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Observation of magnon-mediated current drag
in Pt/yttrium iron garnet/Pt(Ta) trilayers
Junxue Li1,*, Yadong Xu1,*, Mohammed Aldosary1, Chi Tang1, Zhisheng Lin1, Shufeng Zhang2, Roger Lake3

& Jing Shi1

Pure spin current, a flow of spin angular momentum without flow of any accompanying net

charge, is generated in two common ways. One makes use of the spin Hall effect in normal

metals (NM) with strong spin–orbit coupling, such as Pt or Ta. The other utilizes the collective

motion of magnetic moments or spin waves with the quasi-particle excitations called

magnons. A popular material for the latter is yttrium iron garnet, a magnetic insulator (MI).

Here we demonstrate in NM/MI/NM trilayers that these two types of spin currents are

interconvertible across the interfaces, predicated as the magnon-mediated current drag

phenomenon. The transmitted signal scales linearly with the driving current without a

threshold and follows the power-law T
n with n ranging from 1.5 to 2.5. Our results indicate

that the NM/MI/NM trilayer structure can serve as a scalable pure spin current valve device

which is an essential ingredient in spintronics.
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T
here has been intense research interest in pure spin current
transport in both conducting and insulating materials.
Whether by spin pumping1–4, spin Seebeck effect (SSE)5–8

or spin Hall and inverse spin Hall effects9–15, pure spin current
generation and detection are typically accomplished in bilayers
consisting of a magnetic and a non-magnetic layer2–4. Either
generation or detection, rarely both, is done by electrical means.
Kajiwara et al.16 first demonstrated a lateral all-electrical device in
which an electrical signal can transmit through yttrium iron
garnet (YIG) over a macroscopic distance (B1mm).
The response (B1 nV) is highly nonlinear with a threshold
in driving current, which was interpreted as the critical value
for the spin transfer torque17,18 induced coherent precession of
YIG magnetization. The effect also suggests that spin currents of
two different types, that is, electronic9–15 and magnonic19–22, are
inter-convertible at the interfaces. However, the phenomenon has
not been reproduced in a similar planar geometry.

Zhang et al.23,24 predicted a phenomenon with a different
origin in sandwich structures, analogous to the conventional
spin-valve device for spin-polarized charge currents25,26. Rather
than exciting a coherent precession of magnetization, at one
interface, electrons in the NM create/annihilate magnons in the
MI. The individual magnon creation/annihilation does not need
to overcome any threshold; therefore, the interconversion takes
place at any current. Due to the long magnon decay length in
MI27, this effect couples two remote electrical currents, which is
called the magnon-mediated current drag. Moreover, the on and
off states are controlled by the relative orientation between the
polarization of the spin current and MI magnetization. In small
lateral devices similar to that of Kajiwara, Cornelissen et al.28

reported both o- and 2o nonlocal current responses in the
a.c. measurements (o is the frequency of a.c. current). The
o-response indicates a linear nonlocal current relation, which
apparently does not share the same origin as that of the effect
reported by Kajiwara. Nonlocal magnetoresistance was also
reported in similar device geometry29. However, it is unclear
whether the reported effect indeed arises from the microscopic
mechanism predicted by Zhang et al. An objective of this work is
to experimentally establish the current drag effect in the sandwich
geometry proposed by Zhang et al.

In this work, we first successfully fabricate Pt/YIG/Pt(Ta)
trilayer structures using pulsed laser deposition in combination
with sputtering and post-growth annealing. Below 220K, the
trilayers are sufficiently insulating and we observe nonlocal

responses when an in-plane magnetic field is swept or rotated.
We find that the polarity of the nonlocal signal is opposite to
each other between Pt/YIG/Pt and Pt/YIG/Ta, indicating the
spin current origin of the effect. By investigating the effect at
low temperatures, we show that the power-law dependence of
the nonlocal signal is consistent with the prediction for the
magnon-mediated current drag effect.

Results
Nonlocal device structure. Our NM/MI/NM trilayer device
structure is schematically shown in Fig. 1a,b. The MI is a thin
YIG film sandwiched by either two identical NM films or
dissimilar NM films. Via the spin Hall effect, a charge current
(Jinjected) generates a pure spin current flowing in the z-direction
with the spin polarization (r) parallel to the y-direction.
The conduction electrons in the bottom NM interact with the
localized moments of the MI via the s-d exchange interaction at
the interface, resulting in the creation or annihilation of magnons
in the MI accompanied by spin-flips of conduction electrons in
the bottom NM layer. Due to the nature of the s-d exchange
interaction24,30, that is, Hsd¼� Jsd

P

r �M, where Jsd is exchange
coupling strength, when the magnetization of the MI (M) is
collinear with r, magnons are created or annihilated depending
on whether M is parallel or anti-parallel to r. As such, the
interaction creates a non-equilibrium magnon population and
spin accumulation in the MI which drives magnon diffusion.
The excess/deficient magnons are then converted to a spin
current in the top NM layer by the reverse process, which is
converted to a charge current (Jinduced) again in the top NM
layer via the inverse spin Hall effect. When r>M, there is no
non-equilibrium magnon population or spin accumulation
and the spin current is absorbed by the MI. Consequently,
there is no induced spin or charge current in the top NM layer
(Fig. 1b). Remarkably, one can switch on and off the magnon
creation/annihilation process by controlling the relative
orientation between M and r. Conceptually, this structure
functions as a valve for pure spin current.

Field-dependent nonlocal response in trilayer devices. Since
both Pt and Ta have strong spin–orbit coupling with opposite
signs in their spin Hall angle15,31,32, we have fabricated three Pt
(5 nm)/YIG (80 nm)/Pt (5 nm) devices and two Pt (5 nm)/YIG
(80 nm)/Ta (5 nm) reference samples, which were deposited
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Figure 1 | Schematic illustration of spin current valve. (a) The transmission of spin current is switched on. Magnetization (M) of magnetic insulator (MI)

oriented collinearly with the spin polarization r (//y) of the pure spin current in the bottom normal metal (NM) layer generated by the spin Hall effect with

an electric current Jinjected. The spin-flip scattering of conduction electrons at the bottom NM/MI interface can create (M || � r) or annihilate (M || r)

magnons. A non-equilibrium magnon population extends to the top MI/NM interface, and the spin angular momentum carried by magnons is transferred

to conduction electrons in the top NM layer. The pure spin current flowing perpendicular to the NM layer is then converted to a charge current (Jinduced) via

the inverse spin Hall effect. (b) The transmission of spin current is switched off. M is perpendicular to the spin polarization r of the spin current. In this

geometry, the s–d exchange interaction between conduction electrons and local magnetic moments does not excite magnons in the MI. Consequently,

there is no spin accumulation at the top MI/NM interface or induced charge current in the top NM layer.
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on (110)-oriented Gd3Ga5O12 (GGG) substrates (see Methods
section for fabrication details). The inset of Fig. 2c shows an optic
image for a GGG/Pt/YIG/Pt device. As illustrated in Fig. 2b, the
bottom Pt layer is used to inject current Ib, while the top layer,
either Pt or Ta, functions as a detector to measure the induced
current or the nonlocal voltage Vnl. An in-plane H is either swept
in a fixed direction or rotated with a continuously varying angle
of y measured from the y-direction. We find that the high-quality
YIG/Pt interface is essential to the observation of the spin current
transmission. As shown in Fig. 2a, the morphology of a YIG film
tracks the atomically flat terraces of the GGG (110) surface33 in
spite of a layer of Pt in between. The excellent interface quality is
verified by both the SSE5 (see Supplementary Note 5 and
Supplementary Fig. 6) and the spin Hall magnetoresistance
(SMR)34,35 (see Supplementary Note 3 and Supplementary Fig. 3)
in the same devices. The 80-nm-thick YIG films are nearly
insulating but have small leakage at high temperatures.
However, the resistance between the top and bottom NM
layers increases exponentially as the temperature (T) decreases
(see Supplementary Note 2 and Supplementary Fig. 2), and
exceeds 20GO at and below 220K. Therefore, all the nonlocal
measurements were performed below 220K to avoid any parasitic
signal from the small leakage current. In Vnl, we remove a
non-zero background signal that exists even at Ib¼ 0.

Figure 2c,d plot the field dependence of Vnl at 220K. When H
is swept along Ib, that is, y¼ 90� (Fig. 2c), Vnl is a constant at
Ib¼ 0 (red). However, at Ib¼ þ 1.5mA, Vnl shows a clear
hysteresis with two positive peaks tracking the coercive fields of
the YIG film, indicating that Vnl is closely related to the
magnetization state of YIG. As the Ib is reversed, Vnl also reverses
the sign. In principle, a sign reversal can occur if there is a
finite leakage current flowing in the top layer. Through the
magnetoresistance, this current can produce a hysteretic voltage
signal. Estimating from the leakage current, we find that the

relative change in Vnl due to this effect is at least three orders of
magnitude smaller than the observed nonlocal voltage signal (see
Supplementary Note 4 and Supplementary Figs 4 and 5).
Therefore, we exclude the leakage current as the source of the
nonlocal signal. Note that Vnl (±1.5mA) is the same as Vnl

(0mA) at the saturation state (H4200Oe) when r>M,
suggesting that magnon creation/annihilation is totally
suppressed. For the field sweeps with y¼ 0� (Fig. 2d), r is
collinear with M at high fields, interface magnon creation/
annihilation results in a full current drag signal. Clearly, Vnl

(þ 1.5mA) is different from Vnl (0mA) at the saturation fields
and reverses the sign when Ib reverses. It is interesting to note
that Vnl (±1.5mA) differ from Vnl (0mA) at the coercive fields.
One would expect them to be the same since the average
magnetization should point to the x-direction at the coercive
fields, which would correspond to the saturation states for y¼ 90�
in Fig. 2c. This discrepancy can be explained by the multi-domain
state of YIG in which the actual M is distributed over a range of
angles around y¼ 90�, and the collinear component of M turns
on the magnon channel and yields a nonzero Vnl. To investigate
the phenomenon in the single-domain state, we perform the
following experiments.

Angle-dependent nonlocal response of single-domain YIG.
Figure 3a presents Vnl in GGG/Pt/YIG/Pt as a function of y

between M and r at 220K, as illustrated in Fig. 2b. The 80 nm
(110)-oriented YIG grown on Pt has a well-defined uniaxial
anisotropy with an anisotropy field o200Oe. The applied
magnetic field (1,000Oe) is sufficiently strong not only to set YIG
into a single-domain state, but also to rotate M with it. For all
positive Ib (solid symbols), Vnl exhibits maxima at y¼ 0� and
180� (M collinear with r), but minima at y¼ 90� and 270�
(M>r). Vnl changes the sign as Ib is reversed (empty symbols).
At y¼ 90� and 270�, the nonlocal signal for ±Ib coincides with
Vnl (0mA), further validating that the spin current is in the off
state when M>r. Similar angular dependent measurements are
also taken on a GGG/Pt/YIG/Ta device and the results are
depicted in Fig. 3d. For the same measurement geometry and the
same polarity of Ib, we find that Vnl of GGG/Pt/YIG/Ta has the
opposite sign to that of GGG/Pt/YIG/Pt, which is just expected
from the opposite signs in their spin Hall angle. The Vnl

sign difference here is another piece of critical evidence for the
magnon-mediated mechanism, as opposed to other extrinsic ones
such as leakage.

An interesting feature to note here is that Vnl at y¼ 0� and
180� shows a slight but reproducible difference that is
independent of the current polarity but increases with the
increasing magnitude of Ib. We attribute this phenomenon to the
SSE contribution since the joule heating in the bottom Pt layer
unavoidably generates a small vertical temperature gradient,
which in turn launches an upward spin current in YIG entering
the top Pt (or Ta) layer. As M reverses, so does the spin
polarization, which consequently produces two different SSE
signal levels between y¼ 0� and 180�. Combining these two
effects, we can fit the angular dependence data using:

Vnl ¼ V0 þVSSE cosyþVDrag cos
2
y ð1Þ

where V0 is an offset voltage insensitive to the magnetization
orientation, VSSE is the SSE voltage amplitude and VDrag represents
the amplitude of the current drag signal. The solid red curves in
Fig. 3a,d fit the experimental data remarkably well, and the
extracted fitting results are plotted in Fig. 3b,e for
GGG/Pt/YIG/Pt and GGG/Pt/YIG/Ta devices, respectively.
Two conclusions can be evidently drawn from these results. First,
the magnitude of the current drag signal (red circles) scales linearly
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Figure 2 | Msesaurement geometry and field-dependent nonlocal signal.

(a) Atomic force microscopy image of 80 nm YIG film grown on 5 nm

Pt. (b) Schematic illustration of the experimental set-up. Ib is the current

applied to the bottom Pt layer, and Vnl is the nonlocal voltage measured at

the top layer along the Ib direction. The applied in-plane magnetic field

H makes an angle y with the y-axis which is in plane and perpendicular

to the current direction (x). (c) The field dependence of the nonlocal

signal for H along Ib, that is, y¼90�. The inset shows the optical image of

GGG/Pt/YIG/Pt device. (d) The field-dependent nonlocal signal with H

perpendicular to Ib, that is, y¼0�. In both c and d, solid (empty) blue

squares and empty red circles represent Vnl for þ 1.5mA (� 1.5mA) and

0.0mA bottom current, respectively.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10858 ARTICLE

NATURE COMMUNICATIONS | 7:10858 | DOI: 10.1038/ncomms10858 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


with the driving current, that is, VDragpIb. This is in stark contrast
with the highly nonlinear behaviour16. Second, the weak
current dependence of the SSE contribution follows VSSE � I2b
(as shown in Fig. 3c,f), which is characteristic of thermoelectric
effects. Compared with usual bilayers, trilayer structures may have
an enhanced SSE contribution due to the presence of the second
heavy metal layer that draws an extra heat-driven spin current.
Carefully designed experiments are needed to separate this effect.

Temperature dependence of nonlocal responses. According to
Zhang, et al.24, the temperature dependence of the injection

interface spin convertance Gem is T
Tc

� �3=2
, where Tc is the Curie

temperature of the MI; for the detection interface, the spin
convertance Gme is proportional to T

TF
, where TF is the Fermi

temperature of the NM layer. In the most simplified picture
which is strictly applicable only for very thick films, the current
drag signal should be proportional to the product of the two spin
current convertances, that is, VDragpGem �GmepT5/2 The
representative angular dependence measurements below 220K
are shown in Fig. 4a,c for GGG/Pt/YIG/Pt and GGG/Pt/YIG/Ta
devices, respectively. For both the samples, Ib is set at þ 2mA
and H is held at 1,000Oe. The magnitude of the current drag
signal decreases progressively with decreasing temperature for
both the devices. By fitting Vnl using equation (1), we extract the
magnitude of VDrag and VSSE shown in Fig. 4b,d. Apart from the
expected sign difference, the magnitude of VDrag in both the
devices monotonically decreases with decreasing temperature. In
fact, both data sets can be well fitted by a power-law
VDrag¼V0

DragT
n (red solid curves in Fig. 4b,d), where V0

Drag is a
pre-factor. The extracted exponent n is 2.21 for GGG/Pt/YIG/Pt
and 1.88 for GGG/Pt/YIG/Ta, falling in the range between 1.5
and 2.5. It should be pointed out that the full picture described in
ref. 24 actually contains other quantities that have weak
temperature dependence. The deviation of the exponent from
2.5 is fully expected if these factors are considered. On the other
hand, the VSSE is found to be relatively insensitive to temperature,
suggesting a completely different mechanism.

In conclusion, we experimentally establish the magnon-
mediated current drag effect in NM/MI/NM trilayer structures
by investigating the field, angle, current and temperature
dependences of the nonlocal signal. The spin information carried
by conduction electrons and magnons in different materials can
be interconverted at the interfaces. Such structures can serve as
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pure spin current valve devices since rotating the in-plane
magnetization of the MI by 90� provides a digital on–off switch
of the spin current. Furthermore, such structures also
provide analogue functionality since rotating the in-plane
magnetization of the MI provides analogue sinusoidal modulation
of the spin current. Due to the extremely low damping in the
MI, transmission of the pure spin currents can occur over
relatively long distances providing the functionality of a pure spin
interconnect.

Methods
Fabrication. A Hall bar was first defined in the photo-resist layer on a (110)-
oriented single crystalline GGG substrate using photolithography with the channel
width of 20mm and the length of 300mm between two voltage electrodes. Then the
bottom Pt layer was deposited on the open Hall bar area by d.c. magnetron
sputtering. During sputtering, argon pressure was 5mTorr, substrate temperature
was kept at 300 K, and the d.c. sputtering power was 37.5W. The deposition rate of
Pt was 0.77 Å s� 1 and the Pt layer thickness was 5 nm. After liftoff, an 80-nm-thick
YIG film was deposited at 450 �C with O2 pressure of 1.5mTorr by pulsed laser
deposition to cover the surface of the entire sample. The as-grown YIG film became
crystallized and magnetized after rapid thermal annealing between 800 and 850 �C
for 200 s. We had explored a range of growth temperatures, different annealing
conditions, different pulsed laser deposition rates and YIG film thicknesses and had
experienced many difficulties such as YIG film cracking, peeling off for thicker YIG
films, conducting, non-magnetic and so on before we identified the working
window. The magnetic properties of YIG were investigated by vibrating sample
magnetometer (see Supplementary Note 1 and Supplementary Fig. 1). The surface
morphology of YIG was monitored by atomic force microscopy. Clear atomic
terraces were observed and the root-mean-square roughness on terraces was
B0.14 nm, indicating a very flat YIG surface. The top Pt and Ta patterns were
defined using standard e-beam lithography, followed by magnetron sputtering
deposition and lift-off procedures. Before Pt (or Ta) deposition, 60 s argon ion
milling was used to remove any polymer residues from the YIG surface. The
deposition conditions for top Pt and Ta were the same as those for bottom Pt. The
top Pt and Ta strips are 2 mm in width, and 70 and 60mm in length, respectively. To
generate a vertical temperature gradient in separate longitudinal Spin Seebeck effect
measurements, which we conducted after the nonlocal measurements were fin-
ished, we deposited 300-nm-thick Al2O3 on top and then Cr (5 nm)/Au (50 nm),
which serves as a heater for SSE measurements.

Transport measurement. For all transport measurements, the current was fed to
the devices using a Keithley 2,400 d.c. current source, and the voltage was measured
by a Keithley 2182A nano-voltmeter. The field dependence measurements were
carried out using a closed-cycle system, while the angular dependent measurements
were performed by a physical property measurement system equipped with a
rotatory sample holder. For the nonlocal measurements, the excitation current in
the bottom Pt is usually no more than 2mA; for the local magnetoresistance
measurements, the current applied in top Pt and Ta was 1 mA, while the current
used in bottom Pt is 10mA. For the SSE measurements, the heating current applied
in the top Au layer is 30mA. In all the measurements, extra precaution was taken
to ensure the correct polarity of both current and voltage.
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