

stress, consistency and shear-thinning (power-law) index, respectively.

The shear rheology of the samples were measured for each fluid sample

at the same temperatures as the fluids in the flow loop (see Escudier et

al. [40]). The viscosity dependence of Xanthan solutions with temperature

has been investigated by several authors (see Valdez et al. [139]). Viscosity

can be higher or lower, or does not vary with the increase of temperature,

depending on the shear rate. Valdez et al. [139] has found that viscosity

varies about 1-3% in a wide range of temperature for Xanthan solutions.

Park & Irvine [98] did the viscosity measurements of four Carbopol solu-

tions at various temperatures and found that, while the viscosities of the

3500 and 5000 wppm of Carbopol 934 solutions decreased with increasing

temperature at a rate of about 1%/0C, the viscosities of the 7500 and 10000

wppm solutions increased with increasing temperature. Similar measure-

ments for 2% Carbopol 934 solutions were done by Lu & Jun [85], giving

the decreasing rate of less than 1%/0C for viscosity with increasing tempera-

ture. Later Escudier et al. [41] stated that for small temperature differences

the viscosity can be assumed to vary linearly with temperature in a similar

way to that of water (3%/0C).

For pipe flows the radial temperature gradient is generally much higher

than the axial temperature gradient. Gasljevic et al. [51] obtained the

1Although the flow curve for Xanthan can be better fitted by the Carreau-Yasuda model

or the Cross model, the power-law model is preferred for its simplicity in calculations.
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temperature profiles in turbulent pipe flows for polymers and surfactant

solutions in a stainless steel tube of 19.95 mm ID. Their measurements

are done at relatively high Reynolds numbers, between 10 000 and 90 000.

They controlled the wall heat flux to maintain a wall-to-bulk temperature

difference about 20C for most tests. With this temperature difference, the

effect of the radial temperature variation on the fluid viscosity was not more

than 4% for average test conditions. When the wall-to-bulk temperature

difference is about 1.60C, the corresponding wall heat flux is 755W/m2.

Considering the 0.2W/mK of thermal conductivity of acrylic, this amount of

wall heat flux would occur in much higher air to fluid temperature difference

in our setup (order of 1000C). So we didn’t expect any significant radial

temperature gradients in our experiments. Moreover, in turbulent flows,

most of the temperature difference between the wall and the fluid takes

place close to the wall, although somewhat less so for drag-reducing than

Newtonian flows (Gasljevic et al. [51]).

Rheological measurements were performed on a controlled-stress rheome-

ter (CVOR 200, from Bohlin, now Malvern Instruments) with a 1◦ 40 mm

cone and plate geometry and 25 mm vane tool. A standard v25 (four blades,

vane length 42 mm) vane geometry (www.malvern.co.uk) was employed in

these tests and the yield stress was determined by a stress ramp method

(Nguyen et al. [92]). The vane tool was used for measurements of the yield

stress because wall slip effects are known to be absent for this geometry (see

Barnes & Nguyen [9]). Pernell et al. [102] determined yield stress for

protein foams by using vane geometry. They used four different height-to-

diameter ratios of the vanes and showed that using different vane geometries

give the same yield stress values. Saak et al. [119] investigated the influence

of wall slip on the shear yield stress and modulus of cement paste using a

rotational rheometer with smooth-walled concentric cylinders and a vane.

Their results showed that the concentric cylinders suffer from slip during

yield stress measurements due to the formation of a water-rich layer at the

walls of the cylinders. The use of a vane eliminates slip since shearing oc-

curs within the material. The data for the vane and concentric cylinders are

in excellent agreement at stresses below the yield point. For the viscosity
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measurements in a high shear rate range (which corresponds to most of our

experimental domain) the cone and plate geometry was used. Escudier et

al. [41] performed a detailed uncertainty analysis for the double-concentric

gap geometry. They found that for γ̇ > 1s−1 the total uncertainty is about

2%. For the cone-and-plate and parallel-plate geometries at high shear rates,

the same values of total uncertainty apply because in that range the uncer-

tainty is dominated by the angular speed contribution which is independent

of the geometry used. The empirical constants describing the rheology were

determined by comparison to both this rheogram and to the laminar veloc-

ity profiles measured in the pipe. Degradation is apparent in the rheological

properties of the structured fluids. Table 2.2 details the change in rheology

after every flow rate for 0.1% carbopol.

Finally, it is widely known that a weakness of both the power law and

Herschel-Bulkley models is that there is no high-shear limiting viscosity.

Thus, parameter-fitting from the flow curve can give different results de-

pending on the range of strain rates used for the fit. Here we fit model

parameters from the fluid samples taken before each experiment and use

flow curve data that covers the approximate range investigated in the ex-

periment. Figure 2.2 provides an illustration of how using different strain

rate ranges, for the same fluid, can result in different parametric fits for

the same Xanthan solution. Tables of fitted parameters for each experiment

reported are given in appendix §B. The parameters fitted obviously have no

influence on the results reported here; these are included for completeness

and as an aid to future comparisons with computational and theoretical

approaches.

Experimental uncertainties caused by small imperfections of the pipe,

temperature gradients in the room or degradation of the tested fluids gen-

erally have a smaller effect on the calculated ReG than using incorrect rhe-

ological parameters. By ”incorrect”, we mean either that the parameter fit

is made from data covering the wrong range of strain rates, or that the fluid

sample is taken from an unyielded/stationary zone in the end reservoirs (as

opposed to the yielded parts), or that care is not taken to cross-check the

rheological data against the pipe flow velocity profile (in laminar regime
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only).

The largest errors almost certainly arise in the yield stress. In real-

ity, yielding behaviour is observed over a range of stresses and specifying

a single yield stress value is simply a fitting parameter. This range is es-

timated by using the stress ramp method with vane rheometer measure-

ments. For any given yield stress fitting the other rheological parameters

to the flowcurve data is a robust procedure. Having determined ranges of

rheological parameters we then compare normalized velocity profiles from

the LDV measurements with those calculated from the rheological model,

(which are dimensionlessly parameterized by n and rp), to determine the

final parameters.

Evidently, many different errors contribute to the value of ReG. A rea-

sonable error estimate for ReG is obtained by comparing the ReG that is

calculated from the rheological parameters, constitutive law and velocity

profile, i.e. equation (2.1), with that computed from the pressure drop and

centreline velocity, i.e. equation (2.2). For different concentrations of Car-

bopol, the difference between these two ReG calculated for the same flows

is 1-2% at smaller Reynolds numbers and increases to 10-15% at higher

Reynolds numbers close to transition. It is interesting to note that at low

shear values, where errors in yield stress dominate, the contributions to ReG

in calculating the integrand in (2.1) are smallest, due to the large effective

viscosity. The ReG calculated with pressure drop underestimates the true

value of ReG because the entrance pressure losses are included. For com-

parison, the difference between these two values of ReG for glycerin is about

1-5% for laminar flows.

Note that as velocity profiles become turbulent, due to nonlinearity in

the constitutive laws, the effective viscosity of the averaged velocity profile

may not be an accurate measure of viscous effects in the flow and a discrep-

ancy between (2.1) and (2.2) is inevitable. More concisely, deriving (2.2)

relies on a constitutive law relating the averaged velocity profile (via an ef-

fective viscosity) to the mean shear stresses and hence pressure drop. The

constitutive relation is not known for the turbulent flow. This same diffi-

culty arises with other commonly used generalised Newtonian fluid Reynolds
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Figure 2.2: Rheograms for 0.2% Xanthan gum solution, described by the
power-law model: (a) κ = 0.11 Pa.sn, n = 0.65 (b) κ = 0.13 Pa.sn , n =
0.56

numbers, which are typically based on the laminar flow characteristics, e.g.

the Metzner-Reed Reynolds number.

As with ReG, we can either evaluate rp directly from the rheology and

velocity profile fit, (as we have used in the figures and tables presented be-

low), or we can use the yield stress and measured pressure drop. Since both

methods are vulnerable to errors in the yield stress, the level of precision

using either estimate is comparable. However, rp calculated from the pres-

sure drop underestimates the true value because the entry length losses are

included in the pressure drop measurement. Values of rp are about 5-20%

lower than those calculated from the rheology and velocity profile fit.

2.1 Verification of the setup

Pressure transducers and the flow meter were calibrated before starting the

experiments. A digital pressure calibration device is used to calibrate the

transducers, by applying certain pressure values between 0 and 200 psi and

comparing them with the device readings. Then the voltage output of the

transducers is adjusted accordingly. The flow meter is calibrated with a

digital weight scale while water is the running fluid.
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U(m/s) γ̇(s−1) τy(Pa) K(Pa.sn) n ReG

0.11202 0.1 − 24 2 2.05 0.36 5.5
0.4622 0.1 − 87 1.5 2.01 0.40 67
1.2076 1 − 220 1.4 1.59 0.43 378
2.0461 5 − 414 1.3 1.20 0.48 937
2.3218 5 − 472 1.2 0.92 0.53 1160
3.1146 5 − 657 1 0.65 0.60 1735
3.9005 5 − 1261 0.6 0.35 0.65 2920
4.3967 5 − 1559 0.4 0.20 0.70 4488

Table 2.2: Flow conditions and Herschel-Bulkley parameters for 0.1% Car-
bopol

Buoyancy arising from ambient temperature gradients or inhomogeneity

in density due to solid particles could lead asymmetry in pipe flows (Lin

& Ebadian [83]). To verify the setup, we first ran experiments with wa-

ter and glycerin as Newtonian references. We made sure that we measure

symmetrical velocity profiles from laminar to turbulent and obtained the

critical Reynolds number as ∼ 2100 for our setup in Newtonian transition.

The velocity profiles for Newtonian fluids can be seen in Appendix B.
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Results

The results presented in § 3 and in § 4 have been documented in the following

publications:

1. B. Güzel, T. I. Burghelea , I.A. Frigaard, D.M. Martinez, 2009, ”Ob-

servation of laminar-turbulent transition of a yield stress fluid in Hagen-

Poiseuille flow ”, Journal of Fluid Mechanics.

2. B. Güzel, I.A. Frigaard, D.M. Martinez, 2009, ”Predicting laminar-

turbulent transition in Poiseuille pipe flow for non-Newtonian fluids”, Chem.

Eng. Science, 64, pp.254-264.

We are presenting in this chapter a synopsis of the most relevant experi-

mental results. The figures for each flow rate of the all tested fluids and the

related LDV readings can be found in the appendices.

3.1 Characterizing transition

Before proceeding to the main findings, it is instructive to first examine rep-

resentative velocity profiles for all fluids and flow states measured. To this

end, we plot the time-averaged velocity profiles as a function of ReG, see Fig-

ure 3.1. At each radial position, over one-hundred thousand instantaneous

velocity measurements were used in the ensemble average and the confidence

interval for each point is very small. It should be noted that the results have

been made dimensionless by scaling the ensemble average with the centerline

velocity uc. Under laminar conditions, that is with ReG < 1700, the fully

developed laminar profiles are included in these graphs as the solid lines.

These laminar profiles were constructed with the corresponding rheological

parameters for each Reynolds number. This was performed in order to as-

certain the validity of our results. For the higher flowrates, we present cases
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for both transitional and turbulent flows. Dashed lines are drawn to high-

light an apparent asymmetry in the measurements. The dashed lines were

constructed by averaging the data at equivalent radial positions on either

side of the central axis. The asymmetry is apparent for the non-Newtonian

cases and disappears once full turbulence is achieved. It is worth noting that

the asymmetry is systematic, i.e. these data were taken from time-averaged

data and the asymmetry is consistently in the same part of the pipe for the

same fluid. This is highlighted in Figures 3.2 and 3.3 where experimental

conditions are replicated resulting in a similar bias in the result. It should

be noted in the figures that the asymmetry show no directional dependence.

The profiles in this case may be skewed in either direction. This persistence

runs contrary to the intuitive notion that transitional flow structures, when

ensemble averaged over a suitably long time, should occur with no azimuthal

bias. A similar asymmetry has been reported by other groups in their ex-

periments, see e.g. Escudier & Presti [39], Escudier et al. [42], Peixinho

et al. [100]. Our initial reaction to the asymmetry was to look for and

eliminate any directional bias in the apparatus or in the flow visualization.

However, even after extensive precautions the asymmetry still persists. A

similar result is observed in the radial profiles of the local RMS of the veloc-

ity fluctuation for the non-Newtonian fluids. A representative case is given

in Figure 3.4 for a 0.2% Xanthan gum solution. One can notice from Figures

3.2(a) and 3.4 that the peak asymmetry in urms profiles is on the opposite

side to the asymmetry seen in mean velocity profiles.

Figure 3.5 plots the evolution of the turbulent intensity with ReG, both

at the centreline and at radial positions r/R = ±0.75. Other radial po-

sitions could have been displayed, but we chose to show these three as it

clearly defines the phenomena that we wish to discuss. To begin, the first

observation that can be made is that for Newtonian fluids, (see Figure 3.5a),

in the laminar regime we see a decay in turbulent intensity as flow rate is

increased. This decay is due to having approximately the same magnitude

of noise in the system while increasing mean velocity. This is valid for all of

the experiments. On transition there is a sharp change in turbulent intensity

that occurs across the pipe section simultaneously, i.e. at the same ReG.
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Figure 3.1: The time averaged velocity profiles for the three different fluids
tested. (a) 65% Glycerin at ReG=633(©), 2573(¤) and 10531(△); (b) 0.2%
Xanthan gum at ReG=809(©), 1185(¤), 2244(△), 2542(▽) and 3513(⊳);
and (c) 0.15% Carbopol at ReG=561(©), 1120(¤), 1750(△), 1804(▽) and
2953 (⊳)
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Figure 3.2: The time averaged velocity profiles for 0.2% Xanthan gum.
These data are from replicate tests obtained from similar experimental
conditions (a) ReG=858(©), 1218(¤), 1900(△), 2363(▽) and 3244(⊳) (b)
ReG=809(©), 1185(¤), 2244(△), 2542(▽) and 3513(⊳)
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Figure 3.3: The time averaged velocity profiles for 0.1% Carbopol. These
data are from replicate tests obtained from similar experimental condi-
tions. (a) ReG=378(©), 937(¤), 1160(△), 1735(▽) and 2920(⊳) (b)
ReG=397(©), 914(¤), 2001(△), 2238(▽) and 2612(⊳).
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Figure 3.4: Local RMS Velocity Profiles for 0.2% Xanthan Gum; (a) at
ReG=858, (b) at ReG=1218, (c) at ReG=1900, (d) at ReG=3244
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After a rapid increase through transition the turbulent intensity relaxes as

we enter the fully turbulent regime. For the structured fluids, transition

does not involve a simultaneous and sharp increase in turbulent intensity,

across the pipe radius. Instead in Figures 3.5b & c we observe that the

turbulent intensity begins to increase at r/R = ±0.75, at markedly lower

Reynolds numbers than at the centreline. A pattern that we noticed that is

generally found for the structured fluids tested is that the slope of the curve

near transition was rarely negative. This observation will be confirmed be-

low through direct visual observation of turbulent puffs through high speed

imaging. In this study it was difficult to classify the turbulent spot as either

a puff or a slug. This is not a unique finding as other research groups without

active disturbance control mechanisms report similar findings (Rudman et

al. [116]). As a result in the subsequent text we use the term puff and slug

synonymously. A simplistic explanation for this different behavior is that

the effective viscosity is usually significantly larger close to the centreline for

shear-thinning fluids in laminar flow.

Apart from measuring the axial velocity, we also visualized the flow via

seeding particles and a two-colored art dye, for which the color changes with

the orientation of particles. This enables qualitative evaluation of the flow,

i.e. the particles in turbulent structures are a different color than the ones

in laminar regimes. The images are then processed and some features of the

turbulent spots (puff/slug) are derived from these images. The recording

station is placed at about 7.6 m downstream. Our imaging system consisted

of a Mega Speed MS70K type high speed video camera (504×504 pixel

spatial resolution with a maximum framing rate of 5200 frames per second)

mounted with a 25 mm lens. A typical sequence of images are shown in

Figure 3.6 for 0.1% Xanthan. This is a representative figure which was

recorded at 400 frames per second. The flow in this case proceeds from

left to right. In Figure 3.6(a)-(k), a turbulent puff is passing the point of

observation causing mixing of the tracer particles. This results in a grainy

image due to the change in mean orientation, i.e. reflectance, of the tracer

particles. In Figure 3.6(k), the trailing edge of the puff is observed, and the

flow is once again laminar after the puff has passed. A second example from
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Figure 3.5: Turbulence Intensity at r/R=0 (–◦–), r/R=-0.75 (–△–) and
r/R=0.75 (–▽–) for (a) 65% glycerin, (b) 0.2% Xanthan gum, (c) 0.1%
Carbopol
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t = 342.5 ms t = 667.5 ms t = 842.5 ms

t = 915 ms t = 1005 ms t = 1165 ms

t = 1207.5 ms t = 1290 ms t = 1675 ms

t = 4337.5 ms t = 4377.5 ms t = 4527.5 ms

Figure 3.6: Instant puff images taken for 0.1% Xanthan at ReG = 2236 at
different time instants.

a Carbopol puff is illustrated in Figure 3.8.

With these images we attempted to characterize the size and velocity

of the leading and trailing edges of the puff by an object tracking method.

We have also produced space-time plots of the images. Here the images

are filtered and the variation of grey-scale intensity at one axial position

is reported as a function of time, see Figures 3.10-3.16. What is clear in

this sequence of images is that an asymmetry is evident in the Carbopol

example. The leading edge of the puff is elongated, in comparison to the

Newtonian case, and is located near the wall.

In Table 3.1, we report typical sizes and velocities of puff from these

images. For each fluid, around 2 − 4 puffs are analyzed to produce Table

3.1. With regards to the velocities we report separately the velocities of
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Figure 3.7: Filtered versions of the images in Figure 3.6 for xanthan (%0.1)
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t = 130 ms t = 222.5 ms t = 255 ms

t = 380 ms t = 422.5 ms t = 447.5 ms

t = 497.5 ms t = 600 ms t = 775 ms

t = 1117.5 ms t = 1155 ms t = 1187.5 ms

Figure 3.8: Instant puff images taken for 0.075% Carbopol at ReG = 1850
at different time instants.

Figure 3.9: Filtered versions of the images in Figure 3.8 for 0.075% Carbopol
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Figure 3.10: Space-time plot for %0.65 Glycerin at ReG = 2183: (a) ob-
tained from raw flow images (b) obtained from filtered, background sub-
tracted and binarized images. The puff length is ∼ 4.35m. The image
sequence consisted of 4100 frames.
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Figure 3.11: Space-time plot for %0.05 Xanthan at ReG = 1984: (a) ob-
tained from raw flow images (b) obtained from filtered, background sub-
tracted and binarized images. The puff length is ∼ 2.5m. The image se-
quence consisted of 3650 frames.
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(a)R
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Figure 3.12: Space-time plot for %0.1 Xanthan at ReG = 2236: (a) obtained
from raw flow images (b) obtained from filtered, background subtracted and
binarized images. The puff length is ∼ 2.63m. The image sequence consisted
of 1300 frames.
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Figure 3.13: Space-time plot for %0.2 Xanthan at ReG = 1940: (a) obtained
from raw flow images (b) obtained from filtered, background subtracted and
binarized images. The puff length is ∼ 2.37m. The image sequence consisted
of 530 frames. Note that there is a coherent structure here
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Figure 3.14: Space-time plot for %0.075 Carbopol at ReG = 1850: (a)
obtained from raw flow images (b) obtained from filtered, background sub-
tracted and binarized images. The puff length is ∼ 1.69m. The image
sequence consisted of 320 frames.
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Figure 3.15: Space-time plot for %0.05 Carbopol at ReG = 2256: (a) ob-
tained from raw flow images (b) obtained from filtered, background sub-
tracted and binarized images. The puff length is ∼ 1.39m. The image
sequence consisted of 430 frames.
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Figure 3.16: Space-time plot for %0.1 Carbopol at ReG = 2195: (a) obtained
from raw flow images (b) obtained from filtered, background subtracted and
binarized images. The puff length is ∼ 1.64m. The image sequence consisted
of 215 frames.

the leading and the trailing edges. These are measured in three different

locations on the edges, namely at r/R = 0 and r/R = ±0.75. The fourth

column in Table 3.1 represents the centerline velocity in laminar regime

just before the first puff is seen. What is evident from the data is that our

estimates of the leading edge velocities for the non-Newtonian fluids are quite

comparable to those measured for Glycerin, as well as to those measured for

Newtonian fluids by other investigators, (see the summary in Table 1.1). In

contrast, the trailing edge velocities for the non-Newtonian fluid appear to be

significantly faster than for Newtonian fluids. One possible interpretation

of this is that the leading edge propagates by the same mechanism in all

these fluids, i.e. controlled by spreading of turbulence structures within the

puff, whereas the trailing edge is affected by relaminarisation, and hence

the fluid rheology. Regardless of the correctness of this interpretation, the

data suggest that puffs in the non-Newtonian fluids will spread axially at

a significantly slower rate than in Newtonian fluids. Another observation

noted for the Carbopol solutions is that the elongation of the leading edge
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Fluid Concent. Ub uc/Ub ReG Ul/Ub Ut/Ub ℓpuff/D
(wt %) (m/s)

Glycerin 0.65 0.247 2 2143 1.73 0.76 86
Glycerin 0.65 0.252 2 2183 1.77 0.74 86
Glycerin 0.65 0.272 2 2357 1.73 0.74 88
Xanthan 0.05 0.165 1.98 1984 1.77 1.18 49
Xanthan 0.10 0.501 1.92 2236 1.73 1.17 52
Xanthan 0.20 1.185 1.72 1940 1.62 1.18 47
Carbopol 0.05 0.927 1.78 2092 1.56 1.14 30
Carbopol 0.05 0.968 1.78 2256 1.57 1.20 28
Carbopol 0.08 1.514 1.73 1850 1.59 1.22 33
Carbopol 0.08 1.576 1.73 2045 1.61 1.22 32
Carbopol 0.10 2.184 1.69 2038 1.54 1.20 35
Carbopol 0.10 2.266 1.69 2195 1.54 1.22 32

Table 3.1: Puff/Slug characteristics for Glycerin, Xanthan and Carbopol
solutions. In this Table we define Ul as the velocity of the leading edge and
Ut as the velocity of the trailing edge

gets smaller with decreasing concentrations of Carbopol, i.e. the tip that

we see in Figure 3.14 is both reduced and closer to the centreline. It is

also worth commenting that since the velocity profiles of shear-thinning

fluids are flatter than Newtonian profiles, the difference between laminar

and fully turbulent centreline velocities is reduced. Hence use of centreline

velocity measurements to identify puff/slug occurrence does not give the

same distinct “signatures” as for Newtonian fluids. Therefore, rather than

distinguishing between puff and slug, we simply use the term puff. Finally

we comment that although we have made estimates of puff size, it is difficult

to interpret these as it is highly dependent on the location of its origin and

the time to the observation point - this is highly variable. We report these

values here for completeness.

To summarize our observations, we measured the axial velocity as a

function of radial position using LDV of three different classes of fluids under

going Hagen-Poiseuille flow. We find that for the non-Newtonian fluids

tested there is a persistent asymmetry in the velocity profiles present during
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transition. This asymmetry is also seen in RMS profiles. Symmetrical flows

were found for both laminar and fully-turbulent cases. These observations

were confirmed using high speed imaging. No physical explanation is given

at this point. We do, however, attempt to quantify transition more precisely

by presenting a more indepth statistical analysis of these results. We do so

in the following subsection

3.2 Statistics of weak turbulence

Landau & Lifschitz [82] indicate that turbulent flows are traditionally char-

acterized by random fluid motion in a broad range of temporal and spatial

scales. In this section we attempt to characterize these scales using a num-

ber of different statistical measures given by Frisch [49]. By doing so we

attempt to further characterize the differences in the behaviors of these three

classes of fluids during transition.

To begin with, the first statistical measure we use is an autocorrelation

function C(τ) defined by:

C(τ) =
< u(t)u(t + τ) >τ

u2
rms

(3.1)

and determined using the LDV data. This parameter is a measure of the time

over which u(t) is correlated with itself. In other words, C(τ) is bounded by

unity as τ approaches zero and zero as τ → ∞, because a process becomes

uncorrelated with itself after a long time. We report the autocorrelation

function as a function of ReG and the radial position in the pipe. Repre-

sentative results of this curve for the 3 fluids are given in Figures 3.17-3.19.

Before we proceed to interpret these figures we must spend some time ex-

plaining how the data is represented. Each figure is given as three panels,

i.e. at three different radial positions. Within each panel four data sets

are presented representing four different Reynolds numbers. The data series

labeled (1) and (2) represent laminar flow while (3) is in transition and (4)

in turbulence. With regards to (1), which is at the lowest ReG, in each of

the panels the velocity signal is probably dominated by high frequency noise
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Figure 3.17: Correlation Functions for 80% glycerin solution at three differ-
ent radial positions(a) r/R = −0.75, (b) r/R = 0 and (c) r/R = 0.75. The
data sets are: (1) Re = 1174, (2) Re = 1737, (3) Re = 2201, (4) Re = 3546.

which results in a fast decay of C(τ) with a characteristic decay time which

we find to be of the order of the inverse data rate of the signal. Proceeding

through (4) we find the fully turbulent state characterised by rapid decay of

the autocorrelation to the noise level.

A striking difference is found in curve (2) in comparison to the other

curves. We observe that there are plateaus in these curves, for some radial

positions for each of the fluids, e.g. at C(τ) ∼ 0.4 for both r/R = ±0.75

in the case of the Carbopol solution. Although this data was obtained in

a region which we define as laminar, it is clear that there are some weakly

correlated structures at this position in the pipe. For the Newtonian fluid,

the plateau in the autocorrelation is at a lower value than for the non-
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Figure 3.18: Correlation Functions for 0.2% Xanthan solution at three dif-
ferent radial positions:(a) r/R = −0.75, (b) r/R = 0 and (c) r/R = 0.75.
The data sets are: (1) ReG = 858, (2) ReG = 1218, (3) ReG = 2363, (4)
ReG = 5736.
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Figure 3.19: Correlation Functions for 0.1% solution Carbopol at three dif-
ferent radial positions (a) r/R=-0.75, (b) r/R=0 and (c) r/R=0.75. The
data sets are: (1) ReG = 397, (2) ReG = 914, (3) ReG = 2238, (4)
ReG = 3309.
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Newtonian fluids and is visible also at the centreline. For the non-Newtonian

fluids the plateau is strongly attenuated at the centreline, but evident at

the radial positions r/R = ±0.75. Using Taylor’s frozen flow hypothesis

(Taylor [132]) we may estimate the axial length-scale of these structures

to be ∼ 10−1 m, being longer for the Newtonian fluids than for the non-

Newtonian fluids. This is significantly lower than the size of the puffs and

slugs we report in Table 3.1. We comment also that asymmetry is observed

in many of the autocorrelations curves.

The second statistical measure we examined is the probability distri-

bution of the velocity fluctuations. Again we report these results at three

different radial positions for a number of ReG, see Figure 3.20. Like the au-

tocorrelation, we present the data in three panels representing the different

radial positions: at each radial position a number of different ReG numbers

are displayed. Each data set (roughly 105 velocity events were accounted for

in the statistics) is normalized by the maximum count and plotted against

the reduced variable, [u(t) − Ū ]/urms. Clearly, there is no statistical dif-

ference in these probability distributions when compared at different ReG

at similar radial positions, or at different radial positions and with similar

ReG. This finding holds for all classes of fluids tested.

Although intermittent flow behavior is observed during our experiments

in both pre-transitional and fully developed turbulent regimes, the physics

underlying the two phenomena is substantially different: whereas in the first

case it is probably due to the emergence and dynamics of large scale flow

structures the second case remains an open problem in fluid dynamics. In

order to get a flavor of how Non-Newtonian fluid rheology influences the

emergence and magnitude of intermittency, we focus on higher order statis-

tical flow properties for each of the three fluids under study, corresponding

to the largest value of Re investigated.

At this point we turn our attention to the main findings in this sec-

tion, an examination of the intermittency of transitional flow. An intriguing

and partially understood feature of inertial turbulent flows is the emergence

of intermittency which, simplistically speaking, manifests itself by “rare”

velocity bursts. In the case when a complex fluid is used, it is even less
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Figure 3.20: Velocity statistics for 0.1% Carbopol solution at three different
radial positions (a) r/R = −0.75, (b)r/R = 0 and (c)r/R = 0.75. The
symbols are: right triangles (◮) -ReG = 397, left triangles (◭)- ReG =
914,up triangles (H) - ReG = 2238, circles(•) - ReG = 3309.
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well understood how the non-Newtonian fluid rheology influences this phe-

nomenon. Although the signature of this effect is somewhat visible in the

tails of the probability distribution functions displayed in Figure 3.20, a

more systematic analysis requires the calculation of the velocity structure

functions ξk, defined by

ξk(t) =
〈

|u(τ + t) − u(τ)|k
〉

τ
, (3.2)

as given by both [84] and [49]. In a fully developed and homogeneous tur-

bulent flow, the Kolmogorov theory in which intermittency effects are not

accounted for predicts
ξk

ξ3
=

k

3
(3.3)

Thus, the magnitude of the intermittent effects can be quantified by the

deviations from the Kolmogorov scaling. In the Newtonian case and in a

fully developed turbulent regime the intermittency is highest away from the

centerline (see Fig. 3.21) whereas in the non-Newtonian case, the intermit-

tency level is similar at each of the radial positions we have investigated.

This finding suggests that in the transitional regime, the yield stress fluid

behaves simply as a shear thinning fluid and the effect of the plug at this

point should therefore be considered as negligible. Care must be taken when

interpreting this figure as we are not in fully turbulent flow. The Kolmogorov

scaling is included in this figure for illustrative purposes. The message of

this figure is that the structured fluids, according to this statistical measure,

behave similarly in transition.

This finding suggests that in the transitional regime, the yield stress fluid

behaves simply as a shear thinning fluid and the effect of the plug at this

point should be considered negligible. This results from the fact that the

size of the plug is below our detection limit.
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Figure 3.21: Deviations from the Komolgorov scalings for (a) 80% Glycerin
at Re = 3456, (b) 0.2% Xanthan at Re = 3513, and (c) 0.1% Carbopol
at Re = 2612. The data is displayed at three different radial positions:
✷-r/R=-0.75, ©-r/R=0 and △-r/R=0.75.
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3.3 Characterizing the plug during transition

For yield stress fluids the role of the plug region in retarding transition

is largely unknown. If one interprets the yield stress fluid to be fully rigid

below the yield stress then the laminar flow is analogous to that with the plug

replaced by a solid cylinder moving at the appropriate speed. Presumably,

since the effective viscosity becomes infinite at the yield surface the flow

should be locally stabilized. Two different scenarios may be postulated at

transition: (i) transition may occur in the yielded annulus around the plug,

leaving intact the plug region; (ii) transition is retarded until the plug region

thins to such an extent that the Reynolds stresses (in the annular region)

can exceed the yield stress.

Scenario (i) is that described in Peixinho [99], Peixinho et al. [100],

where during the first stage of transition the turbulence intensity level on

the centreline is reported as being similar to laminar levels. This is also the

scenario assumed explicitly in some phenomenological theories of transition,

e.g. Slatter [125] treats the plug as a rigid body in developing his formula

for transition.

In Figure 3.22 we present the ratio of averaged Reynolds stress at the

centerline (where the level of velocity fluctuations is minimum) to the yield

stress, as a function of the generalized Reynolds number, ReG, for the 4

different Carbopol concentrations that we have used. The filled symbols

in Figure 3.22 mark the lowest value of ReG for which puffs or slugs were

detected in the experiments, for each of the different concentrations of Car-

bopol.

We can observe that the mean Reynolds stress exceeds the yield stress

in each case.2 This suggests to us that the second explanation above is

the more plausible, i.e. the plug has broken when transition starts. This

is further reinforced by the results of the previous section on the structure

functions, i.e. at these transitional/weak turbulent Reynolds numbers we

have observed very similar intermittency characteristics with Carbopol, right

2This remains true even if we subtract the laminar flow fluctuations from the Reynolds

stresses, interpreting them as instrumental noise.
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Figure 3.22: Axial Reynolds stresses normalized by yield stress for four
different concentration levels of Carbopol. The filled symbols indicate points
where the flow becomes transitional, with puffs/slugs first observed

across the pipe radius, as with Xanthan, where there is no yield stress. We

should also comment that for the concentrations of Carbopol that we have

used, if we calculate the (laminar) un-yielded plug diameters using

rp

R
=

2Lτy

R∆P
(3.4)

where L is the length of the pipe, for the largest flow rates for which puffs or

slugs are not detected, see Figure 3.23, these plug diameters are at most of

order 2 mm. Thus, we do not anyway have a strong plug close to transition.

There is no contradiction with the data from Peixinho [99], Peixinho

et al. [100], simply with its interpretation. Even with this thinning and

break-up of the plug, in the Reynolds number range preceding transition

flow instabilities are not sustained. Peixinho et al. [100] report measuring

low frequency oscillations away from the central region. Such low frequency

forcing, presumably with slow axial variation could easily be responsible for

slow extensional straining that yields the true plug of the base flow into a

pseudo-plug. This type of psuedo-plug also occurs for example in thin film

flows, (Balmforth & Craster [5]), and in channels of slowly varying width,

(Frigaard & Ryan [48]). In such flows the velocity remains asymptotically
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Figure 3.23: Plug radius normalized by pipe radius for four different con-
centration levels of carbopol

close to the base flow solutions while shear and extensional stresses com-

bine to maintain the pseudo-plug at just above the yield stress. Such flows

are laminar but yielded and the psuedo-plug is characterised by large ef-

fective viscosity, which would presumably give similar characteristics to the

base laminar flow in controlling fluctuation level, as reported in Peixinho

[99], Peixinho et al. [100]. From our measurements of the velocity profiles,

the mean velocity remains plug-like in the centre of the pipe in this upper

range of laminar Reynolds numbers and it is simply not possible to discern

whether what is observed is a true plug or not.

Evidently the ideal situation would be to visualise transition within a

plug region of significant size in comparison to the pipe. Interestingly, this

was the intention of our experiments. Our study was started after discussions

with C. Nouar about ongoing experiments at LEMTA, Nancy, that were later

reported in Peixinho [99], Peixinho et al. [100]. These were conducted in

a 30 mm pipe at lower speeds, and for the flow rates at which transition

occurred the plug region had radius of the order of 1 mm: too small to detect

if broken or not. This prompted our interest in the role of the plug during

transition, and we therefore designed our experiments at a larger scale so

that we could potentially achieve transition with higher yield stress fluids, in

larger diameter pipes and at higher speeds, hopefully also with a larger plug
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radius at transition. We were apparently defeated in this objective, as the

small values of rp/R in Figure 3.23 indicate. Together with the experiments

in Peixinho [99], Peixinho et al. [100], our results contribute to the evidence

that the plug region must thin to such an extent that the Reynolds stresses

can break it, before transition commences.
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Predicting transition

In the previous section we presented a comprehensive comparative study,

characterizing the flow of different non-Newtonian fluids in the transitional

flow range. The 3 main observations of this study, relevant to prediction of

transition are as follows.

• For the complex fluids studied, transition occurs essentially in 2 stages,

as also noted by Peixinho et al. [100]. The early stage transition is

not visible on the pipe axis, where velocity fluctuations remain at

approximately laminar levels. Closer to the wall there is a significant

increase in turbulent intensity levels. In the second stage of transition

there is rapid increase in turbulent intensity at all radial positions.

• Common with other studies, e.g. Escudier et al. [42], Peixinho et

al. [100], some asymmetry is observed in the velocity profiles during

transition.

• For yield stress fluids, even though the measured velocity profiles ap-

pear to be approximately plug-like at transition, levels of turbulent

kinetic energy within the central region of the flow exceed the yield

stress value, i.e. the plug is broken before transition occurs.

The first of these observations implies that any simplified predictive method

should be based upon essentially local quantities, that vary radially, since for

different fluids the position where disturbances first arise may be different.

The second of these observations at first caused some consternation and

led to extensive re-calibration and testing of our apparatus, even though

observed by other groups. We now believe that the asymmetry observed
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is a genuine effect, and is probably a direct observation of coherent trav-

eling wave structures, as are being studied extensively for Newtonian fluid

transition by Kerswell and co-workers, Kerswell & Tutty [76], i.e. these are

the non-Newtonian analogue, see also recent work by Nouar and co-workers,

Esmael & Nouar [43].

The third observation above tends to discount the basis of phenomeno-

logical theories such as that of Slatter, Slatter [125], although their predic-

tions may still be reasonable. More succinctly, the premise that the plug

region is intact and acts as a rigid solid in the flow, appears from our exper-

iments to be false.

The basis of our criterion consists in defining a local Reynolds number,

ReG,l(r) as follows:

ReG,l(r) =
ρu(r)D

µ(r)
, (4.1)

where u(r) is the axial velocity and µ(r) is the local viscosity, which depends

on r via the rate of strain, γ̇(r), ρ is the fluid density and D is the pipe diam-

eter. There are many different ways of interpreting this ratio. Multiplying

top and bottom by the velocity gradient leads to the ratio of the gradient

of the translational kinetic energy to a representative shear stress gradient.

This interpretation of the local Reynolds number is close to the balance pa-

rameters postulated by Hanks and by Ryan & Johnson, Hanks [56], Ryan

& Johnson [118]. Alternatively we can consider the balance in terms of

energy transfer and dissipation.

In flows of shear-thinning fluids we may expect that u(r) → 0 at the

wall and µ(r) → ∞ at the axis. Therefore, ReG,l(r) = 0 both at the axis

and the wall, with a maximum attained somewhere within the pipe. Unlike

Hanks and Ryan & Johnson, we do not consider that transition is defined

by the maximal value of ReG,l(r) exceeding a critical parameter, although

it is clear that ReG,l(r) will be strongly localised. Instead we suppose that

local imbalances in ReG,l(r) will be dissipated across the pipe cross-section.

A more appropriate measure for this imbalance is therefore the mean value
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of ReG,l(r):

ReG =
2

R2

∫ R

0
ReG,l(r)rdr, (4.2)

where R = D/2, the pipe radius.

Evaluation of the averaged Reynolds number is straightforward:

ReG =
4ρ

R

∫ R

0

u(r)

µ(r)
rdr =

4ρ

R

∫ R

0

u(r)u′(r)

τxr(r)
rdr =

4ρu2
c

R|px|
, (4.3)

where uc is the centreline velocity, i.e. for laminar flows we require only

the algebraic relationship between the maximal velocity and the frictional

pressure gradient. It is also interesting to note that for laminar flows, in

which the rheology may be uncertain, uc and the pressure drop are both

easily measurable quantities in a flow loop.

The Darcy friction factor that we use later is defined as follows:

f =
8τw

ρU2
b

=
2D|px|
ρU2

b

, (4.4)

where U is the mean axial velocity. Therefore, we have that

ReG =
16u2

c

fU2
b

. (4.5)

For example, for a Newtonian fluid in laminar flow, where we have uc = 2Ub,

the local and averaged Reynolds numbers are the same and we recover:

f = 64/ReG, as expected.

An alternative interpretation of ReG is as the radial-average of the quan-

tity ζG(r) = 2ReG,l(r)r/R. This dimensionless quantity is directly propor-

tional to that considered by Hanks and by Ryan & Johnson. For a given

fluid model and velocity profile it is possible to calculate the radial posi-

tion at which the integrand ζG(r) = 2ReG,l(r)r/R is maximal and evaluate

this maximal value. Thus essentially, our Reynolds number is an averaged

version of the Hanks expression, averaged across the radius.
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4.1 Application of the ReG criterion

In this section we demonstrate the utility of this new definition of Re, i.e.

equation 4.3, by applying it to the three different classes of fluids studied.

Example 1: Newtonian fluids

For Newtonian fluids, algebraic calculation of the new Reynolds number is

straightforward. The velocity is given by

u(r) = uc

[

1 −
( r

R

)2
]

(4.6)

where uc = 2Ub, the viscosity is constant and therefore:

ReG =
2

R2

∫ R

0

ρu(r)D

µ
rdr =

ρUbD

µ
. (4.7)

Thus, ReG simplifies to the usual Newtonian Reynolds number for pipe flow,

based on the mean velocity and pipe diameter. The local quantity ζG(r) is

given by

ζG(r) = 2ReG,l(r)
r

R
= 2

ρucD

µ

r

R

[

1 −
( r

R

)2
]

(4.8)

The position where ζG(r) is maximum is at:

r

R
=

1√
3
, (4.9)

which gives maximal value ζG,max ≈ 1.54ReG.

Apart from the above calculations, from our LDV measurements of fluid

velocity variations in the radial direction, we are able to directly evaluate

both ζG(r) and ReG from the mean velocity profile, i.e. we use local mea-

surements of the mean velocity to define the quantities in ζG(r), and then

integrate numerically across the pipe to give ReG.

As a reference Newtonian fluid we used Glycerin. Figure 4.1 shows ex-

ample radial profiles of normalised velocity, normalised shear rate, ReG,l(r)

and ζG(r) for Glycerin at ReG = 2573. We may observe a slight asym-
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Ub(m/s) γ̇(s−1) µ(Pa.sn) ReG

0.0564 0.1 − 8 0.0096 342
0.1045 0.2 − 15 0.0096 633
0.2943 0.7 − 43 0.0092 1860
0.3894 0.7 − 60 0.0088 2573
0.7791 2 − 232 0.0084 5393
1.4489 2 − 482 0.0082 10531

Table 4.1: Flow Conditions for 65% Glycerin.

metry at transition, as discussed in Escudier et al. [42], Esmael & Nouar

[43], Peixinho et al. [100]. In Fig. 4.1d we can see that ζG(r), calculated from

the transitional regime measurements, does indeed exhibit maxima close to

the predicted critical position. Table 4.1 gives the flow conditions under

which Glycerin was pumped. Note that the viscosity variation in Table 4.1

is due to the temperature increase caused by pumping.

In Fig. 4.2 we examine what happens during transition to both the max-

imal value of ζG(r) and the critical radial position where ζG(r) achieves

its maximum. The analytical expressions for these are given above. To

construct this figure we have taken measured mean velocity profiles (sym-

metrized across the channel), then numerically evaluated these two quan-

tities from the data. Fig. 4.2a shows a comparison between the measured

values of critical position of the maximal ζG(r), scaled with ReG/R, and

the analytical prediction. Fig. 4.2b shows a comparison of the measured

values of maximal ζG(r) and those predicted analytically. In both figures

the solid lines give the values calculated from the laminar flow analytical

expressions. In both figures the filled symbols denote experimental values

of ReG for which puffs and slugs were first observed in our experiments.

One can notice that there is a deviation from the laminar prediction when

transition starts.
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Figure 4.1: a) Mean axial velocity profile for 65% Glycerin (with average
data line) at ReG = 2573; (b) Mean shear-rate profile; (c) Reynolds number
(ReG,l(r)) profile; (d) ζG(r) profile.

73



Chapter 4. Predicting transition

0 2000 4000 6000 8000 10000 12000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

(a)

R
e G

.r/
R

(
G

,m
ax

)

ReG

 

 

0 2000 4000 6000 8000 10000 12000
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

(b)

G
,m

ax

ReG

 

 

Figure 4.2: a) ReG.r/R vs. ReG evaluated at the position r where ζG

is maximal. (b) ζG,max vs. ReG for 65% Glycerin (solid curves represent
theoretical predictions from laminar flow). The filled symbols indicate points
where the flow has become transitional, with puffs and slugs appearing.

Example 2: Shear-thinning fluids

Over a given range of shear rates, Xanthan solutions are reasonably well

modeled by the power law fluid model, with constitutive law:

τij = κγ̇n−1γ̇ij , (4.10)

Here κ is the fluid consistency and n is the power law index. Using this we

easily find the Hagen-Poiseuille solution:

u(r) = uc

[

1 −
( r

R

)m+1
]

, (4.11)

where m = 1/n, and the radial variation in effective viscosity:

µ(r) = κ

[

uc

(

n + 1

n

)(

rm

Rm+1

)]n−1

. (4.12)

The ratio of centreline speed to mean speed of the flow, uc/Ub is given by:

uc

Ub
=

(m + 3)

(m + 1)
, (4.13)
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and we have:

ReG =
2ρU2−n

b Rn

κ(m + 1)2

[

1

m + 3

]n−2

. (4.14)

The localised quantity, ζG(r) is maximised where

r

R
=

(

1

n + 2

)
n

n+1

, (4.15)

which leads to a maximal value

ζG,max = 2ReG
(n + 1)2

n(n + 2)

(

1

n + 2

)
1

n+1

. (4.16)

We may also calculate the laminar Darcy friction factor f :

f =
16

ReG

[

1 + 3n

n + 1

]2

, (4.17)

from which the relationship to the Metzner-Reed Reynolds number, ReMR

is easily deduced:
ReG

ReMR
=

1

4

[

1 + 3n

n + 1

]2

. (4.18)

Regarding experimental verification, Table 4.2 shows the fluid condi-

tions for 0.2% Xanthan from laminar to turbulent regime. The rheological

parameters are fitted to fluid samples taken from the flow loop, at each

flow rate. The range of shear rates used for the rheological characterisation

corresponds to that observed in the flow loop and the flow curves are also

measured at the same temperature as the fluid in the flow loop, to account

for frictional heating effects. Apart from the effects of temperature and of

data fitting from different ranges, Xanthan solutions tend to slightly degrade

due to continued pumping and recirculation in the loop. Thus, the rheo-

logical constants are different for different experiments. Figure 2.2 gives an

example of how different rheological parameters can be found for the same

fluid when different ranges of shear rates are used.

Figure 4.3 shows radial profiles of normalised velocity, normalised shear

rate, ReG,l(r) and ζG(r) for a 0.2% Xanthan gum (κ = 0.11, n = 0.65)
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Ub(m/s) γ̇(s−1) κ(Pa.sn) n ReG

0.2776 0.2 − 46 0.11 0.65 352
0.5396 0.5 − 90 0.11 0.65 858
0.7163 0.7 − 137 0.11 0.65 1218
0.9413 1 − 224 0.14 0.56 1900
1.1224 1 − 270 0.135 0.56 2363
1.4850 2 − 501 0.13 0.56 3244
2.2756 2 − 835 0.13 0.56 5736
3.4615 3 − 1311 0.13 0.56 10197

Table 4.2: Flow Conditions and rheological parameters for 0.2% Xanthan
gum.

during the first stage of transition. We again observe a slight asymmetry

in the flow and in Fig. 4.3d we see that the maximal values of ζG(r), have

maxima close to the predicted critical positions.

As before, we examine what happens during transition to both the max-

imal value of ζG(r) and the critical radial position where ζG(r) achieves its

maximum. Figure 4.4a shows a comparison between the measured values

of critical position of the maximal ζG(r), scaled with ReG/R, and the ana-

lytical prediction. Figure 4.4b shows a comparison of the measured values

of maximal ζG(r) and those predicted analytically. The solid lines are the

calculated variations from the laminar flow equations and the filled symbols

indicate that puffs and slugs were first observed in the experiment at this

value of ReG. In both figures, there is again a deviation from the laminar

line when transition starts. The slight inconsistency between the experimen-

tal points at transition is due to the size of the incremental steps taken to

measure velocity during the experiments, (1.25mm increment between the

measuring points).

Example 3: Yield-stress fluids

Our final experiments were conducted using aqueous solutions of Carbopol

940. Over a restricted shear rate range this may be described by the
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Figure 4.3: a) Mean axial velocity profile for 0.2% Xanthan gum (with
laminar profile - solid line) at ReG=1218, (b) Mean shear-rate profile, (c)
Reynolds number (ReG,l(r)) profile; (d) ζG(r) profile.
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Figure 4.4: a) ReG.r/R vs. ReG evaluated at the position r where ζG is
maximal. (b) ζG,max vs. ReG for 0.2% Xanthan (solid curves represent
theoretical predictions made from the laminar flow). The filled symbols
indicate points where the flow has become transitional, with puffs and slugs
appearing

Herschel-Bulkley fluid model, with constitutive laws:

τij =

[

τy

γ̇
+ κ(γ̇)n−1

]

γ̇ij ⇔ τ > τy,

γ̇ij = 0, ⇔ τ ≤ τy.

The parameter τy is referred to as the yield stress. The Poiseuille solution is

fully described in terms of the dimensionless yield surface position, ξ ∈ [0, 1),

as follows.

u(r) =











uc r ∈ [0, rp]

uc

[

1 −
(

r − rp

R − rp

)m+1
]

r ∈ (rp, R]
(4.19)

where rp = ξR and m = 1/n. The dimensionless plug position ξ is the zero

of the Buckingham polynomial:

0 = ξm − B(1 − ξ)m+1

[

(1 − ξ)2

m + 3
+

2ξ(1 − ξ)

m + 2
+

ξ2

m + 1
,

]

(4.20)
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Figure 4.5: a) Variation in the dimensionless plug position ξ(B, m) with B
for m = 1, 2, 3, 4, 5; b) variation in the ratio of centreline (plug) speed to
mean speed of the flow, uc/Ub, with B for m = 1, 2, 3, 4, 5. Here m = 1/n
and the curve for m = 1 is marked with a ◦.

that lies in the interval [0, 1). Here B is the Bingham number, defined by:

B =
[τy

K

]m R

Ub
. (4.21)

The function ξ(B,m) is computed numerically, see Fig. 4.5a, in a straight-

forward way. The ratio of centreline (plug) speed to mean speed of the flow,

uc/Ub is given by:

uc

Ub
=

(m + 2)(m + 3)

2ξ2 + 2(m + 1)ξ + (m + 2)(m + 1)
, (4.22)

see Fig. 4.5b.

From this, after some algebraic manipulation, we have

ReG =
2ρU2−n

b Rn

K(m + 1)2
(1 − ξ)1+n

[

(1 − ξ)2

m + 3
+

2ξ(1 − ξ)

m + 2
+

ξ2

m + 1

]n−2

. (4.23)

The localised quantity, ζG = 2rReG,l/R is maximised where

r

R
= ξ + (1 − ξ)

(

1

n + 2

)
n

n+1

(4.24)
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which leads to a maximal value

ζG,max =
2ReG

(1 − ξ)

(n + 1)2

n(n + 2)

(

1

n + 2

)
1

n+1

. (4.25)

The laminar Darcy friction factor is:

f =
16

ReG

[

(m + 2)(m + 3)

2ξ2 + 2(m + 1)ξ + (m + 2)(m + 1)

]2

, (4.26)

from which the relation with ReMR is found:

ReG

ReMR
=

1

4

[

(m + 2)(m + 3)

2ξ2 + 2(m + 1)ξ + (m + 2)(m + 1)

]2

, (4.27)

which simplifies to the power law and Newtonian expressions when τy = 0,

n = 1, respectively.

It is interesting to note that for the high flow rates and pressure drops

that are required to achieve transition with yield stress fluids, the dimen-

sionless plug position typically satisfies ξ ≪ 1 at transition, so that the

above expressions are very close to the power law expressions of the previ-

ous section, to which they reduce at ξ = 0.

As a yield stress fluid we have conducted experiments with neutralised

solutions of Carbopol 940 at various concentrations. The preparation pro-

cedure for our experiments is described in § 2, and further characteristics

of this fluid are described in Curran et al. [24], Kim et al. [79]. Table 4.3

shows the fluid conditions for 0.1% Carbopol solution pumped from laminar

to turbulent regime. Figure 4.6 shows a sample of the rheological parameter

fitting for 0.1% Carbopol. As with the Xanthan solutions, fluid degradation,

viscous heating and sensitivity of rheological parameter fitting to shear rate

range, all make it necessary to sample the fluid in the flow loop for each flow

rate experiment.

Figure 4.7 shows radial profiles of normalised velocity, normalised shear

rate, ReG,l(r) and ζG(r) for a 0.1% Carbopol (τy = 1.3 Pa, κ = 1.2 Pa.sn,

n = 0.48) during the first stage of transition.

Figure 4.8a shows a comparison between the measured values of critical
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Ub(m/s) γ̇(s−1) τy(Pa) κ(Pa.sn) n rp(mm) ReG

0.11202 0.1 − 24 2 2.05 0.36 5.55 5.5
0.4622 0.1 − 87 1.5 2.01 0.40 2.57 67
1.2076 1 − 220 1.4 1.59 0.43 1.84 378
2.0461 5 − 414 1.3 1.20 0.48 1.40 937
2.3218 5 − 472 1.2 0.92 0.53 1.20 1160
3.1146 5 − 657 1 0.65 0.60 − 1735
3.9005 5 − 1261 0.6 0.35 0.65 − 2920
4.3967 5 − 1559 0.4 0.20 0.70 − 4488

Table 4.3: Flow Conditions and rheological parameters for 0.1% Carbopol.

10-1 100 101 102 103
10-2

10-1

100

101

 

  (Pas)

 (s-1)

Figure 4.6: Flow curve for 0.1% Carbopol 940, fitted by the Herschel-Bulkley
model, τy = 1.4 Pa, κ = 1.59 Pa.sn, n = 0.43
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Figure 4.7: a) Mean axial velocity profile for 0.1% Carbopol (with laminar
profile - solid line) at ReG=937, (b) Mean shear-rate profile, (c) Reynolds
number (ReG,l(r)) profile; (d) ζG(r) profile.
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Figure 4.8: a) ReG.r/R vs. ReG evaluated at the position r where ζG is
maximal. (b) ζG,max vs. ReG for 0.1% Carbopol (solid curves represent
theoretical laminar curves). The filled symbols indicate points where the
flow has become transitional, with puffs and slugs appearing.

position of the maximal ζG(r), scaled with ReG/R, and the analytical pre-

diction. Figure 4.8b shows a comparison of the measured values of maximal

ζG(r) and those predicted analytically. The solid lines are the calculated

variations from the laminar flow equations and the filled symbols indicate

that puffs and slugs were first observed in the experiment at this value of

ReG. In both figures, there is again a deviation from the laminar line when

transition starts. Note that the laminar prediction is not a straight line in

these figures since as we have increased ReG, the best fit to the rheological

parameters changes and therefore so do n and rp.

4.2 Moody diagrams

Figure 4.9 plots the Moody diagram for Glycerin, Carbopol and Xanthan,

based on the Reynolds number ReG. Also plotted are the Newtonian fluid

curves for Hagen-Poiseuille flow and the Blasius expression for turbulent

flows. In the laminar regime the non-Newtonian data lies below the f =

64/ReG curve, as predicted by the laminar flow calculations. Transition,

identified in the experiments by the onset of puffs and slugs, (see § 3),

started at around ReG = 2100.
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Figure 4.9: Moody diagram plotted against ReG for 65% Glycerin, 0.2%
Xanthan gum and several solutions of Carbopol

Figure 4.10a shows the Moody diagrams plotted against ReG for the indi-

vidual fluids treated. For clarity, we have offset each fluid data by a factor of

10. In the turbulent range we plot the Blasius curve(f.Re
(1/4)
G = 0.3164) and

in the laminar range we plot the Newtonian curve (f.ReG = 64). We also

plot f.ReG = 51 and f.ReG = 31, which correspond approximately to the

rheological parameters of the lowest flow rates for Xanthan and Carbopol,

respectively. Because these values vary with n and rp as discussed earlier,

(due to viscous heating, fluid degradation and parameter fitting based on

different shear rate ranges), the dimensionless parameters n and ξ change

with the flow rate, i.e. with ReG. Thus, it is not feasible to match the ex-

perimental data to any single non-Newtonian friction factor curve, (4.17) or

(4.26). In Figure 4.10b, we plot f against the localised parameter, ζG,max,

which enables comparison with the criteria of Hanks/Ryan & Johnson. From

both these figures we see that the sharp change in f at transition is largely

absent for the non-Newtonian fluids.
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Figure 4.10: Moody Diagrams for 65% Glycerin, 0.2% Xanthan gum and
0.1% Carbopol, (a)with respect to ReG and (b)with respect to ζG,max

Figure 4.11 plots the unit pressure drop vs. velocity. One can notice

that the turbulent lines for Xanthan solutions are even lower than the one

for water, due to shear-thinning effects. The filled symbols in this figure

represent flows that are observed to be transitional, defined by the onset of

puffs. This confirms that the transition occurs at approximately where the

laminar (Hagen-Poiseuille) line ends and the turbulent (Blasius) lines start.
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Figure 4.11: Normalized Pressure Drop vs. Mean Velocity for Glycerin and
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Blasius for water. The filled symbols indicate points where the flow has
become transitional, with puffs and slugs appearing.
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Summary and conclusions

In this work we measured the instantaneous velocity profiles of fully devel-

oped Hagen-Poiseuille flow using three different classes of fluids. The goal

of this work was to develop a better understanding of transition in a yield

stress fluid.

In §3 of this work we characterized the flow field of the three different

fluids and found that during transition, a persistent asymmetry was found

both in the time-averaged velocity and in the local urms profiles. The asym-

metry was confirmed by high-speed video imaging of the puffs and slugs

from which we observed that the leading edge of the puff is elongated and

located off the central axis of the pipe. Our findings are thus consistent with

those reported in Escudier et al. [42].

Initially we were sceptical about the physical mechanisms creating the

asymmetry reported in Escudier et al. [42], and about initial observations of

the asymmetry in our own apparatus. We thus took all precautions possible

to eliminate systematic bias. With regard to the Coriolis suggestions ex-

plored in Escudier et al. [42], the Eckman numbers in our experiments were

also large, Vancouver is at 49.26◦ North and the flow loop is oriented North-

South. We found no evidence therefore to support this idea. In addition to

the other potential factors discussed in Escudier et al. [42], we considered

also whether the optical properties of the fluids could affect the LDV mea-

surements and whether extensional stresses transmitted backwards from the

end tank (R2) could be responsible. Eventually, our scepticism about these

asymmetries has been rebuffed - we concur that they appear to be a fluid

mechanical phenomenon. Perhaps the strongest evidence for this has come

from the systematic and repeatable nature of the phenomena, but also with

the asymmetries occurring for different fluids in different parts of the pipe.
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In the context of our aim to study transitional phenomena in shear-

thinning yield stress fluids, it is worth pointing out that the observed asym-

metries have occurred with all structured fluids. Whilst none of these is

rheologically perfect as a generalised Newtonian fluid, the different fluids

show different degrees of departure from this ideal model, e.g. for Laponite

suspensions thixotropy is certainly the dominant feature, apart from the

shear rheology, for Xanthan this would be viscoelasticity, etc. Thus, we

suggest that it is the commonality of these fluids, i.e. the (largely inelastic)

shear-thinning rheological behaviour, that is responsible for the asymmetry.

Recently, Esmael & Nouar [43] have offered an explanation for these

asymmetries in terms of the existence of a robust nonlinear coherent struc-

ture characterized by two weakly modulated counter-rotating longitudinal

vortices in the region (approximately) occupied by the sheared fluid. This

explanation seems plausible in the light of recent developments in under-

standing of Newtonian fluid transition. To support this conclusion, Esmael

& Nouar [43] have measured these structures both longitudinally and within

the pipe cross-section, showing that there is a slow axial rotation of an oth-

erwise modal structure with one-fold symmetry. The form of traveling wave

solution is visually different to those computed for Newtonian fluids by Faisst

& Eckhardt [44], Wedin & Kerswell [141], but that should anyway be ex-

pected.

We concur with Peixinho [99], Peixinho et al. [100] that transition takes

place in a different manner than for Newtonian fluids, with a first stage in

which the centreline velocity fluctuations are suppressed near to laminar

levels while levels nearer the pipe wall increase significantly. The conse-

quence of this is that if rms velocity or turbulence intensity components are

to be monitored in order to detect transition, a radial position nearer the

wall should be chosen, e.g. here r/R = 0.75, or r/R = 0.8 as advocated by

Escudier et al. [40], Park et al. [97].

We have reported our findings on characteristics of the puff/slugs, i.e.

size and velocity of the leading and trailing edges. For yield stress fluids we

have observed that the leading edges can be highly elongated and located off

the central axis of the pipe. The other main finding here is that the trailing
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edges of puffs appear to move slower for the non-Newtonian fluids than for

the Newtonian fluids reported in the literature. The leading edge velocities

are similar to those for Newtonian fluids. The consequence of this is that

puffs will spread slower in the axial direction as they travel along a pipe. We

have not made a distinction in our work between puffs and slugs, referring

simply to them all as puffs. This is because some distinguishing features

in Newtonian fluids, e.g. the “signature” changes in centreline velocity, are

simply less clear for shear-thinning yield stress fluids. For such fluids the

laminar and turbulent velocity profiles are closer to each other, meaning

that abrupt changes in centreline velocity are reduced; see also Park et

al. [97], Peixinho et al. [100].

We have also attempted to further characterize transition by examin-

ing both an autocorrelation function and a probability distribution function

of the velocity fluctuations. The autocorrelation function shows some dif-

ferences between the fluids, indicates weakly coherent unsteady structures

located away from the axis in the non-Newtonian fluids, and also indicates

asymmetry. This occurs at Reynolds number that are high, but are still

lower than we would normally expect for transition. For Newtonian fluids

there is recent work on recurrent traveling waves at Reynolds numbers in

these ranges, e.g. Kerswell & Tutty [78]. Whilst our data may correspond

to a non-Newtonian version of such structures, we have no strong evidence

and prefer to leave the interpretation open to the reader. For the probabil-

ity distribution functions there were no significant differences between the

different classes of fluids examined.

Of more interest was the third statistical measure of the fluid we used,

namely a structure function, in which we found that in transitional flow,

the shear-thinning and yield stress fluids behaved somewhat similarly. This

was the first indication that in transitional flow, the effect of the plug was

minimal on the flow structure. In §3 we have presented evidence that as

transition occurs the plug actually thins to an extent where the Reynolds

stresses are sufficient to break it.

In addition, we have defined a new Reynolds number, ReG, obtained

from averaging across the pipe a localised Reynolds number, ReG,l(r). Al-
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ternatively, this can be interpreted as a radial average of a function ζG(r) =

2rReG,l(r)/R. The function ζG(r) is simply a scaled version of the local

parameters ζ and ζH , introduced by Ryan & Johnson [118] and by Hanks

[56], respectively. By measuring the mean velocity profiles and evaluating

ζG(r) from the data, we have demonstrated that the maximal value of ζG(r)

and the radial location of the maximum, both deviate from their predicted

positions as transition occurs. As transition occurs, the regions of maximal

ζG(r) appear to correspond approximately to the positions of maximal tur-

bulence intensity. Instead of the localised criterion of Ryan & Johnson or

Hanks, we have preferred to use the averaged quantity ReG. Physically, we

believe that although the basis of transition is evidenced via local phenom-

ena, local imbalances will be to some extent dissipated. In averaging ζG(r)

with respect to r, it is noteworthy that the principal contributions in any

case will come from a range of r close to the maximal position. Thus, apart

from actual numerical values the use of ReG or the maximal local quantity

is not very different. An advantage of using ReG is that the expression is

easy to evaluate from flow loop data.

The use of our ReG appears to give transitional flows in the range ReG ≈
2100, with some variation. Since transitional Reynolds numbers depend

largely on the flow loop design, this simply gives an indication of the noise

level in our loop. For this reason we have avoided specifically stating any

transition criterion in terms of ReG. Due to the local effects captured

in ReG, we believe ReG is an appropriate number to use for quantifying

transition, more so than for example the Metzner-Reed Reynolds number,

which is based on extrapolating the laminar friction factor. On the other

hand, use of ReG for friction factor calculations is more cumbersome.

5.1 Contributions to knowledge

The significant findings in this study are as follows:

1. We find that for yield-stress shear thinning fluids the plug is broken be-

fore transition occurs. In transition the non-Newtonian fluids behave
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somewhat similarly.

2. Transition occurs when the turbulent kinetic energy within the central

region of the flow exceeds the yield stress of the fluid.

3. We have defined Reynolds number in a novel manner in which it can

be evaluated without any rheological information of the fluid. With

this definition we find that transition occurred at approximately ReG

≈ 2100 for all fluids tested. This new definition of Reynolds number

brings simplicity and universality for practicing engineers in designing

pipe lines for non-Newtonian fluids.

4. A persistent asymmetry in the velocity profile was found during tran-

sition and the observed puff and slugs were elongated and located off

the central axis for the non-Newtonian fluids.

5.2 Future work

There are a number of experimental issues which should be addressed be-

fore this work is continued. The primary recommendation is to remove the

downstream reservoir, labeled R2 in Figure 2.1, and allow the flow to dis-

charge into the atmosphere. The reason for this is that we are unsure of

the flow state in the reservoir and uncertain of the perturbations this may

cause in laminar flow. Once this is corrected, it is recommended that fur-

ther insight into the behaviour of puffs and slugs is warranted. In particular,

a further study should be conducted in which Particle Image Velocimetry

(PIV) should be used to visualize the flow patterns within the puff and slug.
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Appendix A

Experimental pictures

Figure A.1: Image of the reservoir tank R1
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Appendix A. Experimental pictures

Figure A.2: Image of the pipe and the reservoir tank R2

Figure A.3: Closer look to FT and the measuring stations

Figure A.4: Image of the LDV system
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Appendix B

Experimental velocity
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Figure B.1: From top to bottom; (a) Local velocity and (b) Local RMS
velocity (c) ReG,l (d) ζG profiles for 0.2% Xanthan gum.
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Appendix B. Experimental velocity
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Figure B.2: (a) The time averaged velocity and (b) Local RMS velocity
profiles for 0.2% Xanthan gum. From top to bottom; ReG=352, ReG=858,
ReG=1218 and ReG=1900
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Appendix B. Experimental velocity
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Figure B.3: (a) The time averaged velocity and (b) Local RMS velocity
profiles for 0.2% Xanthan gum. From top to bottom; ReG=2363, ReG=3244,
ReG=5736 and ReG=10197

112



Appendix B. Experimental velocity

Ub(m/s) γ̇(s−1) κ(Pa.sn) n ReG T (0C)

0.2776 0.2 − 46 0.11 0.65 352 29
0.5396 0.5 − 90 0.11 0.65 858 29
0.7163 0.7 − 137 0.11 0.65 1218 29
0.9413 1 − 224 0.14 0.56 1900 29
1.1224 1 − 270 0.135 0.56 2363 30
1.4850 2 − 501 0.13 0.56 3244 30.5
2.2756 2 − 835 0.13 0.56 5736 31
3.4615 3 − 1311 0.13 0.56 10197 34

Table B.1: Flow conditions and power-law parameters for 0.2% Xanthan
gum
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity

U(m/s) γ̇(s−1) κ(Pa.sn) n ReG T (0C)

0.4613 0.1 − 82 0.23 0.56 451 30
0.6957 0.1 − 118 0.23 0.56 809 30
0.8775 1 − 192 0.22 0.56 1185 30
1.3574 2 − 598 0.20 0.56 2244 31
1.5616 1 − 635 0.14 0.64 2542 32
2.0574 1 − 692 0.11 0.69 3513 33
2.5877 1 − 988 0.10 0.69 5070 34

Table B.4: Flow conditions and power-law parameters for 0.2% Xanthan
gum
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Appendix B. Experimental velocity
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Figure B.4: From top to bottom; (a) Local velocity and (b) Local RMS
velocity (c) ReG,l (d) ζG profiles for 0.2% Xanthan gum.
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Appendix B. Experimental velocity
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Figure B.5: (a) The time averaged velocity and (b) Local RMS velocity
profiles for 0.2% Xanthan gum. From top to bottom; ReG=451, ReG=809,
ReG=1185 and ReG=2244
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Appendix B. Experimental velocity
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Figure B.6: (a) The time averaged velocity and (b) Local RMS velocity
profiles for 0.2% Xanthan gum. From top to bottom; ReG=2542, ReG=3513
and ReG=5070
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity

U(m/s) γ̇(s−1) κ(Pa.sn) n ReG T (0C)

0.3747 0.2 − 66 0.0235 0.77 1701 30
0.4529 0.3 − 78 0.0235 0.77 2131 31
0.4954 0.5 − 113 0.019 0.78 2789 32
0.5414 0.5 − 104 0.015 0.80 3538 33
0.8802 0.4 − 301 0.0103 0.80 8370 33
2.0203 2 − 757 0.0083 0.82 24746 34

Table B.7: Flow conditions and power-law parameters for 0.1% Xanthan
gum
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Appendix B. Experimental velocity
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Figure B.7: From top to bottom; (a) Local velocity and (b) Local RMS
velocity (c) ReG,l (d) ζG profiles for 0.1% Xanthan gum.
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Appendix B. Experimental velocity
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Figure B.8: (a) The time averaged velocity and (b) Local RMS velocity
profiles for 0.1% Xanthan gum. From top to bottom; ReG=1701, ReG=2131,
ReG=2789 and ReG=3538
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Appendix B. Experimental velocity
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Figure B.9: (a) The time averaged velocity and (b) Local RMS veloc-
ity profiles for 0.1% Xanthan gum. From top to bottom; ReG=8370 and
ReG=24746
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity

U(m/s) γ̇(s−1) τy(Pa) κ(Pa.sn) n rp(mm) ReG T (0C)

0.11202 0.1 − 24 2 2.05 0.36 5.55 5.5 29
0.4622 0.1 − 87 1.5 2.01 0.40 2.57 67 29
1.2076 1 − 220 1.4 1.59 0.43 1.84 378 29
2.0461 5 − 414 1.3 1.20 0.48 1.40 937 31
2.3218 5 − 472 1.2 0.92 0.53 1.20 1160 32.5
3.1146 5 − 657 1 0.65 0.60 − 1735 36
3.9005 5 − 1261 0.6 0.35 0.65 − 2920 39
4.3967 5 − 1559 0.4 0.20 0.70 − 4488 43

Table B.10: Flow conditions and Herschel-Bulkley parameters for 0.1% Car-
bopol
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Appendix B. Experimental velocity
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Figure B.10: From top to bottom; (a) Local velocity and (b) Local RMS
velocity (c) ReG,l (d) ζG profiles for 0.1% Carbopol.
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Appendix B. Experimental velocity
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Figure B.11: (a) The time averaged velocity and (b) Local RMS velocity pro-
files for 0.1% Carbopol. From top to bottom; ReG=5.5, ReG=67, ReG=378
and ReG=937
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Figure B.12: (a) The time averaged velocity and (b) Local RMS velocity
profiles for 0.1% Carbopol. From top to bottom; ReG=1160, ReG=1735,
ReG=2920 and ReG=4488

143



Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity

U(m/s) γ̇(s−1) τy(Pa) κ(Pa.sn) n rp(mm) ReG T (0C)

0.3093 0.2 − 62 1.80 1.11 0.50 4.11 42 34
1.0233 0.1 − 181 1.58 0.71 0.53 2.90 397 34
1.5457 0.1 − 267 0.95 0.60 0.54 1.67 914 34.5
2.3849 0.1 − 495 0.90 0.50 0.54 − 2001 36.5
2.5912 5 − 591 0.90 0.50 0.54 − 2238 37
3.0411 5 − 1063 0.52 0.39 0.58 − 2612 38
3.5002 3 − 1296 0.30 0.26 0.65 − 3309 39

Table B.13: Flow conditions and Herschel-Bulkley parameters for 0.1% Car-
bopol
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Appendix B. Experimental velocity
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Figure B.13: From top to bottom; (a) Local velocity and (b) Local RMS
velocity (c) ReG,l (d) ζG profiles for 0.1% Carbopol.
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Appendix B. Experimental velocity
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Figure B.14: (a) The time averaged velocity and (b) Local RMS velocity pro-
files for 0.1% Carbopol. From top to bottom; ReG=42, ReG=397, ReG=914
and ReG=2001
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Appendix B. Experimental velocity
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Figure B.15: (a) The time averaged velocity and (b) Local RMS velocity
profiles for 0.1% Carbopol. From top to bottom; ReG=2238, ReG=2612
and ReG=3309
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity

U(m/s) γ̇(s−1) τy(Pa) κ(Pa.sn) n rp(mm) ReG T (0C)

0.1278 0.1 − 29 6.0 4.79 0.37 6.29 2.7 31
1.068 1 − 201 5.7 3.66 0.42 3.33 123 32
1.304 2 − 235 5.7 3.28 0.44 3.11 176 32
2.5573 0.4 − 480 5.6 2.87 0.46 2.40 561 35
3.6459 1 − 849 4.7 2.17 0.48 2.04 1120 39
3.7424 2 − 1065 1.7 1.7 0.48 − 1750 50
4.3054 2 − 1609 1.6 1.77 0.48 − 1804 45
4.8443 8 − 1816 0.72 0.93 0.52 − 2953 40

Table B.16: Flow conditions and Herschel-Bulkley parameters for 0.15%
Carbopol
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Appendix B. Experimental velocity
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Figure B.16: From top to bottom; (a) Local velocity and (b) Local RMS
velocity (c) ReG,l (d) ζG profiles for 0.15% Carbopol.
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Figure B.17: (a) The time averaged velocity and (b) Local RMS velocity
profiles for 0.15% Carbopol. From top to bottom; ReG=2.7, ReG=123,
ReG=176 and ReG=561
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Figure B.18: (a) The time averaged velocity and (b) Local RMS velocity
profiles for 0.15% Carbopol. From top to bottom; ReG=1120, ReG=1750,
ReG=1804 and ReG=2953
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity

U(m/s) γ̇(s−1) τy(Pa) κ(Pa.sn) n rp(mm) ReG T (0C)

0.3902 0.6 − 70 0.38 0.37 0.58 1.89 170 30
0.7227 0.1 − 131 0.30 0.29 0.60 1.29 526 30
1.0754 3 − 195 0.28 0.26 0.61 1.01 984 30
1.4977 7 − 290 0.23 0.22 0.62 − 1770 31
1.697 2 − 358 0.21 0.21 0.63 − 2089 32
2.4452 0.1 − 864 0.12 0.16 0.65 − 3442 34
2.9218 6 − 1075 0.045 0.12 0.68 − 5134 36

Table B.19: Flow conditions and Herschel-Bulkley parameters for 0.075%
Carbopol
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Appendix B. Experimental velocity
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Figure B.19: From top to bottom; (a) Local velocity and (b) Local RMS
velocity (c) ReG,l (d) ζG profiles for 0.075% Carbopol.
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Appendix B. Experimental velocity
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Figure B.20: (a) The time averaged velocity and (b) Local RMS velocity
profiles for 0.075% Carbopol. From top to bottom; ReG=170, ReG=526,
ReG=984 and ReG=1770
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Appendix B. Experimental velocity
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Figure B.21: (a) The time averaged velocity and (b) Local RMS velocity
profiles for 0.075% Carbopol. From top to bottom; ReG=2089, ReG=3442
and ReG=5134
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity

U(m/s) γ̇(s−1) τy(Pa) κ(Pa.sn) n rp(mm) ReG T (0C)

0.1429 0.1 − 24 0.0065 0.0268 0.86 0.39 356 30
0.2792 1 − 49 0.0060 0.0188 0.86 0.29 1098 30
0.4108 0.1 − 71 0.0052 0.0173 0.88 0.18 1717 31
0.4736 3 − 103 0.0045 0.0153 0.90 − 2114 30
0.5102 2 − 123 0.0040 0.0133 0.90 − 2615 30
0.9108 0.7 − 393 0.0035 0.0110 0.91 − 5409 30
1.4876 3 − 617 0.0025 0.0090 0.92 − 10960 31

Table B.22: Flow conditions and Herschel-Bulkley parameters for 0.05%
Carbopol
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Appendix B. Experimental velocity
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Figure B.22: From top to bottom; (a) Local velocity and (b) Local RMS
velocity (c) ReG,l (d) ζG profiles for 0.05% Carbopol.
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Figure B.23: (a) The time averaged velocity and (b) Local RMS velocity
profiles for 0.05% Carbopol. From top to bottom; ReG=356, ReG=1098,
ReG=1717 and ReG=2114
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Appendix B. Experimental velocity
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Figure B.24: (a) The time averaged velocity and (b) Local RMS velocity
profiles for 0.05% Carbopol. From top to bottom; ReG=2615, ReG=5409
and ReG=10960
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity
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Appendix B. Experimental velocity

Ub(m/s) γ̇(s−1) µ(Pa.s) ReG T (0C)

0.3717 1.8 − 60 0.0306 731 24.5
0.5659 0.6 − 88 0.029 1174 25.5
0.8142 4 − 127 0.028 1737 26
1.0027 0.7 − 159 0.0274 2201 26.5
1.1301 0.2 − 239 0.025 2719 28
1.4268 0.8 − 356 0.024 3546 28.5

Table B.25: Flow conditions for 80% Glycerin
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Appendix B. Experimental velocity
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Figure B.25: From top to bottom; (a) Local velocity and (b) Local RMS
velocity (c) ReG,l (d) ζG profiles for 80% Glycerin.
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Appendix B. Experimental velocity
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Figure B.26: (a) The time averaged velocity and (b) Local RMS veloc-
ity profiles for 80% Glycerin. From top to bottom; ReG=731, ReG=1174,
ReG=1737 and ReG=2201
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Figure B.27: (a) The time averaged velocity and (b) Local RMS velocity
profiles for 80% Glycerin. From top to bottom; ReG=2719 and ReG=3546
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Appendix B. Experimental velocity

Ub(m/s) γ̇(s−1) µ(Pa.s) ReG T (0C)

0.0564 0.1 − 8 0.0096 342 25.5
0.1045 0.2 − 15 0.0096 633 25.5
0.2943 0.8 − 43 0.0092 1860 26
0.3894 0.5 − 63 0.0088 2573 26.5
0.7791 2 − 232 0.0084 5393 27
1.4489 2 − 482 0.0080 10531 27.5

Table B.28: Flow conditions for 65% Glycerin
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Figure B.28: From top to bottom; (a) Local velocity and (b) Local RMS
velocity (c) ReG,l (d) ζG profiles for 65% Glycerin.
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Figure B.29: (a) The time averaged velocity and (b) Local RMS veloc-
ity profiles for 65% Glycerin. From top to bottom; ReG=342, ReG=633,
ReG=1860 and ReG=2573
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Figure B.30: (a) The time averaged velocity and (b) Local RMS velocity
profiles for 65% Glycerin. From top to bottom; ReG=5393 and ReG=10531
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Appendix C

Codes

Listing C.1: Matlab program that does the image processing analysis for

real time thresholding.

1 c l f

2 datad i r=’C:\ DocumentsandSettings\ bulent \MyDocuments\
Experiments\CCDExps\Dec06 . 0 7 \ ’ ;

3 imag in i=d i r ( [ datadir , ’ ∗ . jpg ’ ] ) ; nro f images=length (

imag in i ) ;

4 nro f images =5680;

5

6 l e v e l =0.92;

7 %% to crop images :

8 l e f t =1; r i g h t =504; up=203;down=67;

9 dhy=( r ight− l e f t +1) ∗63 .5/( up−down) ;% dhy=pipe l ength in

mm

10

11 a l l q x=ze ro s ( nrof images , 1 ) ; a l l q y=a l l q x ;

12 % equa l i z e the mean image

13 meanimage=imread ( [ datadir , s t r c a t ( ’ meanimage . jpg ’ ) ] ) ;

14 meanimage=meanimage ( 1 : 2 4 8 , 1 : 5 0 4 ) ;

15 %meanimage = adapth i s t eq (meanimage ) ;

16 j j =0; x tp l o t=ze ro s (504 , s i z e (meanimage (down : up , l e f t :

r i g h t ) ,1 ) ) ;

17 x tp lo t1=ze ro s ( s i z e (meanimage (down : up , l e f t : r i g h t ) ,1 )

,504) ;
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Appendix C. Codes

18 xtp lo t2=ze ro s ( s i z e (meanimage (down : up , l e f t : r i g h t ) ,1 )

,504) ;

19 f i n =5199;% f i r s t image minus 1

20 t imes = [1 : 1 : nrof images−f i n ]∗1000∗1/400 ; t imes=times−
t imes (1 ) ;% mi l l i s e c ond

21 f o r i =5200:1: nro f images

22 a=imread ( [ datadir , s t r c a t ( ’ image ’ , ’ ’ , num2str ( i )

, ’ . jpg ’ ) ] ) ;

23 a=a (1 : 2 4 8 , 1 : 5 0 4 ) ;

24 %a= adapth i s t eq ( a ) ;

25 f i g u r e (1 ) ;

26 subplot ( 3 , 3 , 9 ) ;

27 imagesc ( a ) ; t i t l e ( ’ unequa l i zed image ’ ) ; drawnow ;

28 a=a (down : up , l e f t : r i g h t ) ;

29 data=a/max( a ( : ) ) ;

30 meanimage1=meanimage (down : up , l e f t : r i g h t ) ;

31 meanimage1=double (meanimage1 ) ;

32 subplot ( 3 , 3 , 1 ) ; imagesc ( a ) ; colormap bone ;

33 text ( 6 , 2 2 , [ ’ t= ’ , ’ ’ , ’ ’ , num2str ( t imes ( i−f i n ) ) , ’ ’ , ’

ms ’ ] , ’ FontSize ’ , 1 0 , ’ Color ’ , ’w’ , ’ FontWeight ’ , ’ bold

’ ) ; drawnow

34 t i t l e ( s t r c a t ( ’IMAGE ’ , num2str ( i ) ) ) ;% co l o rba r

35 subplot ( 3 , 3 , 2 ) ; imagesc ( wiener2 ( im2bw(a , l e v e l ) ) ) ;

colormap bone ; drawnow;% co l o rba r ;

36 subplot ( 3 , 3 , 3 ) ; imagesc ( double ( a )−meanimage1 ) ; t i t l e

( ’ background substracted ’ ) ; drawnow;% co l o rba r ;

37 subplot ( 3 , 3 , 4 ) ;

38 t i t l e ( s t r c a t ( ’IMAGE ’ , num2str ( i ) ) )

39 %imagesc ( med f i l t 2 ( im2bw( double ( a )−meanimage1 , 1 ) ) )

40 imagesc ( i m f i l l ( med f i l t 2 ( im2bw( double ( a )−meanimage1

−2 ,1) ) , ’ ho les ’ ) )

41 %imagesc ( wiener2 ( im2bw( double ( a )−meanimage1 , 1 ) ) )

42 %pause
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43

44 d1=i m f i l l ( med f i l t 2 ( im2bw( double ( a )−meanimage1−2 ,1)

) , ’ ho les ’ ) ;

45 %[qx , qy]= f i nd ( d1==1) ;

46 %a l l q x ( i )=mean( qx ) ; a l l q y ( i )=mean( qy ) ;

47 %subplot ( 3 , 3 , 5 ) ; p l o t ( a l l q y ( 1 : i ) , a l l q x ( 1 : i ) , ’−ok ’ ) ;

hold on ;

48

49 %subplot ( 3 , 3 , 6 ) ;

50 %p lo t ( [ 1 : 1 : i ] , a l l q x ( 1 : i ) ,’−>b ’ , [ 1 : 1 : i ] , a l l q y ( 1 : i )

,’−<g ’ ) ; drawnow

51 subplot ( 3 , 3 , 7 ) ;

52 j j=j j +1;

53 aa=double ( a )−meanimage1 ;

54 x tp l o t ( j j , : )=aa ( : , 2 5 0 ) ;

55 imagesc ( x tp l o t ) ; t i t l e ( ’ xt plot ’ ) ; drawnow ;

56 subplot ( 3 , 3 , 8 ) ;

57 imagesc ( i m f i l l ( med f i l t 2 ( im2bw( xtp lot −2 ,1) ) , ’ ho les

’ ) )

58

59 %f i g u r e ( ’ Pos i t ion ’ , [ 1 0 0 100 520 148 ] ) ; drawnow ;

60 %imagesc ( a ) ; colormap bone ;

61 %ax i s image ;

62 %text ( 7 , 1 8 , [ ’ t = ’ , ’ ’ , ’ ’ , num2str ( t imes ( i−f i n ) )

, ’ ’ , ’ ms ’ ] , ’ FontSize ’ , 1 8 , ’ Color ’ , ’w’ ) ; drawnow ;

63 %se t ( gca , ’ V i s i b l e ’ , ’ o f f ’ ) ;

64 %se t ( gca , ’ Pos i t ion ’ , [ 0 0 1 1 ] ) ;

65 %f i g u r e ( ’ Pos i t ion ’ , [ 1 5 0 150 520 148 ] ) ; drawnow ;

66 %imagesc ( d1 ) ; colormap bone ;

67 %ax i s image ;

68 %se t ( gca , ’ V i s i b l e ’ , ’ o f f ’ ) ;

69 %se t ( gca , ’ Pos i t ion ’ , [ 0 0 1 1 ] ) ;

70
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71 %f i g u r e (2 ) ;

72 %xtp lo t1 ( : , j j )=aa ( : , 2 5 0 ) ;

73 %imagesc ( x tp l o t1 ) ; colormap bone ; drawnow ;

74

75 %f i g u r e (3 ) ;

76 %imagesc ( i m f i l l ( med f i l t 2 ( im2bw( xtp lot1 −2 ,1) ) , ’

ho les ’ ) ) ; colormap bone ; drawnow ;

77

78 %f i g u r e (4 ) ;

79 %xtp lo t2 ( : , j j )=d1 ( : , 2 5 0 ) ;% subplot ( 3 , 3 , 5 ) ;

80 %imagesc ( x tp l o t2 ) ; colormap bone ; drawnow ;

81

82 %d ( : , : , j j )=aa ( : , : ) ;

83 %subplot ( 3 , 3 , 8 ) ; p l o t (mean( a l l q y ) ,mean( a l l q x ) , ’ og ’ )

; draw

84 %now

85

86 %saveas ( gcf , num2str ( i ) , ’ f i g ’ ) ;

87 %c l o s e ( f i g u r e (2 ) ) ;

88 pause

89 end

90 hold on ;

91 % subplot ( 3 , 3 , 8 ) ; p l o t (mean( a l l q y ) ,mean( a l l q x ) , ’ og ’ ) ;

drawnow

92 t =501; dp lot=ze ro s (186 ,505) ; f o r k=1: j j

93 dplot ( : , t : t+494)=d ( : , 1 0 : 5 0 4 , k ) ; t=t−1;

94 subplot ( 3 , 3 , 6 ) ; imagesc ( dp lot ) ; drawnow ;

95 end

96 subplot ( 3 , 3 , 5 ) ; imagesc ( i m f i l l ( med f i l t 2 ( im2bw( dplot

−2 ,1) ) , ’ ho les ’ ) ) ;
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Listing C.2: Matlab program that computes the correlation functions and

pdfs for the real velocity readings.

1 c l f ; warning o f f

2 %%% dec l a r e your cons tant s

3 n ro fb i n s =200; %% nr o f b ins in the p r obab i l i t y

d i s t r i b u t i o n func t i on

4

5 c o l o r s =[’−r ’ , ’−g ’ , ’−b ’ , ’−k ’ , ’−m’ , ’− c ’ , ’ y ’ , ’− r ’ , ’−g ’ , ’−
r ’ , ’−g ’ , ’−b ’ , ’−k ’ , ’−m’ , ’− c ’ , ’−y ’ , ’− r ’ , ’−g ’ , . . .

6 ’−r ’ , ’−g ’ , ’−b ’ , ’−k ’ , ’−m’ , ’− c ’ , ’ y ’ , ’− r ’ , ’−g ’ , ’− r

’ , ’−g ’ , ’−b ’ , ’−k ’ , ’−m’ , ’− c ’ , ’−y ’ , ’− r ’ , ’−g ’ , . . .

7 ’−r ’ , ’−g ’ , ’−b ’ , ’−k ’ , ’−m’ , ’− c ’ , ’ y ’ , ’− r ’ , ’−g ’ , ’− r

’ , ’−g ’ , ’−b ’ , ’−k ’ , ’−m’ , ’− c ’ , ’−y ’ , ’− r ’ , ’−g ’ , . . .

8 ’−r ’ , ’−g ’ , ’−b ’ , ’−k ’ , ’−m’ , ’− c ’ , ’ y ’ , ’− r ’ , ’−g ’ , ’− r

’ , ’−g ’ , ’−b ’ , ’−k ’ , ’−m’ , ’− c ’ , ’−y ’ , ’− r ’ , ’−g ’ , . . .

9 ’−r ’ , ’−g ’ , ’−b ’ , ’−k ’ , ’−m’ , ’− c ’ , ’ y ’ , ’− r ’ , ’−g ’ , ’− r

’ , ’−g ’ , ’−b ’ , ’−k ’ , ’−m’ , ’− c ’ , ’−y ’ , ’− r ’ , ’−g ’ , . . .

10 ’−r ’ , ’−g ’ , ’−b ’ , ’−k ’ , ’−m’ , ’− c ’ , ’ y ’ , ’− r ’ , ’−g ’ , ’− r

’ , ’−g ’ , ’−b ’ , ’−k ’ , ’−m’ , ’− c ’ , ’−y ’ , ’− r ’ , ’−g ’ , . . .

11 ’−r ’ , ’−g ’ , ’−b ’ , ’−k ’ , ’−m’ , ’− c ’ , ’ y ’ , ’− r ’ , ’−g ’ , ’− r

’ , ’−g ’ , ’−b ’ , ’−k ’ , ’−m’ , ’− c ’ , ’−y ’ , ’− r ’ , ’−g ’

12 ] ;

13 datad i r=’C:\Documents and Se t t i n g s \ bulent \My Documents

\Experiments\LDVExps\Carbopol \06Dec06\ ra te1 \’;%% here

you should have your time s e r i e s

14 r e s d i r =[ datadir , ’ Resu l t s \ ’ ] ; mkdir ( r e s d i r ) ;

15 pd fd i r =[ r e sd i r , ’PDFs\ ’ ] ; mkdir ( pd fd i r ) ;

16

17 c o r r e l a t i o n s d i r =[ r e sd i r , ’CORRELATIONS\ ’ ] ; mkdir (

c o r r e l a t i o n s d i r ) ;

18

19 s p e c t r ad i r =[ r e sd i r , ’SPECTRA\ ’ ] ; mkdir ( s p e c t r ad i r ) ;

20
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21 s t r u c t u r e d i r =[ r e sd i r , ’STRUCTURE\ ’ ] ; mkdir ( s t r u c t u r e d i r

) ;

22

23 v e l d i f f d i r =[ r e sd i r , ’VELDIFF\ ’ ] ; mkdir ( v e l d i f f d i r ) ;

24

25 n r o f f i l e s=s i z e ( d i r ( [ datadir , ’ p ∗ . txt ’ ] ) , 1 ) ;

26

27 f o r i i =1:19

28 f i l ename =[ ’p ’ , num2str ( i i ) , ’ . txt ’ ] data=load ( f i l ename ) ;

29 index=i i ;

30

31 time=data ( : , 1 ) ;

32 speed=data ( : , 2 ) ;

33

34 %% ca l c u l a t e the pdf ’ s and save them on the d i sk

35 [ p robab i l i t y , b ins ]= h i s t ( speed , n r o fb i n s ) ;

36 s t a t=cat (1 , bins , p r obab i l i t y ) ; s t a t=stat ’ ;

37 [ p robab i l i t ySca l ed , b in sSca l ed ]= h i s t ( ( speed−mean(

speed ) ) / std ( speed ) , n r o fb i n s ) ;

38 s t a tS ca l ed=cat (1 , b insSca led , p r obab i l i t yS ca l ed ) ;

s t a tS ca l ed=sta tSca l ed ’ ;

39 %f i g u r e (1 )

40 subplot ( 2 , 3 , 1 )

41 semi logy ( bins−mean( speed ) , p r obab i l i t y /max(

p r obab i l i t y ) , c o l o r s ( i i ) ) ; hold on ; drawnow

42 t i t l e ( ’PDFs o f v e l o c i t y f l u c t ua t i on s ’ )

43 save ( [ pdfd i r , ’ pdfs ’ , num2str ( index ) , ’ . txt ’ ] , ’ s tat

’ , ’−ASCII ’ )

44 save ( [ pdfd i r , ’ pdfsSca led ’ , num2str ( index ) , ’ . txt ’ ] , ’

s ta tSca l ed ’ , ’−ASCII ’ )

45 %% f i r s t i n t e r p o l a t e the data on a equispaced

t imegr id
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46 t ime in te rp =[min ( time ) : 0 . 9∗mean( d i f f ( time ) ) :max( time

) ] ;

47 t imestep=mean( d i f f ( t ime in te rp ) ) ;

48 speed in t e rp=in t e rp1 ( time , speed , t ime interp , ’ cubic ’ ) ;

49 %%%%%%%%%

50 [ c , l a g s ] = xcorr ( speed interp−mean( speed in t e rp ) , ’

c o e f f ’ ) ;

51 q=f i nd ( c==1) ;

52 %f i g u r e (2 ) ;

53 subplot ( 2 , 3 , 2 )

54 semi logx ( t ime interp , c ( q : end ) , c o l o r s ( i i ) ) ; hold on ;

drawnow

55 t i t l e ( ’ Ve l oc i ty Autoco r r e l a t i on funct ion ’ )

56 %pause (2 )

57 c o r r f un c t i on=cat (1 , t ime interp , c ( q : end ) ) ;

c o r r f un c t i on=cor r func t i on ’ ;

58 save ( [ c o r r e l a t i o n s d i r , ’ c o r r func t i on ’ , num2str ( index )

, ’ . txt ’ ] , ’ c o r r func t i on ’ , ’−ASCII ’ )

59 % ca l c u l a t e the c o r r e l a t i o n s and save them on the

d i sk

60 %StructureFunct ions

61 v e l d i f=d i f f ( speed in t e rp ) /( t imestep ∗mean( speed in t e rp

) ) ;

62 [m, n]= h i s t ( ( v e l d i f ) ,200) ;

63 s ta tg rad=cat (1 , n ,m) ; s ta tg rad=statgrad ’ ;

64 save ( [ pdfd i r , ’ pdfsGRADIENTS ’ , num2str ( index ) , ’ . txt

’ ] , ’ s tatgrad ’ , ’−ASCII ’ )

65 %f i g u r e (3 ) ;

66 subplot ( 2 , 3 , 3 )

67 semi logy (n ,m/max(m) , c o l o r s ( index ) ) ; hold on ; drawnow

68 ve lg rad ( i i , 1 )=i i ;

69 ve lg rad ( i i , 2 )=mean( abs ( v e l d i f ) ) ;

70 %%%%%
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71 t i t l e ( ’PDFs o f v e l o c i t y grad i ent s ’ )

72 subplot ( 2 , 3 , 4 )

73 p l o t ( data ( : , 1 ) , data ( : , 2 ) , c o l o r s ( i i ) ) ; hold on ;

drawnow

74 t i t l e ( [ ’ t im e s e r i e s f o r p o s i t i o n number ’ , num2str (

index ) , ’ a c r o s s p r o f i l e ’ ] )

75 d i sp ( [ ’ I am working on po int with index ’ , num2str (

index ) ] )

76

77 end

78 save ( [ v e l d i f f d i r , ’ VelGradients ’ , ’ . txt ’ ] , ’ ve lgrad

’ , ’−ASCII ’ )

79 co r r t imes=CorrTimes9May1 ( c o r r e l a t i o n s d i r ) ; subp lot

( 2 , 3 , 5 ) ;

80 qqq=f i nd ( co r r t imes ( : , 3 ) >0) ; semi logy ( co r r t imes ( qqq , 1 ) ’ ,

c o r r t imes ( qqq , 3 ) ’ , ’−o ’ ) ; hold

81 on ; p l o t ( [ 1 : 1 : l ength ( ve lg rad ( : , 1 ) ) ] , ve lg rad ( : , 2 ) , ’−ok

’ ) ;

82 t i t l e ( ’ Ve l oc i ty Autoco r r e l a t i on t imes and Mean

Gradients ’ )

83

84 func t i on co r r t imes=CorrTimes9May1 ( c o r r e l a t i o n s d i r )

85 co r r t imes=ze ro s ( s i z e ( d i r ( [ c o r r e l a t i o n s d i r , ’

c o r r f un c t i on ∗ . txt ’ ] ) , 1 ) , 3 ) ;

86 namescorr=d i r ( [ c o r r e l a t i o n s d i r , ’ c o r r f un c t i on ∗ . txt ’ ] ) ;

87

88 f o r k=1:1 : s i z e ( d i r ( [ c o r r e l a t i o n s d i r , ’ c o r r f un c t i on ∗ . txt

’ ] ) , 1 )

89 namef i l e=namescorr ( k ) . name ;

90 qq=f i nd ( namef i l e == ’. ’) ;

91 indexcor r=str2num ( namef i l e ( 1 3 : qq−1) ) ;

92 co r r func=load ( [ c o r r e l a t i o n s d i r , name f i l e ] ) ;

93 t impi=cor r func ( 1 : end , 1 ) ; data=cor r func ( 1 : end , 2 ) ;
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94 tau=abs ( trapz ( timpi , t impi .∗ ( data ) ) / trapz ( timpi , abs

( data ) ) ) ;

95 co r r t imes ( indexcorr , 2 )=tau ;

96 q=f i nd ( data <4∗10ˆ(−4)&data >−(4∗10ˆ(−4) ) ) ;

97 corrZeroCross=timpi (min (q ) )

98 co r r t imes ( indexcorr , 3 )= corrZeroCross ;

99 co r r t imes ( indexcorr , 1 )=indexcor r ;

100 d i sp ( [ ’ I work on Corr Function ’ , num2str ( indexcor r )

, ’Tau===’,num2str ( tau ) , . . .

101 ’ and ZeroCross==’,num2str ( cor rZeroCross ) ] )

102 end

103 s e l e c t o r=f i nd ( co r r t imes ( : , 1 ) >0) ; c r e a l =0;

104 c r e a l=cor r t imes ( s e l e c t o r , : ) ;

105 co r r t imes=c r e a l ;

106 save ( [ c o r r e l a t i o n s d i r , ’ Corre lat ionTimes ’ , ’ . txt ’ ] , ’

c r ea l ’ , ’−ASCII ’ )

Listing C.3: Matlab program that computes the structure functions for the

real velocity readings.

1 datad i r=’C:\Documents and Se t t i n g s \ bulent \My

2 Documents\Experiments\LDVExps\Carbopol \04May06\ ra te7 \ ’

3 s t r u c t u r e d i r =’C:\Documents and Se t t i n g s \ bulent \My

4 Documents\Experiments\LDVExps\Carbopol \04May06\ ra te7 \
Resu l t s \STRUCTURE\ ’

5 c l f ;

6 n r o f s f u n c t i o n s =5;

7 c o l o r=[’−<r ’ , ’−>g ’ , ’−∗b ’ , ’−ok ’ , ’−<y’ , ’−>m’, ’−< r ’ , ’−>g

’ , ’−∗b ’ , ’−ok ’ , ’−<y’ , ’−>m’ ] ;

8

9 f o r index =[12 26 42 ]

10 f i l ename =[ ’p ’ , num2str ( index ) , ’ . txt ’ ]

11 data=load ( f i l ename ) ;

12
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13 t i=data ( : , 1 ) ;

14 data i=data ( : , 2 ) ;

15 %%% s e l e c t here upper time bounds f o r the

s t r u c tu r e f unc t i on s

16 q=f i nd ( t i <20) ; %%% bui ld s t r u c tu r e f unc t i on s f o r

time d i f f e r e n c e s sma l l e r than 20 seconds

17 t s t r u c t u r e=t i ( q ) ;

18 l ength=length ( data i ( q ) ) ;

19 %%%%%

20

21 p r o f i l=data i ;

22 lengthS=length ;

23 r e s u l t s=ze ro s ( lengthS , n r o f s f u n c t i o n s +1) ;

24 r e s u l t s ( : , 1 )=t i ( q ) ’ ;

25 %f i g u r e (3 )

26 f o r pp=1:1 : ( n r o f s f un c t i o n s )

27 t imes t ruc tu r e =0;

28 s t ruc turap=ze ro s ( lengthS , 1 ) ;

29 f o r k=1:1 : ( length −1)

30

31 i f mod(k , 100 )==0,

32 d i sp ( [ ’ D i r ec tory : ’ , num2str ( index ) , ’ I AM

WORKING ON THE FUNCTION WITH INDEX ’ ,

num2str (pp ) , ’ and ’ , ’ k= ’ , num2str ( k ) ] ) ;

33 end

34 Sp=ze ro s ( lengthS , 1 ) ;

35 f o r i i =1 :1 : ( length−k )

36

37 Sp( i i )=abs ( p r o f i l ( i i )−p r o f i l ( i i+k ) ) . ˆ pp ;

38 end

39

40 s t ruc turap (k )=mean(Sp ( : ) ) ;

41
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42 end

43 r e s u l t s ( : , pp+1)=st ruc turap /( std ( data i ) ) ˆpp ;

44 l o g l o g ( t i ( q ) , s t ruc turap /( std ( data i ) ) ˆpp , c o l o r (

pp ) ) ; hold on ; drawnow

45 end

46 c l f ;

47 l o g l o g ( t i ( q ) , r e s u l t s ( : , 2 : end ) , ’ o ’ )

48 t i=t i ( q ) ’ ;

49 save ( [ s t r u c tu r ed i r , ’ StructureFunct ions ’ , num2str (

index ) , ’ . txt ’ ] , ’ r e s u l t s ’ , ’−ASCII ’ )

50 save ( [ s t r u c tu r ed i r , ’ t imes ’ , num2str ( index ) , ’ . txt

’ ] , ’ t i ’ , ’−ASCII ’ )

51 end
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