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We report on the first observation of topologically stable spatially localized multivortex solitons

generated in optically induced hexagonal photonic lattices. We demonstrate that topological stabilization

of such nonlinear localized states can be achieved through self-trapping of truncated two-dimensional

Bloch waves and confirm our experimental results by numerical simulations of the beam propagation in

weakly deformed lattice potentials in anisotropic photorefractive media.
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Some of the most spectacular experiments in the field of

nonlinear dynamics of coherent light and matter waves in

periodic potentials relate to the properties of vortices and

vortex flows in optical lattices [1–4]. Dramatic changes of

light diffraction or tunneling of matter waves in media with

periodically modulated parameters offer novel directions

for manipulating waves with a complex phase structure. In

optics, self-trapped phase singularities [5] in the form of

isolated discrete vortices have been predicted theoretically

[6–9] and generated experimentally in square photonic

lattices [1,2,10]. In the physics of Bose-Einstein conden-

sates, the matter-wave vortices are generated in the form of

periodic vortex lattices [11–13].

Multivortex coherent states appear naturally in systems

with repulsive interparticle interactions, where they can be

confined by external potentials. For attractive interaction,

multivortex structures are known to be unstable, and they

have been observed only as infinite periodic waves [14]. As

a result, spatially localized multivortex states remain un-

observed and largely unexplored.

Recently, it was predicted theoretically [15] that pho-

tonic lattices with a threefold symmetry can support stable

multivortex spatially localized states, in sharp contrast to

earlier studied square lattices [16]. Such localized modes

originate from a specific type of nonlinear periodic modes,

and they became localized in the form of truncated non-

linear Bloch states [17]. Surprisingly, as was shown in

extensive numerical simulations, such localized states

with high vorticity are stable, whereas their counterparts

with lower topological charge experience strong topologi-

cal instabilities [18]. In this Letter, we report on the ex-

perimental observation of topologically stable spatially

localized multivortex solitons generated in optically in-

duced hexagonal photonic lattices. We believe that this

observation provides the first evidence (in any field of

physics) of stable multivortex clusters in systems with

attractive nonlinear interaction.

Our experiments are carried out in a 15-mm-long pho-

torefractive crystal of strontium barium niobate (SBN) in

which a two-dimensional lattice of a threefold symmetry

[see Fig. 1(b)] is induced optically [19] by an interference

of three ordinarily polarized plane waves [20]. Because of

an intrinsic anisotropy of the photorefractive nonlinear

crystal, the induced potential is also strongly anisotropic

[18]. To compensate for the asymmetry of the lattice and

balance corresponding energy flows between the individ-

ual sites, the lattice is deformed from its exact hexagonal

FIG. 1 (color online). Schematic of the experimental setup

indicating (a) three extraordinarily polarized beams forming an

input probe beam carrying a vortex cluster. (b) Intensity distri-

bution and (c) Fourier image of the lattice field and (d) Fourier

image of the probe beam. Note that the hexagonal lattice (b) is

stretched with its Fourier components (c) lying at the vertices of

the isosceles instead of an equilateral triangle.
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symmetry. More specifically, compared to a truly hexago-

nal pattern with a lattice constant ratio of dy=dx �
���

3
p

, for

the horizontal and vertical direction, respectively, the in-

duced lattice is slightly stretched along the vertical direc-

tion having dx � 27 �m and dy � 60 �m. Hence, the

ratio of the lattice constants becomes dy=dx � 2:2. To

ensure that the lattice remains stationary along the crystal,

all three lattice-forming waves have the same longitudinal

z component of their wave vectors. This means that, in the

Fourier space (kx, ky), they are represented by the points

located on a ring centered at the origin kx � ky � 0.

Figure 1(c) shows the Fourier image of the lattice with

the three bright spots marking the edges of the first

Brillouin zone. To generate a multivortex probe beam,

we focus three other extraordinarily polarized beams

onto the front face of the crystal [see Fig. 1(a)]. To ensure

that the probe beam has the same symmetry as that of the

induced lattice, the constituent input beams are adjusted to

map the positions of the lattice-forming waves in the

Fourier space, as shown in Fig. 1(d). We mention that, in

order to achieve localization of the probe beam, its spatial

frequency spectrum is kept much broader than that of the

lattice waves [see Fig. 1(c)]. In the real space depicted in

Fig. 2(a), this arrangement results in an input probe beam

having the form of seven distinctive spots forming a hex-

agonal pattern with the same periods as the lattice and

containing six vortices. The vortex positions, indicated by

red and blue circles in Fig. 2(b), are visualized experimen-

tally by interfering the probe beam with an inclined broad

reference beam.

At low input powers � 20 nW, the diffraction of the

probe beam leads to a broad output distribution shown in

Figs. 3(a) and 3(b). However, at high powers � 1 �W, the

structure becomes localized, and the output intensity dis-

tribution features seven well-pronounced spots closely re-

sembling the input.

To show the topological stability of the input structure

with a complex phase pattern and to verify experimentally

the structure of multivortex solitons, we record the phase

interferograms of the reference beam and the probe beam

at low and high intensities, respectively [see Fig. 4]. It is

clearly visible that at low power (in the linear regime) the

initial phase profile becomes strongly distorted. While the

six initial vortices can still be found in the output field,

their positions are changed. In contrast, for high input

power of the probe beam (in the nonlinear regime), not

only does the beam intensity become self-trapped but also

the phase profile retains exactly the same hexagonal vortex

pattern of the input beam.

We emphasize that the observation of stable multivortex

solitons requires stretching of the photonic lattice. When

the lattice is exactly of a hexagonal shape, we still observe

self-trapping in the form of seven intensity spots; however,

the phase distribution becomes random, and it does not

contain a regular cluster of vortices similar to that shown in

Fig. 4. Moreover, we find that in this case the output profile

experiences strong deformations even for slight perturba-

tions of the input beam. In sharp contrast, the multivortex

solitons in the stretched lattice (Figs. 3 and 4) are remark-

ably robust and are basically insensitive to small deforma-

tions of the input beam.

To corroborate our experimental results by numerical

simulations, we model the beam propagation through a

self-focusing photorefractive crystal using the scalar equa-

tion for the slowly varying envelope A�x; y; z� of the probe

beam

 2i
@A

@z
�r2

?A� �Escr�Itot�A � 0; (1)

where r2
? � @2xx � @2yy and Itot � jAlattj2 � jAj2 is a sum

of the intensities of the lattice-forming and probe beams.

FIG. 2 (color online). (a) Intensity distribution and (b) phase

interferogram of the probe input beam. Positions of the vortices

are indicated by circles, blue for the topological charge m � �1
and red for the topological charge m � �1.

FIG. 3 (color online). Output intensity distributions and corre-

sponding three-dimensional surface plots of the probe beam for

(a),(b) low input intensities and (c),(d) high input intensities.
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The coefficient � � k2w2
0n

2
0reff is proportional to the ef-

fective element of the linear electro-optic tensor reff ,
and Eq. (1) has been made dimensionless by introducing

the transverse w0 and longitudinal z0 � kw2
0 length scales,

with k and n0 denoting the wave vector and refractive index

of the unperturbed medium, respectively. Throughout this

Letter, we use the values reff � 280 pm=V, n0 � 2:35, and

w0 � 10 �m, which yields z0 � 2:8 mm. Spatially local-

ized and stationary solutions of Eq. (1) can be found in the

form A�x; y; z� � a�x; y� exp�i�z�, where � is the soliton

propagation constant.

The photorefractive nonlinearity is described by the

electric screening field Escr � �@�=@x with the scalar

potential �. Assuming a temporally steady state and ne-

glecting photovoltaic effects, the following expression may

be derived for � [21]:

 ���r ln�1� Itot�r� � Eext@x ln�1� Itot�; (2)

in which the externally applied homogeneous electric field

Eext is directed along the x axis which coincides with the

axis of spontaneous polarization of the crystal (c axis). The

total intensity Itot is measured in the units of the back-

ground illumination, and diffusion effects are neglected.

We consider the lattice field in a general form of the

superposition of the three interfering plane waves [20]

 Alatt � exp�2ikxx=3� � exp��ikxx=3� ikyy�
� exp��ikxx=3� ikyy�: (3)

We start with the intensity profile of an exact hexagonal

symmetry when the spatial frequencies kx and ky obey a

simple relation kx �
���

3
p

ky. However, the actual symmetry

of the induced refractive index lattice is reduced due to the

anisotropy of the photorefractive process [22].

In the following, we consider the soliton clusters in the

semi-infinite gap [23]; i.e., we assume that all lobes are

centered on the lattice sites and only weakly coupled. Then

the intensity transfer between the lobes i and j is propor-

tional to Jij � cij sin��j ��i�, wherein �i;j denotes the

respective phases and cij are the coupling coefficients. In

order to create a stable vortex cluster, the intensity flows

between all lobes should be balanced, i.e.,
P

N
i�1 Jij � 0

(see details in Ref. [16]). For the structure with N � 7
lobes and a hexagonal symmetry, this implies that the

transverse power flow between each outer lobe and the

center lobe has to be twice as high as those between the

outer lobes themselves. Under this constraint, the flow

condition can be fulfilled only if for all adjacent lobes

the coefficients cij become equal. However, this condition

cannot be fulfilled in the case of hexagonal lattices with

kx �
���

3
p

ky due to the photorefractive anisotropy. As a

result, at low powers of the input beam, the anisotropic

discrete diffraction dominates the dynamics [see Fig. 5(a)].

In the soliton regime shown in Fig. 5(b), the intensity of the

probe beam attains a well-defined seven-lobe structure but

with an additional modulation resembling that of the dif-

fracted beam. This modulation indicates complex defor-

mations of the power flow [16]. Indeed, the phase map

depicted in Fig. 5(c) reveals that only two vortices remain

within the localized beam. Hence, in a hexagonal lattice,

the vortices are unstable and undergo topological trans-

formations during propagation. Figure 5(d) contains more

details of vortex dynamics for the propagation distance

much longer than the actual crystal length.

However, the photorefractive anisotropy of the lattice

can be compensated for, and, consequently, the energy flow

can be balanced by adjusting the ratio kx=ky appropriately.

Indeed, a stable phase profile can be achieved for the

seven-lobe cluster in this case. This particular profile cor-

responds to a truncated nonlinear Bloch wave originating

from the M point of the lattice spectrum [15].

To determine the necessary deformation (stretching) of

the lattice, one needs to evaluate the cij coefficients for the

seven-lobe cluster. To this end, we assign a phase profile

with 2�=3 jumps between adjacent lobes and calculate the

total energy flow between them. Then the balanced flow

relations are solved numerically. To find the intensity

profiles for both the fundamental solitons and clusters,

we use a suitably modified version of the algorithm sug-

gested in Ref. [24] which is able to handle the nonlocal and

anisotropic nonlinearity described by Eq. (2).

The results of our numerical simulations with the

stretched lattice are summarized in Figs. 5(e)–5(h). The

output intensity and phase for the soliton solution are both

regular with all six vortices preserved intact. The surface

plot in Fig. 5(h) shows weak oscillations of the vortex

positions which we ascribe to internal oscillatory modes

of the soliton. An important conclusion drawn from these

simulations is that, even for propagation distances much

longer than the crystal length, these modes do not grow.

This indicates stability of the multivortex soliton against

small perturbations.

In conclusion, we have generated experimentally topo-

logically stable multivortex solitons in optically induced

photonic lattices. We have shown that a weak stretching of

the photonic lattice along its vertical direction allows for

FIG. 4 (color online). Phase interferogram of the probe beam

output at (a) low intensity and (b) multivortex soliton at high

intensity. Vortex positions are indicated by blue circles for the

charge m � �1 and by red circles for the charge m � �1.
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compensating anisotropy of the photorefractive nonlinear-

ity to balance the energy flow and achieve the soliton

stability. Our experimental results have been confirmed

by extensive numerical simulations of an anisotropic non-

linear model with photorefractive nonlocal response. We

believe our demonstrations in nonlinear optics will be

useful for the observation of multivortex localized states

in other systems, e.g., in Bose-Einstein condensates with

attractive interaction in the form of vortex lattices of a

finite extent stabilized by two- or three-dimensional peri-

odic potentials.
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FIG. 5 (color online). Numerical simulations of the propaga-

tion of the probe beam in hexagonal lattice (a)–(d) and in the

stretched lattice (e)–(h). Diffraction of the probe beam at low

intensity is shown in (a) and (e), the self-localization at high

intensity in (b) and (f), and phase profiles for the high intensity

outputs in (c) and (g). We also show in (d) and (h) the 3D vortex

trajectories during propagation; here red curves correspond to

vortex charge m � �1 and blue curves to charge m � �1.
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