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Observation of micro–macro entanglement of light
A. I. Lvovsky1,2*, R. Ghobadi1,3, A. Chandra1, A. S. Prasad1 and C. Simon1

Schrödinger’s famous thought experiment1 involves a
(macroscopic) cat whose quantum state becomes entangled
with that of a (microscopic) decaying nucleus. The creation
of such micro–macro entanglement is being pursued in several
fields, including atomic ensembles2, superconducting circuits3,
electro-mechanical4 and opto-mechanical5 systems. Here we
experimentally demonstrate the micro–macro entanglement
of light. The macro system involves over a hundred million
photons, whereas the micro system is at the single-photon
level. We show that microscopic quantum fluctuations (in field
quadrature measurements) on one side are correlated with
macroscopic fluctuations (in the photon number statistics)
on the other side. Further, we demonstrate entanglement
by bringing the macroscopic state back to the single-photon
level and performing full quantum state tomography of
the final state. Although Schrödinger’s thought experiment
was originally intended to convey the absurdity of applying
quantum mechanics to macroscopic objects, this experiment
and related ones suggest that it may apply on all scales.

Schrödinger cat states are notoriously difficult to generate and
observe because even the minutest interactions of the system
with the environment entangle the two, thereby decohering the
superposition. In the optical domain, decoherence is mainly
due to losses associated with absorption and spurious reflection
at interfaces. However, certain optical states exhibit surprising
robustnesswith respect to such losses, and can be trulymacroscopic,
yet maintain properties of a quantum superposition.

There have been several recent studies aimed at creating micro–
macro entanglement of light6–8. For example, ref. 6 claimed to have
demonstrated micro–macro entanglement involving 104 photons
on the macro side by starting with a polarization-entangled photon
pair and amplifying one of the photons. However, these results
were shown to be inconclusive by pointing out that equivalent
results could be obtainedwith a separable state9. It was subsequently
understood10 that, although the state of ref. 6 is robust to losses, it
is very difficult to detect micro–macro entanglement by means of
directmeasurements (such as photon counting) on themacroscopic
state, because the relevant measurements need to have extremely
high resolution. This issue may be resolved by bringing the
macroscopic state back to the single-photon level by inverting the
amplification operation11.

The type of amplification considered in the above references was
based on optical nonlinearities (squeezing). A significantly simpler
approach is to use the phase-space displacement operation to render
the state in one or both channels macroscopic6. One can start with
the delocalized single-photon state

|9〉=
1
√
2
(|0〉A⊗|1〉B+|1〉A⊗|0〉B) (1)
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Figure 1 | Scheme of the experiment. a, The preparation of the
micro–macro entangled state (2) and Alice’s measurement of the field
quadratures in the microscopic portion of the state. b,c, The two options for
Bob’s measurement of the macroscopic portion of the state: energy meas-
urement to verify macroscopicity (b) and undisplacement followed by the
quadrature measurement to verify entanglement (c). Beams of bright red
colour correspond to microscopic optical states; dark red to macroscopic.

where A and B refer to fictitious observers Alice and Bob, and apply
the phase-space displacement operator D̂(α) = eαâ†

−α∗ â where â†

and â are the creation and annihilation operators, respectively, to
Bob’s mode to obtain

|9D〉=
1
√
2

(
|0〉A⊗ D̂(α)|1〉B+|1〉A⊗ D̂(α)|0〉B

)
(2)

where α is the macroscopic displacement vector (Fig. 1a). The
resulting state is an attractive candidate for the observation
of micro–macro entanglement. Surprisingly, even though the
displaced single-photon and vacuum states are close in phase space
and in mean photon numbers (〈N 〉≈α2), they are macroscopically
different in the photon number variance. This property makes
the state (2) a macroscopic quantum superposition according to
the most basic definition12, namely a superposition of two states
with macroscopically different values for a physical observable. The
necessary phase-space displacement is easy to implement in the
laboratory: this is done by overlapping the target state with a strong
coherent state on a highly asymmetric beam splitter13,14.

State (2) is only weakly sensitive to losses7, which is very advan-
tageous from the point of view of experimental implementation.
In contrast, its sensitivity to phase noise increases with the size
of the displacement7, making it essential to implement a highly
phase-stable set-up. This increasing sensitivity to a decoherence
mechanism can be seen as an additional argument for the macro-
scopic character of the superposition (2) (ref. 15).

Finally, one can easily verify the entangled nature of state
(2). To that end, one can undo the displacement in Bob’s
channel by applying operator D̂(−α) to it, bringing state (2)
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back to microscopic7,11 (1), and characterizing it by homodyne
tomography16.

Here, we implement state (2) and test it for the two salient
features of Schrödinger’s cat: macroscopicity and entanglement.
First, we verify that, by changing the conditions of a microscopic
measurement in Alice’s channel and conditioning on specific results
of that measurement, we obtain states withmacroscopically distinct
photon number statistics in Bob’s channel. Second, we perform
homodyne tomography on the undisplaced state and verify that
the entanglement has been preserved through the displacement and
undisplacement operations.

The principal scheme of the first part of the experiment is
shown in Fig. 1a,b. A heralded single photon from a parametric
down-conversion set-up propagates through a symmetric beam
splitter to generate the nonlocal single-photon state. We perform
a phase-space quadrature measurement in Alice’s mode by means
of a balanced homodyne detector17. At the same time, Bob’smode is
subjected to phase-space displacement with α2

∼1.6×108 photons,
after which its photon numberNB is measured.

These energy measurements exhibit macroscopic quantum fluc-
tuationswhose statistics are correlatedwithAlice’smeasurements of
the field quadrature (Fig. 2). This can be qualitatively understood as
follows. Alice’smeasurement of the position observableXA collapses
the entanglement, projecting Bob’smode onto state18

|ψB〉=
1
√
2

(
ψ0(XA)D̂(α)|1〉B+ψ1(XA)D̂(α)|0〉B

)
(3)

where ψ0,1(X) are the wavefunctions of the zero- and one-photon
states in the position basis. If XA is close to zero, we have
|ψ1(XA)|�ψ0(XA), so the state in Bob’s channel is close to D̂(α)|1〉
and its photon number noise variance is about

〈
1N 2

〉
∼ 3α2. On

the other hand, if Alice observes a high quadrature value XA� 1,
Bob’smode is projected onto a state close to D̂(α)|0〉 so

〈
1N 2

〉
∼α2.

In this way, projecting onto different values of a microscopic
observable at Alice’s end leads to macroscopically different photon
number statistics at Bob’s.

Although ideally the ratio between the photon number variances
in these two situations equals 3, in our experiment this number is
reduced to about 1.35, primarily owing to two effects. First, the ob-
served data are influenced by the imperfection in the preparation of
the single-photon state and linear losses, whichmanifest themselves
as an admixture of the vacuum state |0〉A⊗|0〉B to the ideal state
(1) (refs 17,19). In this work, the vacuum fraction is 1−η= 0.46.
Second, we measure the photon number by means of a balanced
photodetector20. Bob’s mode is incident onto the sensitive area of
one of its photodiodes while the other photodiode is illuminated
by a reference laser pulse of exactly the same mean energy. The
subtraction signal is then proportional to NB −NR, where NR is
the number of photons in the reference pulse. This technique is
necessary because the photon number fluctuations of the displaced
field are on the scale of α, whereas its mean is much higher:
〈NB〉 ≈ α

2. Subtraction of the reference pulse permits elimination
of this background along with its classical noise. As a trade-off, it
leads to addition of the shot noise

〈
1N 2

R

〉
=α2 to the signal, thereby

reducing the observed ratio of the photon number variances.
The experimental results (Fig. 2) exhibit different behaviour

dependent on the relative phase of Alice’s quadrature measurement
and Bob’s displacement. If the two are the same, we observe that
not only the variance but also the mean of the photon number
observed in Bob’s channel is correlated with Alice’s results. On the
other hand, if the phases are orthogonal, the mean photon number
is almost constant. Therefore, by choosing which quadrature to
measure, Alice can influence the state prepared in Bob’s channel.
This is a consequence of the entangled nature of state (2); similar
phenomena have been observed in discrete21, continuous22 and
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Figure 2 | Photon number statistics of the state in Bob’s channel that is
conditionally prepared by Alice’s quadrature measurement. a,b, Mean (a)
and variance (b) of the difference NB−NR between the photon numbers
and the reference beam. Filled circles correspond to the displacement in
Bob’s channel along the same quadrature as Alice’s measurement; for open
circles the displacement and measurement are in orthogonal quadratures.
The dashed line in b corresponds to 2α2; that is, the variance that would be
observed if Bob’s channel contained a coherent state of amplitude α.
c, Histograms of NB−NR conditioned on Alice’s measurement result within
intervals I, II, III shown in a,b by shaded areas. All histograms correspond to
the displacement and measurement in the same quadrature. Solid and
dashed lines in c show theoretical predictions, respectively with and
without taking experimental imperfections into account. The statistics
represented by histograms I and III, corresponding approximately to states
1/
√

2D̂(α)[|0〉±|1〉], can be distinguished by a single energy measurement
with a 68% certainty. They are reminiscent of the dead and alive states of
Schrödinger’s cat.

hybrid18 systems, but not yet on a macroscopic level. In particular,
this behaviour explicitly shows absence of decoherence of the two
terms in (2). If such decoherence were present, wewould observe no
dependence on Alice’s choice of quadratures.

An interesting interpretation of our results arises if one rewrites
state (2) in the superposition basis:

|9D〉=
1

2
√
2
[(|0〉+|1〉)A⊗ D̂(α)(|0〉+|1〉)B

− (|0〉−|1〉)A⊗ D̂(α)(|0〉−|1〉)B]

542 NATURE PHYSICS | VOL 9 | SEPTEMBER 2013 | www.nature.com/naturephysics

© 2013 Macmillan Publishers Limited. All rights reserved

http://www.nature.com/doifinder/10.1038/nphys2682
http://www.nature.com/naturephysics


NATURE PHYSICS DOI: 10.1038/NPHYS2682 LETTERS

|00〉

〈00⎪
〈01⎪

〈10⎪
〈11⎪

|01〉

|10〉

|11〉

0.2 0.4 0.6 0.8 1.0

Transmission of attenuator

C
on

cu
rr

en
ce

0.0

0.1

0.2

0.3

0.4

0.5

0.1

0.2

0.3

0.4

0.5

a

b

Figure 3 | Homodyne tomography of the micro–macro entangled state
after undisplacing Bob’s mode. a, Density matrix showing entanglement of
Alice’s and Bob’s modes. The plot shows the matrix elements
corresponding to zero- and one-photon domains of the optical Hilbert
space; the diagonal element contribution from other domains does not
exceed 1.2%. b, Concurrence C(ρ̂)= 2(|ρ01|−

√
ρ00ρ11) of the two-mode

state7 as a function of the attenuation between the displacement and
undisplacement operation shows that micro–macro entanglement is robust
to optical losses. The dashed theoretical curve corresponds to state (1) and
accounts for the losses; the solid curve also accounts for the two-photon
term of weight 1.5% that contaminates the heralded single photon.

This, again, can be viewed as Schrödinger’s cat, but now the
macroscopic terms D̂(α)(|0〉±|1〉)B have photon number statistics
with different mean values of α2

+1/2±α and standard deviations
of α
√
2. Performing a single measurement of the photon number

observable and checking whether the result exceeds α2 allows one
to distinguish these states from each other with an error probability
of 10.1%. In other words, the two macroscopic components of our
state are distinguishable by means of a single-shot measurement
using a detector withoutmicroscopic sensitivity.

This fact, which further emphasizes the Schrödinger’s cat nature
of our state, is confirmed by the experimental results. Alice’s
observation of quadrature values XA such that ψ0(XA)=±ψ1(XA)
leads, according to (3), to projecting Bob’s channel onto states
D̂(α)(|0〉±|1〉). The relevant experimentally observed statistics of
Bob’s photon number measurement (shown in panels I and III of
Fig. 3c) are substantially different, albeit not as much as expected
theoretically in the idealized setting. This is due to themeasurement
imperfections discussed above, which increase the probability of
error in distinguishing the two states to about 32%.

For a direct verification of entanglement, we apply the inverse
displacement D̂(−α) to Bob’s mode of state (2). Both modes of
that state are then subjected to balanced homodyne detection at
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Figure 4 | Implementation of the set-up. Half-waveplates are denoted by
H, quarter-waveplates by Q, polarizing beam splitters by P, attenuator by
att. See Methods for further details.

various local oscillator phases (Fig. 1c)16. The data output by Bob’s
homodyne detector exhibit residual phase-dependent quadrature
displacement on a scale of αr ∼ 10, which we suppress by means
of electronic filters. The collected quadrature data are used to
reconstruct the density matrix of the two-mode state. This density
matrix (Fig. 3) is consistent with a mixture of state (1) with
weight η and vacuum state with weight 1− η and shows a high
degree of entanglement23. As undisplacement is a local operation,
entanglement of the reconstructed state after the undisplacement
proves that themicro–macro state was entangled as well.

Finally, we verified the robustness of entanglement of state (2)
with respect to losses. We inserted a series of attenuators between
the displacement andundisplacement operations and reconstructed
the density matrix of the resulting state. Figure 3b shows that,
although entanglement is degraded with loss, the rate of this degra-
dation is similar to that expected in the absence of displacement.

To summarize, we have conclusively demonstrated, for the first
time, an optical entangled state consisting of two terms that are
both macroscopic in the particle number and macroscopically
distinct from each other. These features distinguish our work
form previous experiments aimed at generating large-size optical
coherent superpositions24–26.

We emphasize the difference between our experiment and
homodyne tomography of optical states17. Although the latter also
involves interference of a microscopic optical state with a strong
field, the fields generated by this interference are viewed as a
part of the measurement process—akin to the electronic cascade
within an avalanche photodetector. The present work, in contrast,
studies these fields as part of a quantum system and unveils their
macroscopic and entangled character.

A state similar to ours can be implemented in other quantum sys-
tems, for example, in atomic ensembles. A delocalized coherent spin
excitation stored in two atomic clouds27 can be subjected to phase-
space displacement by briefly applying amagnetic field perpendicu-
lar to the quantization axis, leading to precession of themacroscopic
Bloch vector by a small angle. The resulting atomic collective state
can be measured and its entanglement verified using the technique
of off-resonant Faraday interaction2. Another intriguing possibility
is to combine the present approachwith opto-mechanical systems.

Our study contributes to the ongoing discussion in the literature
regarding the definition of macroscopic quantum superpositions.
We have here adopted the most basic definition, a superposition
of two states that have macroscopically different expectation values
for some physical observable12. We have shown that our state is
compliant not only with this definition, but with an even stronger
criterion: its two components are largely distinguishable by means
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of single-shot measurements with a macroscopic detector. Another
argument for themacroscopicity of our state is its high sensitivity to
certain types of decoherence15. However, there are also definitions
of macroscopic quantum superpositions that are more stringent,
and would exclude the present state28,29. We hope that our work will
stimulate further investigation and discussion on this topic, which
should eventually bring about a much more precise understanding
of what is meant bymacroscopic quantum effects. In particular, this
may lead to amore detailed taxonomyof different Schrödinger cats.

There are more practical questions as well. Although the two
terms comprised in state (2) are macroscopically distinct, their
difference scales as a square root of their size. This feature is
related to the robustness to loss exhibited by our state. Will it be
possible to experimentally demonstrate macroscopic entanglement
for a state that contains terms whose difference in photon number
is comparable to their magnitude? What is the general class of
macroscopic entangled optical states that are robust to losses?
Will such states be useful for quantum technology, for example
quantum metrology? Some of these questions are already being
discussed in the literature7,11,30, butmore research is required before
complete answers are found.

Methods
Weuse amode-locked Ti:sapphire laser (CoherentMira 900) to produce transform-
limited pulses of ∼1.6 ps width at ∼790 nm wavelength and a repetition rate of
76MHz. The light from this laser is frequency doubled in a single pass through
a 17-mm-long lithium triborate crystal and subjected to spatial filtering, yielding
∼45mWaverage power at 390 nm. This field is focused, with a waist of 100 µm, into
a 2-mm-long periodically poled potassium-titanyl phosphate crystal for parametric
down-conversion, in a type II spatially and spectrally degenerate configuration.
The signal and idler photons are separated using a polarizing beam splitter. Idler
photons are filtered spatially with a single-mode fibre and spectrally with a 0.3 nm
interference filter, and subsequently registered by a Perkin Elmer SPCM-AQR-
14-FC single-photon detector. Count events occur at a rate of 50–60 kHz. Each
such event heralds preparation of a single photon in the signal channel, in a highly
pure spatial and spectral mode; however, the signal state features a small (∼1.5%)
two-photon fraction due to the high amplitude of parametric down-conversion19.

The heralded single photon is directed into the circuit shown in Fig. 4. It
is first split between Alice’s and Bob’s stations using a half-waveplate H1 and
polarizing beam splitter P1. A strong field from the laser is entering the other input
port of P1, its horizontally polarized transmitted portion (∼10mW) serving as the
local oscillator for Alice’s homodyne detector and its vertically polarized reflected
portion (∼120mW) providing the displacement field for Bob’s channel. Waveplate
H3, whose optical axis is rotated by 4.5◦ with respect to horizontal, mixes the
displacement field with Bob’s portion of the entangled single photon in the
horizontal mode, creating phase-space displacement in that mode17. The resulting
displaced field power is 3mW, or α2

≈1.6×108 photons.
Alice’s portion of the single photon is mixed with the local oscillator using

H2 and P2 for homodyne detection. To change the phase relation between the
quadrature measured by Alice and the phase-space displacement of Bob’s mode, a
quarter-waveplate Q1 is inserted into Alice’s channel.

To implement the configuration shown in Fig. 1c, we remove waveplates
Q2, H4 and H5. In this way, the displaced mode is transmitted through P3 and
P4. Bob’s reference beam, on the other hand, is reflected from P3 and P4. For
quadrature measurements in Bob’s channel (Fig. 1b), we insert waveplates Q2 and
H4 to undo the displacement in the horizontal mode and waveplate H5 to mix the
local oscillator and the signal field. In this way, the same balanced detector can
be used for both the energy and quadrature (homodyne) measurements at Bob’s
station. Note that phase locking between the local oscillators in Alice’s and Bob’s
channels was not necessary because the phase drift of these two fields was much
slower than the data acquisition rate.
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In the version of this Letter originally published online, in Fig. 1, panels b and c were transposed. This error has now been corrected in 
all versions of the Letter.
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