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Observation of large diurnal warming events in the near-surface layer 

of the western equatorial Pacific warm pool 

ALEXANDER SOLOVIEV*t and ROGER LUKAS* 

(Received 5 September 1995; accepted4 June 1996) 

Abstract-Because of the relatively calm winds which prevail over the western Pacific warm pool, the 

diurnal cycle of temperature in the near-surface layer of the ocean is often quite pronounced. During 

the TOGA Coupled Ocean-Atmosphere Response Experiment (COARE), very high resolution 

measurements of near-surface thermohaline and turbulence structures were made using bow- 

mounted probes and a free-rising profiler. Experimental data demonstrate a strong dependence of 

near-surface thermal structure on weather conditions. In calm weather, SST was observed to exceed 

33.25”C; this was associated with a diurnal warming ofmore than 3°C in the top 1 m of the ocean. A 

1-D model of transilient type reproduces the diurnal cycle at low wind speeds and the evening 

deepening of the diurnal thermocline. Precipitation influenced the diurnal cycle by trapping heat in 

the near-surface region. During daytime evaporation, surface salinity increased slightly, but deep 

convection was inhibited by the strong vertical temperature gradient. Contour plots calculated using 

observations from bow sensors “scanning” the upper meters of the ocean due to ship’s pitching in 

some cases revealed strong horizontal variability of the shallow diurnal thermocline with amplitude 

- 2°C on scales of 0.26 km. 0 1997 Elsevier Science Ltd 

1. INTRODUCTION 

The coupled ocean-atmosphere system in the western equatorial Pacific warm pool is very 

sensitive even to small changes of boundary conditions (Lukas and Lindstrom, 1991; 

Webster and Lukas, 1992). Diurnal variations of SST may result in strong interaction with 

the overlying atmosphere through enhanced convection, which acts as a negative feedback 

by increasing cloudiness (Chen et al., 1996; Webster et al., 1996), and by increased 

evaporative and sensible heat loss from cold downdrafts (Greenhut, 1978; Gautier, 1978; 

Lukas, 1990a). The relative diurnal temperature changes both in the ocean and in the 

atmosphere are of importance (Kraus and Businger, 1994). 

At low wind speeds, the diurnal thermocline is localized in the upper meters of the ocean 

(Bruce and Firing, 1974; Soloviev and Vershinsky, 1982); the amplitude of the diurnal cycle 

sometimes achieves several “C (Stramma et al., 1986; Flament et al., 1994). Positive 

buoyancy flux due to diurnal heating may strongly suppress turbulent exchange in the near- 

surface layer of the ocean. The heated near-surface layer is then slipping over the 

underlying water practically without friction (Kudryavtsev and Soloviev, 1990). The 

kinetic energy of the slipping near-surface layer accumulated during the daytime is then 

released during the evening deepening of the diurnal thermocline, increasing the turbulent 
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mixing. Background salinity stratification formed by a previous rain event may 

substantially modify the diurnal cycle, trapping diurnal heating near the surface 

(Anderson et al., 1996). 

Observations performed in the western Pacific warm pool during the Western Equatorial 

Pacific Ocean Circulation Study (WEPOCS) indicated that because of the relatively calm 

winds that occur over the western Pacific warm pool, the amplitude of the diurnal cycle of 

temperature in the near-surface layer of the ocean was sometimes quite pronounced (Taft 

and McPhaden, 1990; Lukas, 1991). The aim of this paper is to present new field data on 

large diurnal warming events in the western Pacific warm pool. Section 2 contains a short 

description of the study of the diurnal cycle in the western Pacific warm pool during 

WEPOCS. Section 3 briefly describes new instrumentation and techniques used for the 

study of the near-surface layer of the ocean during TOGA COARE. In Section 4 we describe 

vertical and horizontal structure of the diurnal warming of the near-surface layer of the 

ocean observed in the TOGA COARE domain. Section 5 contains discussion and 

conclusions. 

2. STUDY DURING WEPOCS 

A preliminary study of the diurnal cycle in the western Pacific warm pool was performed 

by one of the authors of this paper in the frameworks of WEPOCS. Hourly observations of 

near-surface temperature range were made during WEPOCS cruise III on R.V. Moana 

W ave from 16 June to 3 1 July 1988 (Lukas, 1991) using bucket thermometers sampling at 

approximately 0.5 m (this, of course, underestimates the diurnal range of SST in calm 

weather). Wind, wet and dry air temperature, and cloud amount (oktas) were also measured 

every hour. Complete observations were available for 36 days. 

For each day, the range of SST (AT,,,) was computed, along with the daily mean wind 

speed and the daytime mean cloud amount. The daily minimum SST ranged from 28°C to 

29.5”C, and the daily maximum ranged from 29.3”C to 31.1”C, while AT,,, varied from 

0.25”C to almost 2°C. Daily mean wind speed was as light as 1 m s-‘, with a maximum of 

almost 11 m s-l. Daylight average cloud cover ranged from about l/4 to complete 

coverage. 

Figure 1 b demonstrates daily observations of the range of near-surface warming during 

WEPOCS. On some days, the amplitude of the diurnal warming exceeded 2°C. There is an 

apparent but noisy dependence of SST range on both wind speed and cloud amount, with 

increased wind and cloud being associated with reduced diurnal SST range. Figure la shows 

the simple regression suggested by Lukas (1991): 

AT,,, = 0.75 + 14.67 7, 

to connect SST range (AT,,,), daily average cloud fraction (Cr), and daily average wind 

speed (v. The presence of Up2 on the right side of the regression implies that below some 

critical value of the wind speed the diurnal warming increases dramatically. Equation (1) is 

derived using the data only at U > 2.7 m SK’, because the scatter of points strongly increases 

at very low wind speed. This equation should not therefore be applied for very low and calm 

winds. 
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WEPOCS III (16 June - 31 July 1988) 
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Fig. 1. (a) Diurnal SST range (AT,,& versus combined cloud (c) and wind speed (0’) parameter. 

Open circles are the filed data. The results of the regression are plotted as a straight line. (b) SST 

range: observed (open circles) and predicted (asterisk) by parameterization (1). Details are in Lukas 

(1991). 

3. MEASUREMENTS DURING TOGA COARE 

During TOGA COARE, we used instrumentation and techniques specially developed for 

near-surface measurements. Figure 2 schematically shows deployment of the devices from 

the R.V. Moana W ave. A photo of the free-rising profiler and the bow sensors is shown in 

Fig. 3. They are described briefly below. Details are in Soloviev ef al. (1995). Data from the 

dropsonde are not used in this paper. 

3.1. Free-rising projh’er 

The measurements with the free-rising profiler (Fig. 3d) were made from the drifting ship. 

The profiler, connected with the “shuttle” (winged frame), was deployed from the stern of 

Moana W ave with the help of a metal construction that provided initial sliding of the device 

from the ship to water (Fig. 3~). After leaving the metal frame the profiler fell into the water 

and slid outside the ship’s wake by a distance of about 15-35 m as it sank (Fig. 2). This 

distance depended on the drift of the ship and the intensity of near-surface currents. 

Normally at 18 m depth the pressure release mechanism released the profiler from the 
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“shuttle” and it turned to a vertical orientation. The profiler then rose to the surface from 

the depth of detachment of the “shuttle” with a vertical velocity of 2-3 m s-‘, which 

depended on the net buoyancy of the profiler. The profiler had a rather large net buoyancy- 

to-weight ratio that provided nearly constant vertical speed with respect to the surrounding 

water (see details in Soloviev et al., 1988). The technical characteristics of the free-rising 

profiler probes for the data being analyzed in this paper are given in Table 1. 

3.2. Bow probes 

Bow probes included the electrical conductivity, temperature and pressure (ECTP) probe 

and the electromagnetic velocity and acceleration (EMVA) probes (Fig. 3a). A special metal 

frame was designed to install probes on the bow of the vessel (see Figs 2 and 3b). To reduce 

the influence of the dynamical component, the pressure sensor was placed in a tail part of the 

bow probe. Uncertainty in depth reading at full speed of the ship was w 0.1 m (Soloviev and 

Lukas, 1996). At ship speed > 2 m s-’ the probes gave information from an undisturbed 

flow ahead of the moving vessel. The EMVA data are not used in this paper. Table 2 gives 

the main technical characteristics of the ECTP probes in COARE cruises MW4310 and 

MW4311 (EQ-3) of the R.V. Moana Wave. 

3.3. Pertinent information 

During cruise EQ-3 the R.V. Moana Wave was equipped with a standard 

thermosalinograph system pumping seawater from 3 m depth in a bow area. Wind speed 

was measured continuously at a 15 m height. We used 5 min averaged wind speed. Standard 

meteorological observations every 6 h included dry and wet air temperature, bucket 

thermometer water temperature, clouds, etc. Solar insolation (20 min averages) was 

measured from 2 to 10 May 1994. During the measurements by FRP on 4 May 1994 the 

meteorological observations were performed every N 15 min. Table 3 contains pertinent 

information on all the examples being analyzed in this paper. 

4. STRUCTURE OF DIURNAL MIXED LAYER AND DIURNAL 

THERMOCLINE 

4.1. Turbulent mixing at low wind speed 

At low wind speeds, the turbulent mixing in the near-surface layer of the ocean is driven 

mainly by wind-induced shear and convection due to densification on account of 

evaporation and possible net surface cooling. During the daytime, absorption of solar 

radiation produces a positive buoyancy flux restricting the depth of penetration of 

turbulence generated near the air-sea interface. A so-called diurnal mixed layer (DML) 

and diurnal thermocline (DT) are formed. Figure 4 illustrates the turbulence regime of the 

near-surface layer of the ocean under conditions of low wind speed and strong solar 

insolation. Mean temperature profile T is obtained by averaging 10 vertical profiles for the 

period 15:54-16:54 LST (see Fig. 5b and Table 3) on appropriate depths that are sampled 

every 0.7 cm (400 Hz sampling rate). The vertical profile of standard deviation of the strain 

fluctuation, (std(du’/dz)), is calculated for each depth interval on the corresponding 10 

vertical profiles of u’ (here u’ is the fluctuation of the longitudinal velocity and z is the depth). 
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Fig. 2. Schematic illustration of devices deployed for small-scale measurements near the ocean-air 

interface on the R.V. Moana Wave. Here l-free-rising profiler coupled with carrier; 2- 

temperature, conductivity and fluctuation-velocity probes on free-rising proflier; 3+arrier; 4- 

bow frame; 5-bow units (temperature, conductivity, pressure sensor; fluctuation-velocity, tilt 

sensor); &-dropsonde; 7-temperature probe of microwire type. 
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Fig. 7. Contour plot of temperature in the upper ocean at low wind speed. Measurements by free- 

rising profiler on 4 May 1994. 
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Fig. 14. Contour plot of temperature in the upper 3 m from measurements by bow sensors for 21 

April 1994. 
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Table 1. Main technical characteristics of probes of 

free-rising profiler in COARE transit and EQ-3 cruises 

of Moana Wave 

1063 

Temperature (regular probe) 

Range (“C) 

Accuracy (“C) 

Stability during one profiling (“C) 

Digital resolution (“C) 

Response time of sensor (ms) 

14-34 

0.1 

<O.Ol 

0.005 

35 

Fast temperature (“DISA” probe)* 

Range (“C) 

Accuracy (“C) 

Stability during one profiling (“C) 

Digital resolution (“C) 

Response time of sensor (ms) 

-2-35 

0.1 

0.01 

0.005 

3 

Conductivity (G3 cell) 

Range (S/m) 

Accuracy (S/m) 

Stability during one profiling (S/m) 

Digital resolution (S/m) 

Spatial resolution (cm) 

1.@6.2 
0.01 

<O.OOl 

0.0008 

1 

Depth (Pressure) 

Range (m) 

Accuracy (m) 

Stability during one profiling (m) 

Resolution (m) 

Vx fluctuation velocity sensor 

&25 

0.1** 

0.01 

0.01 

Range (m s-‘) kO.25 

Accuracy (%) 5 

Noise level (mm s-‘) <I 

Frequency range (Hz) 2-150 

Digital resolution (mm s-‘) 0.6 

*Installed together with regular temperature probe 

only for series of measurements on 4 May 1994. 

**After correction of temperature and dynamical- 

pressure dependence. 

The brackets, (), denote additional smoothing on depth. For this purpose, we used a zero- 

phase low-pass filter (Oppenheim and Schafer, 1975) with cut-off wavenumber equivalent to 

k,,, = 12.5 m-r. The mean temperature profile T shown in Fig. 4a reveals the DML of about 

1 m depth and the DT in the depth range of 1 to 10 m. The vertical profile of (std(du’/dz)) 

shows that the fluctuation velocities in DML are of maximum value. They decrease by a 

factor of -4 within the DT compared to the maximum value in the DML. Below DT the 

fluctuation velocity signal is close to the noise level of the velocity probe. 

A specific feature of the turbulent mixing in the near-surface layer of the ocean under light 

winds is that it both influences, and is influenced by, stratification due to diurnal heating. 

This results in a non-linear response of the diurnal cycle to external forcing. The amplitude 

of diurnal warming of the near-surface layer of the ocean dramatically increases at low wind 

speeds, which is explained by damping of turbulent mixing by positive buoyancy flux. The 

next sections elucidate this effect. 
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Table 2. Main technical characteristics of ECTP 

probe in COARE Transit and EQ-3 cruises of the 

R. V. Moana Wave 

Temperature 

Range (“C) 1434 

Accuracy (“C) 10.1 

Stability during 8 h (“C) <o.ot 

Digital resolution (“C) 0.005 

Response time of primary sensor (ms) 35 

Conductivity 

Range (S/m) 3.1-6.1 

Accuracy (S/m) <O.Ol 

Stability during 8 h (S/m) <O.OOl 

Digital resolution (S/m) 0.0012 

Space resolution (m) 0.1 

Pressure 

Range (dbar) O-25 

Accuracy (dbar) 0.1* 

Digital resolution (dbar) 0.01 

*After correction of temperature dependence. 

4.2. W ind-speed dependence 

The field data presented below serve to demonstrate the strong dependence of the diurnal 

heating on the wind speed. Figure 5 (a, b and c) contains an example of three series of 

vertical temperature profiles obtained during the afternoon at different wind speeds. 

The series of nine profiles shown in Fig. 5a was obtained at moderate wind-speed (7 m s- ’ 
wind speed) and clouds of medium height (cloud fraction 6/g). The depth of the diurnal 

mixed layer was from 12 to 17 m, and the maximum temperature difference in the upper 

18 m was about 0.2% 

The series of 10 temperature profiles shown in Fig. 5b was obtained at low wind speed 

(-2 m s- *) and clouds of medium height (cloud fraction 2/8), demonstrating more 

substantial diurnal heating of the near-surface layer. The depth of the diurnal mixed layer 

was about 1 to 7 m, and the temperature difference across the diurnal thermocline was about 

0.6-0.8”C. An interesting feature of this series of profiles is a diurnal thermocline of almost 

constant thickness but of variable depth, changing from one cast to another. 

The series of five temperature profiles obtained in calm weather and large height clouds 

(cloud fraction 2/8) shows that the diurnal heating is localized mainly in the upper 1 m layer 

of the ocean (Fig. 5~). The temperature difference across the diurnal thermocline is larger 

than 3°C the sea surface temperature reaching 33.25”C. 

Simple scale analysis (Kudryavtsev and Soloviev, 1990) shows that the dramatically 

increasing amplitude of the diurnal heating at low wind speed is associated with a strong 

decrease of the DML-depth at decreasing wind speed. This is consistent with regression (1) 

obtained by Lukas (1991) showing “ -2” power dependence of the diurnal warming 

amplitude on the wind speed. 

The solar insolation is another important parameter. Based on the cloud information, we 

can conclude that for the example shown in Fig. 5c the short-wave solar radiation forcing 

was larger than for examples a and b shown in the same figure. The heat and momentum flux 
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Figure 

Table 3. ‘Conditions ofmeasurements during the TOGA COAREpresented in this paper 

Date GMT Wind speed 

(1994) Time (GMT) Time (LST) Latitude Longitude (m s-‘) Comments 

4, 5b 

5a 

5C 

6, 7,9, 10 

8 

11 

12 

12 

13 

13 

14 21 Apr 

26 Apr 

16 Apr 

I May 

4 May 

2 May- 

3 May 

2 Apr 

26 Apr 

1 May 

25 Apr- 

26 Apr 

30 Apr- 

1 May 

5:25-6~25 15:54-16:54 06”12’N 

03:48-04:50 14:48-15:50 OO”3 1 ‘S 
02:59-03:39 13:17-13:57 Oo”21’S 

01:15-06:30 10.55-16:lO OO”O2’S 

23:04-23: 13 09:00-09: 10 00”OO’N 

01:04-01:13 10:59-l 1:08 00”Ol’N 

03:04-03: 13 12:58-13:07 0O”Ol’N 

0.5:0405: 13 14:56-15:05 00”Ol’N 

07:04-07: 13 16:56-17:05 00”OO’N 

09:04-09: 13 18:55-19:04 OO”06’N 

11:04-11:13 20:54-21:03 00”03’N 

06:22-07:52 16:46-18:16 Oo”45’S 

04:48-04:52 15:17-15:21 06”14’N 

os:o345: 12 15:20-l 5:29 OO”12’S 

22124-22133 08:57-09:06 07”OO’N 

00:57XIl:O6 11:28-l I:37 06”44’N 

02:57-03:06 13:27-13:36 06”29’N 

04:57-05:06 15:27-15:36 06”13’N 

06:49-06:58 17:18-17:27 06”lO’N 

O&4948:58 19:17-19:36 05”53’N 

10:49-IO:58 21:16-21:25 05”37’N 

23:01-23: 10 09:2&09:29 Oo”48’S 

01:21~1:30 11:39-l 1:48 OO”29’S 

02:3142:40 12:48-12:57 OO”22’S 

05:01JJ5:10 15:18-15:27 OO”12’S 

06:3 146:40 16~47-1656 OO”O3’S 

09: 1 lhO9:20 19127-19~36 OO”0 1 ‘S 
11:31-l I:40 21:47-21:56 00”003 
03:32-05:41 16:2&16:35 05”58’S 

157”14’E 2.1-5.0 

165”OO’E 6.8-8.2 

154”23’E 0.2 

145”04’E 0.34.2 

149”02’E 2.7-2.9 

148”43’E l&1.4 

148”24’E 0.4-0.6 

148”OSE 2.2-2.4 

148”OO’E 2.74.6 

147”49’E 1.74.3 

147”3l’E 4.0-4.9 

156”Ol’E 3.0 

157”18’E 2.8-5.0 

154”ll’E 0.9-1.1 

158”lO’E 3.54.4 

157”49’E 3.6-3.9 

157”33’E 4.2-4.7 

157”16’E 3.54.9 

157”12’E 5.3-5.4 

156”57’E 4.8-5.4 

156”4l’E 5.2-8.1 

154”45’E 1.7-1.9 

154”27’E 0.54.6 

154”2l’E 0.4-1.0 

154”l I’E 0.9-1.5 

154”OO’E 1.1-1.7 

153”57’E 1.8-2.6 
153”57’E 2.4-2.6 

163”43’E 0.7-I .6 

10 profiles 

9 profiles 

5 profiles 

35 profiles 

10 min 

averages 

8 profiles 

Cont. plot 

Cont. plot 

10 min 

averages 

10 min 

averages 

Cont. plot 

at the air-sea interface during the previous hours is also of importance. In the next section, 

we analyze observations of the diurnal cycle in the near-surface layer of the ocean performed 

on a 5.5-h station and accompanied by detailed measurements of the meteorological and 

short-wave radiation conditions. 

Diurnal cycle at low wind speed 

Thirty-five vertical temperature profiles during the warming and cooling phases of the 

diurnal cycle (Fig. 6) were obtained by free-rising profiler at low wind speed. A contour plot 

calculated from these 35 profiles (Fig. 7) clearly demonstrates that at low wind speed the 

main temperature differences due to diurnal heating are in the upper - 1 m layer of the 

ocean. The individual vertical temperature profiles (Fig. 6) show that the DML-depth may 

decrease up to - 10 cm or even disappear completely for some time under weak winds and 

strong solar insolation. The part of the vertical temperature profiles nearest the surface 

sometimes had a slightly unstable stratification. Negative temperature gradients may arise 

during daytime on account of a combination of the volume absorption of solar radiation in 
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26 Apr 94,15:54-1654 LST 

28.8 29 29.2 29.4 29.6 29.8 

T (“C) 

16- 

<std(du’/dz)> (s-l) 

Fig. 4. Mean temperature ‘? and standard deviation of strain fluctuation std (du’/dz) for the 10 free- 

rising profiler measurements shown in Fig. 5b (u’ is the fluctuation of the longitudinal (vertical) 

velocity and z is the depth). 

the upper centimeters of the ocean and the surface cooling (Kraus and Rooth, 1961; Turner, 

1973; Soloviev, 1979). 

Another example of the large diurnal warming events in the western Pacific warm pool is 

given in Fig. 8. These are measurements by bow sensors “scanning” the near-surface layer of 

the ocean due to pitching of the vessel and surface waves. The depth range covered by the 

measurements depends on the pitching of the vessel. To increase the pitching, the vessel 

steamed for - 1.5 min every 2 h at 4-5 knots perpendicular to the dominating surface-wave. 

These examples show the temperature difference due to diurnal heating - 3°C and localized 

during noon hours in the upper - 1 m layer of the ocean. 

Figure 9 (a and b) represents heat fluxes and wind speed for measurements on 4 May 1994. 

Corresponding evolution of the temperature difference in the upper 8 m of the ocean 

according to FRP measurements is given in Fig. 9c by an asterisk. Dependence of the 

diurnal heating on the wind speed is clearly seen in this figure. During the morning wind 

forcing, there is practically no rise in SST. The diurnal warming is suppressed during 

morning hours but increases strongly at 10 a.m., when the wind speed drops below 5 m s- ‘. 
Calculation with a transilient model similar to that of Stull and Kraus (1987) (see details in 

the Appendix) properly describes the experimental data. 
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Diurnal heating in the COARE domain at different wind speed conditions 
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B: 10 profiles during 2.5-m/s wind speed 

C: 5 profiles during calm weather 
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Fig. 5. Vertical temperature profiles in near-surface layer of the ocean in the TOGA COARE 

domain obtained by free-rising profiler at different wind speeds in the afternoon. 

In Fig. lOa, the surface temperature calculated using the transilient model is compared 

with the bucket-thermometer and dry air temperature data. The SST calculated using the 

cool-skin model, including the solar radiation absorption in the upper millimeters of the 

ocean (Soloviev and Schluessel, 1996) is also shown. According to Fig. lOa, the daily 

variation in temperature in the atmosphere is even larger than it is in the ocean. Hoeber 

(1969) previously observed a similar effect in the equatorial region. It occurs because the 

moist equatorial atmosphere absorbs solar radiation directly during the daytime and is 

again cooled during the nighttime (see discussion in Kraus and Businger, 1994, p. 170). 

Also remarkable is the diurnal variation of the relative humidity (Fig. lob). It decreases 

with the diurnal SST increase, thus enhancing the latent heat flux. This is a manifestation of 

the negative feedback mechanism stabilizing the SST (Greenhut, 1978; Gautier, 1978; 

Lukas, 1990a; Kraus and Businger, 1994). 

4.4. Salinity effects 

Salinity effects may substantially modify diurnal heating of the near-surface layer in the 

western equatorial Pacific warm pool. Freshwater influx due to precipitation influences the 

diurnal cycle by trapping heat near the surface. This has been demonstrated recently by 

modeling of the diurnal cycle with and without rain effects and comparison with TOGA 

COARE mooring time series data (Anderson et al., 1996). Note the salinity depression on 3 
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Fig. 6. Temperature profiles in the upper meter of the ocean obtained by free-rising proflier 

equipped with a DISA 3 ms response time temperature sensor (the same measurements are used in 

Figs 7 and 9). Each successive temperature profile is shifted by O.l”C. Note the cool skin effect in 

many of the profiles. 

May at 19:00 LST (Fig. 8). This is the intersection of a rain-formed lens. The temperature 

difference across the diurnal thermocline here was larger than it was out of the lens because 

of trapping of the diurnal heating by the precipitation effects. An inversion on the density 

profile at -0.3 m is presumably concerned with lateral advection due to buoyancy 

adjustment within the freshwater surface lens. 

Figure 11 gives experimental evidence of strong modification of vertical structure of the 

near-surface layer of the ocean due to rain effects in the COARE domain. It helps to 

understand how the combined effect of daytime solar heating and previous freshwater influx 

results in the strong density stratification of the upper ocean. In the case shown in Fig. 11, 

the diurnal thermocline develops on the background of the temperature profile of a rain- 

formed mixed layer. According to Fig. 11 the temperature of the rain-formed mixed layer is 

lower than that of the underlying water mass. This is typical for a rain-mixed layer after 

previous night-time surface cooling (Fedorov and Ginzburg, 1988; Lukas, 1990b). 

Another salinity effect is associated with usually continuous evaporation from the ocean 

surface even under light winds. Excess salinity is accumulated within the DML because the 

turbulent exchange with the underlying water mass is damped on account of stable 

stratification in the DT (see Fig. 4). Vertical salinity profiles in Fig. 11 show an increase of 

salinity of about 0.01-0.02 within the layer of diurnal heating. The corresponding density 
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Fig. 8. Vertical profiles of temperature, salinity and density obtained by averaging the bow sensor 

data within 0.1 dbar pressure range on 10 min segments. Each successive temperature, salinity and 

density profile is shifted by 1 .O”C, 0.5 psu and 0.5 kgme3. Under each profile the corresponding local 

solar time (LST) is given. The thin lines represent ) one standard deviation. 

profiles are stable, excluding the diurnal mixed layer, where some inversions are associated 

with convective cooling and excess salinity. On account of effects of volume absorption of 

solar radiation in the upper ocean, convective cooling may exist during the daytime. Note 

also the slight increase of salinity within the diurnal mixed layer and diurnal thermocline on 

profiles in Fig. 8 (except rain event on 3 May 1994 at 19:00 LST). 

In calm weather, double-diffusion effects may provide additional mixing in the stably 

stratified near-surface layer of the ocean. The stepped structure in the equatorial near- 

surface layer after strong rain, presumably connected with layering convection, was 

previously reported by Soloviev and Vershinsky (1982). Conditions for salt fingers arise in 

the DT due to evaporation effects discussed above. 

4.5. Spatial variability 

The data obtained by the bow sensors in the near-surface layer reveal cases of strong 

spatial variability of the DT on scales of several hundreds of meters. A feature of the series of 



1070 A. Soloviev and R. Lukas 

4 May 1994 
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Fig. 9. Evolution of the sea surface temperature averaged within depth interval o-O.25 m. (a) Solar 

insolation (QR) and surface cooling heat fluxes (QO= QL+ Qr+ QJ; (b) wind speed at 15 m height; 

(c) temperature difference AT= TrT8 in the near-surface layer of the ocean as measured by free- 

rising proflier (asterisk) and simulated by transilient model (solid line); here T,J and T, are the 

temperatures averaged over depth range 0.25 m and 8-8.25 m. The measurements by free-rising 

profiler are the same as shown in Figs 6 and 7. 

vertical profiles in Fig. 5b is the strong variability of the depth of the diurnal thermocline. 

The contour plot of temperature (Fig. 12) calculated using measurements by bow sensors 

made on 26 April 1996, just before profiling shown in Fig. 5b, reveals wave-like disturbances 

of the diurnal thermocline of - 200 m with amplitude > 1 m. On the other hand, the profiles 

given in Fig. 5c show a much smaller variability. A contour plot of temperature calculated 

from bow record on 1 May 1996, just after the measurements given in Fig. 5c, is shown in 

Fig. 12. It is much “quieter” than the previous one, showing internal perturbations of 0. l- 

0.2 m. 

Vertical profiles obtained by bow sensors during 26 April 1994 and 1 May 1994 are shown 

in Fig. 13. They are consistent with the results of measurements by free-rising profiler made 

during these two days (Fig. 5, b and c). 

Figure 14 shows another contour plot of temperature from bow sensor measurements 

made at the start of the evening deepening of the diurnal thermocline. There is a strong 

horizontal variability of diurnal heating in the near-surface layer. The perturbations look 

like internal waves developing at the diurnal thermocline. Internal waves developing on the 

shallow diurnal thermocline have been reported by Voropaev et al. (1981) and Imberger 

(1985). Soloviev and Lukas (1996) hypothesized that the internal waves in the diurnal 

thermocline may develop because of a resonant interaction (Phillips, 1969) between the 
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Fig. 10. (a) Air and water temperatures on 4 May 1996. Here, the asterisk is the bucket 

thermometer, open circle is the dry air temperature (corrected to 10 m height), solid line is the surface 

temperature (O-O.25 m average) calculated using the transilient model, and dashed line is the SST 

calculated using the transilient model and the cool skin model. (b) Relative humidity on 4 May 1996. 

internal mode and a pair of surface waves with almost equal frequency and direction or 

because of the shear instability produced by the diurnal jet at the evening deepening. 

5. DISCUSSION AND CONCLUSIONS 

The amplitude of diurnal warming of the near-surface layer of the ocean dramatically 

increases at low wind speed because of damping turbulent mixing by positive buoyancy flux. 

The turbulent mixing in the near-surface layer of the ocean under light winds influences and 

is influenced by stratification due to diurnal heating. The diurnal cycle at low wind speed 

therefore can not be properly described in the framework of linear models implying constant 

coefficient of turbulent mixing in the surface layer of the ocean. The field data demonstrate 

that in calm weather and strong solar insolation the depth of the DML decreases to several 

centimeters and sometimes even vanishes. This results in an increased sensitivity of the 

diurnal cycle to the external forcing at low wind speed. The DML in calm weather may be 

maintained by the free convection driven by the ocean surface cooling or by salinity increase 

due to evaporation from the ocean surface. In calm weather, SST up to 33.25”C was 

observed; this was associated with a warming of more than 3°C in the top 1 m of the ocean. 

The heat content of this layer is small in comparison with that of the mixed layer of the 

ocean. However, it is not small in comparison with the heat content of the atmospheric 
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2 April 1994, 16:46-18:16 LST 
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Fig. 11. Vertical temperature, salinity and density profiles obtained by free-rising profiler. Each 

temperature profile is shifted by 0.2”C for temperature, by 0.1 psu for salinity and by 0.1 kg me3 for 

density. 
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Fig. 12. Contour plots of temperature. Measurements by bow sensors on 26 April and on 1 May 

1994. 

boundary layer, because in heat capacity, 1 m water is equivalent to 1 km of air. In some 

sense, in calm weather the thermal behavior of the sea surface becomes analogous to that of 

the Earth surface. Rapid increase of SST due to diurnal heating of l-3°C increases 

convection in the atmospheric boundary layer. 

Salinity effects can be important during diurnal heating of the near-surface layer. 

Freshwater from precipitation influences the diurnal cycle by trapping heat near the surface. 

Another salinity effect is associated with evaporation from the ocean surface. Excess salinity 

is accumulated within the diurnal mixed layer, because turbulent exchange with the water 

below is damped by stable thermal stratification in the diurnal thermocline. Vertical salinity 

profiles show increases of salinity of about 0.01-0.02 psu within the layer of diurnal heating. 

The corresponding density profiles are stable except for the diurnal mixed layer, where some 

inversions result from convective cooling and excess salinity due to evaporation. 
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Fig, 13. Vertical profiles of temperature, salinity and density obtained by averaging the bow sensor 

data within 0.1 m depth range on 10 min segments. Each successive temperature, salinity and sigma-t 

profiles is shifted by I .o”C, 0.5 psu, 0.5 kg rnp3. Under each profile the corresponding local solar time 

(LST) is given. The thin lines represent + one standard deviation. 

I-D simulation of the data obtained during the special testing day, 4 May 1994, with the 

transilient model of Stull and Kraus (1987) gives good results. The experimental data during 

another day demonstrate, however, cases of a pronounced spatial variability of the diurnal 

thermocline. Causes of horizontal variability of diurnal heating include spatial variability of 

cloud and wind, as well as rain-caused relatively fresh lenses and the associated spatial 

variation of vertical salinity gradients near the surface. Horizontal variability of diurnal 

heating can also be due to internal processes in the near-surface diurnal thermocline on 

account of buoyancy adjustment and internal waves. Further progress in modeling the 

diurnal cycle seems therefore to be associated with development of 3-D models of the near- 

surface layer of the ocean. 
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APPENDIX 

TRANSILIENT MODEL OF DIURNAL CYCLE 

The transilient model deals with the parameterization of turbulent transports by a spectrum of eddies that 

transport fluid properties over a range of distances. We used the transilient model as it was described by Stull and 

Kraus (1987) with the scaling velocity, Ue = UI, and the vertical length scaling, Ls = KZ, where u* is the frictional 

velocity in water, z is the depth, and K = 0.4 is the von Karman constant. For the unstably stratified near-surface 

layer (nighttime) we used the scaling: I/, = w., & = Lc, where WI = (&Be) “3 Lc is the depth of the unstably , 

stratified near-surface layer, and Ba is the surface buoyancy flux. Khlebnikov and Soloviev (1990) added a salinity 

budget equation to the original model of Stull and Kraus (1987). The absorption of solar radiation with depth was 

parameterized by a 9 exponential dependence in accordance with Soloviev and Schluessel(1996). To calculate the 

albedo for the short-wave radiation forcing, we used the Fortran code written by Peter A. Coppin (CSIRO Centre 

for Environmental Mechanics, Australia), employing the Payne (1972) model. 

The transilient model was forced by the wind stress and sensible and latent heat fluxes, calculated using the 

TOGA COARE bulk-flux algorithm (version 2.5a). The net longwave radiation flux was calculated using the 

parameterization of Simpson and Paulson (1979). 

For simulation of the diurnal cycle on 4 May 1994 (Fig. 9 and IO), we employed the transilient model with the 80 

evenly spaced grid points within the top 20 m of the ocean. The vertical resolution and the time step were 0.25 m and 

15 s. The vertical profiles of temperature and salinity were initialized to be constant in the upper 20 m of the ocean, 

while the velocity profile was initialized by a 0.0004 s-’ shear to avoid infinite values of the Richardson number at 

the first step of the simulation. 
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