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L.-P. Euvé,1 F. Michel,2 R. Parentani,2 T. G. Philbin,3 and G. Rousseaux1

1Institut Pprime, UPR 3346, CNRS-Université de Poitiers-ISAE ENSMA 11 Boulevard
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We measured the power spectrum and two-point correlation function for the randomly fluctuating free surface

on the downstream side of a stationary flow with a maximum Froude number Fmax ≈ 0.85 reached above a

localised obstacle. On such a flow the scattering of incident long wavelength modes is analogous to that re-

sponsible for black hole radiation (the Hawking effect). Our measurements of the noise show a clear correlation

between pairs of modes of opposite energies. We also measure the scattering coefficients by applying the same

analysis of correlations to waves produced by a wave maker.

The Hawking effect in laboratory analogues of event hori-

zons [1] has been well studied theoretically [2, 3] and exper-

iments have been performed in different systems [4–6]. Ana-

logue horizons are created when waves propagate in a station-

ary counter-flowing medium: at points where the flow speed

reaches that of the wave, the latter is blocked and converted

to other branches of the dispersion relation. At low frequency,

this gives rise to a mode amplification (an over-reflection [7])

which involves a negative energy wave [4, 8–10], and which

is at the root of the Hawking effect [11]. Importantly, the

scattered waves of opposite energy are correlated with each

other [12]. As a result, when dealing with a noisy system,

the two-point correlation function of the fluctuating quantity

displays specific patterns both in space-time and in Fourier

space [13–18]. We here consider surface waves on a station-

ary counter-current of water in a linear tank. Our work is in-

spired by the theoretical Refs. [9, 19–21] and builds on the

experiments [4, 6, 22, 23]. As in these experiments, the flow

velocity near the blocking point decreases along the direction

of the flow. This means that we work with an analog white

hole (the time reversed of a black hole).

Ignoring the surface tension, and assuming that the flow is

incompressible and irrotational, the dispersion relation which

relates the angular frequency ω and the wave-vector k is

(ω − Uk)2 = gk tanh(kh), (1)

where U is the flow velocity, h the water depth, and g the grav-

itational acceleration, see the Supplemental material for some

explanation about this relation, and its associated wave equa-

tion. In a flow to the right, i.e., U > 0, for a fixed ω, see the

dotted horizontal line in Fig. 1, the three roots kI , kB , and kH
describe counter-propagating waves, i.e., waves with a group

velocity oriented to the left in the co-moving frame at rest with

the fluid [3, 4, 9]. Instead kR describes a co-propagating mode

which shall play no role in the sequel. There are also trans-

verse modes, which have an effective mass [24] proportional

to their transverse wave-vector k⊥.

In stationary inhomogeneous flows, such as that of Fig. 2,

ω is conserved. For fixed ω > 0, the roots kI and kB merge

at a point in the tank where U becomes sufficiently large [21].

This merging describes an incident long-wavelength mode I

coming from the right, that is blue-shifted into a B mode with

opposite group velocity dω/dk in the laboratory frame (the

slope of the curves in Fig. 1): the well-known wave block-

ing [9, 25]. We emphasize here that the wave number kB
of the scattered mode is much larger than kI characterizing

the incident wave. This large blue-shifting is the typical sig-

nature of analog white hole flows [10, 26]. Importantly, for

sufficiently low ω, the wave-blocking is accompanied by a

non-adiabatic effect producing an additional mode which also

has a large wave vector: kH . This mode has a negative fre-

quency ω − Uk as measured in the fluid frame, see Fig. 1,

and thus carries a negative energy [4, 8–10]. Because the total

wave energy is conserved, this conversion implies an amplifi-

cation of the B mode. This is in strict analogy with the Hawk-

ing effect. However, it is difficult experimentally to have a

flow that will block waves at all frequencies and in experi-

ments to date [4, 6, 23] only waves above a critical frequency

ωmin were (essentially) blocked, see the Supplemental mate-

rial. Above ωmin, as we shall see, the main effect is the con-

version of incident I modes into B and H . This effect was

reported in [6] both below and above ωmin.

This conversion can be stimulated by an incident wave I
generated by a wave maker, as was done in [4, 6]. In contrast,

the quantum Hawking effect, of fundamental interest for black

holes [11], arises from the amplification of vacuum fluctua-

tions and gives rise to pairs of entangled quanta with opposite

energy [12]. Surface waves in the water tank are not suitable

to observe the quantum Hawking effect. But just as the quan-

tum vacuum provides the horizon with an irreducible input,

there is a stationary background noise of surface waves in the

inhomogeneous flow created by both the turbulent flow and

the underwater obstacle, see Fig. 1 lower panel. Because of

the mode conversion near the blocking point, this noise should

be correlated. When measured in the downstream homoge-

neous region, see Fig. 2, these correlations are non-vanishing

when the ka’s are evaluated at the same value of ω [14, 15, 17],

see Fig. 3 and the Supplement material.

Our experiments were performed in the water channel of

the Pprime Institute (for more details, see Supplemental Ma-

terial). The obstacle used to obtain an inhomogeneous flow

was designed following the procedure outlined in appendix A

of [21]. It relies on the hodograph transformation for a 2D

ar
X

iv
:1

51
1.

08
14

5v
4 

 [
ph

ys
ic

s.
fl

u-
dy

n]
  2

9 
Ju

l 2
01

6



2

HRIB

- 150 - 100 - 50 50 100 150
k

- 15

- 10

- 5

5

10

15

ω

- 60 - 40 - 20 20 40 60
k

- 15

- 10

- 5

5

10

15

ω

0 0.2 0.4 0.6 0.8 1.0

FIG. 1. Top: Dispersion relation in the homogeneous flow on the

downstream side of the obstacle. k is in m−1 and the angular fre-

quency ω in Hz. The effective parameters (see text below Eq. (2) for

definition) are Ueff = 0.37m.s−1 and heff = 88 mm. The blue con-

tinuous (dashed) lines correspond to Eq. (1) with positive (negative)

ω − Uk. The four dots labeled by B, I,R,H give the roots ka for a

fixed ω > 0 indicated by a dotted horizontal line. Purple, dot-dashed

lines describe transverse modes with an even number of nodes in the

transverse direction (those with an odd number are not detected by

our experimental setup). The inset shows the same dispersion rela-

tion for h = 59mm, i.e., beyond the turning point for the frequency

materialized by the dashed line. Bottom: Square root of the noise

power P(ω, k) divided by its maximum value and measured on the

downstream side of the obstacle, see Fig. 2 and Eq. (2).

inviscid, irrotational, incompressible flow [27]. The shape of

the obstacle is determined by the profile of the free surface,

the asymptotic water depth, and flow velocity, see Fig. 2. The

main advantage of this obstacle over the one used in [6, 23] is

that it supports a flow with a relatively large Froude number:

0.86 ± 0.03 in the present experiment instead of 0.67 ± 0.02
in [23]. In addition, it produces a smaller static surface de-

formation, or undulation [10, 28], with a peak-to-peak ampli-

tude of a few millimeters (see Supplemental Material). The

descending slope of the obstacle also has a larger maximum

gradient: the slope of c−U , giving the analogue surface grav-
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FIG. 2. Plots of the obstacle (bronze line) and the observed free sur-

face (red line, see also the Figure S3 in the Supplemental Material)

in meters. The two dashed vertical lines indicate the region used to

study the fluctuations of the free surface δh. The blue, thick arrow

shows the direction of the flow. Thin arrows show the orientation of

the group velocity (measured in the laboratory frame) of the various

modes produced by the scattering of the incident I mode. The let-

ters I, B,H,R have the same meaning as in Fig. 1. The T arrow

represents the transmitted wave in the upstream side. The blue curve

gives the free surface chosen for determining the obstacle, see text

for explanation.
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FIG. 3. Here we show the loci where k, k′ are two roots of Eq. (1)

for ω ∈ R
+ in a flow with same parameters as in Fig. 1. The oblique

black segments show k = k′ for the four modes B, I,R,H . The

three continuous curves show {k, k′} = {kI , kB} (blue), {kI , kH}
(red), {kB , kH} (purple), while the dashed lines {kI , kR} (green),

{kR, kB} (blue), and {kR, kH} (red), involve the mode kR. Dotted

lighter shaded curves correspond to ω < 0. They are obtained from

correlations with positive ω by (k, k′) → (−k,−k′).
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ity in transcritical flows [21], has a maximum of 2 Hz instead

of 1.2 Hz as used in [6] (here c =
√
gh is the velocity of

long-wavelength waves in the fluid frame).

We measured the fluctuations of the water height δh(x, t),
defined as the deviation from the time-averaged value of

h(x, t), in the downstream constant-flow region shown in

Fig. 2. We first studied the noise power (which is proportional

to the wave action [29]) defined by

P(ω, k) ≡
〈

∣

∣

∣
δh̃(ω, k)

∣

∣

∣

2
〉

× S−2
k . (2)

Here, δh̃(ω, k) is the Fourier transform of δh(t, x) and Sk =
|gk tanh(kh)|1/4 is the structure factor relating plane waves

to unit norm modes when working at fixed k [10, 21]. The

Fourier transform in time is computed using a rectangular

window, while we used a Hamming window function [31]

with support x ∈ [0.45m, 1.45m] to compute the spatial trans-

form (see Supplemental Material). The mean value is com-

puted by dividing the data into 80 pieces of equal duration

(12.5 s) and averaging over them. In former studies of the

noise [22, 30], this averaging was not performed. As a result

the plots showed random values of |δh̃(ω, k)|2 as opposed to

its mean. The square root of P(ω, k) is shown in the lower

panel of Fig. 1.

Although the upstream water height and flow velocity were

hup = 74 mm and Uup = 0.31ms−1, the dispersion re-

lation of Fig. 1 has been drawn with the effective values

heff = 88 mm and Ueff = 0.37ms−1, chosen to match the

observed wave numbers. The agreement of the dispersion re-

lation with the three counter-propagating modes I, B, and H
is clear for all values of ω. We expect that the differences with

hup and Uup are due to boundary-layer, vorticity, and turbu-

lent effects. When using heff and Ueff , we find that the value

of ω for which the two roots kI and kB merge on top of the

obstacle (respectively in the downstream asymptotic region)

is ωmin ≈ 0.8 Hz (respectively ωmax ≈ 5 Hz).

We then measured the two-point correlation function eval-

uated at the same frequency and two different wave-vectors:

G2(ω; k, k
′) ≡

∣

∣

∣

〈

δh̃(ω, k)δh̃(ω, k′)∗
〉∣

∣

∣
× (SkSk′)−1. (3)

In the left plot of Fig. 4, we show G2(ω; k, k
′) in the (k, k′)

plane for ω = 2.5 Hz. Using the effective values heff and Ueff ,

the non-vanishing correlations in the k, k′ plane are found

along the lines drawn in Fig. 3, as expected. We note that the

B and H modes of opposite energy are well correlated. We

also note that the long-wavelength modes I and R are corre-

lated with both B and H modes. However, we cannot clearly

separate the contributions of I and R modes. Since numerical

simulations (see Supplemental material) indicate that the co-

propagating (R) mode is only weakly coupled to I, B and H ,

in what follows, we only study the power and the strength of

correlations of these three modes.

In the upper plot of Figure 5 we show na(ω) ≡
P(ω, ka)/|dka/dω| as a function of ω, where ka(ω) are the

FIG. 4. In the left panel, we show the noise correlation function of

Eq. (3) for ω = 2.5 Hz. The color scale is the same as in Fig. 1.

Dashed lines show the dispersion relation in the (k, k′) plane, see

Fig. 3. The circles are centred on (kω, k
′

ω) where kω and k′

ω are

two roots of the dispersion relation for the considered frequency ω.

The letters B and H designate the power of the short wave length

modes with opposite energies, and BH their correlations. In the

right panel, we show again Eq. (3) when the wave-maker is sending

the incident wave I for the corresponding frequencies. The IB and

IH correlations are clearly visible.

three counter-propagating roots. This quantity gives, up to

an overall factor, the mean number of quasi-particles per unit

angular frequency interval [10, 21]. The power spectra of the

two dispersive modes B and H are comparable except in a do-

main near ωmin ≈ 0.8 Hz where there are more B-modes. The

hydrodynamical I-modes have less power by a factor ∼ 10,

except below ωmin where their power is much larger. (In the

absence of obstacle, the observed noise power is completely

dominated by the hydrodynamical modes I and R, and there

are no significant correlations between I and B,H modes, see

Supplemental material.)

To quantify the strength of the correlations, we study the ra-

tio of the cross-correlations over the square root of the product

of the auto-correlations

g2(ω; a, b) ≡
G2(ω; ka, kb)

√

G2(ω; ka, ka)G2(ω; kb, kb)
, (4)

where ka(ω), kb(ω) are two roots for a given ω. For any sta-

tistical ensemble, g2 is necessarily smaller than 1. As ex-

plained in the Supplemental material, g2 involves the classical

counterparts of the observables which are currently used in

quantum settings to assert that the state of the scattered waves

ka(ω), kb(ω) is entangled [15–18]. The lower plot of Figure 5

shows three types of correlations: the BH correlations are

stronger than the two other ones, since g2(ω;B,H) is close to

0.7 (except near 0.6 Hz). This indicates that 70% of B and H
modes are in correlated BH pairs. The IH and IB correla-

tions are below 0.3 over most of the frequency domain. This

implies that more than 50% of BH pairs do not come from

observed I modes with k⊥ = 0. It probably means that a sig-

nificant fraction of BH pairs have a non-vanishing k⊥. (At

present we are not able to separate the contributions of B and

H modes with and without transverse wave number, as the

corresponding curves on the dispersion relation are very close
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FIG. 5. The noise power na(ω) (upper plot, in m3.s−2) and the rela-

tive strength of the correlations of Eq. (4) (lower plot), in logarithmic

scale, for the counter-propagating modes I, B and H . In the upper

plot, the power of I is in blue, that of B in green, and in bronze that

of H . In the lower plot, the correlations BH are in purple, IB in

blue, and IH in red. We estimate that the uncertainties are of order

0.1.

to each other, see Fig. 1.) Some BH pairs should also be pro-

duced by incident waves H and R from the left. In addition,

not all the incident I-mode noise is taken into account if some

of it is generated by fluctuations in the region x < 0.45m. An

effective description of this generation could be obtained from

adapting to the present case the driven-damped wave equation

of Ref. [32].

The properties of the scattering can be more clearly stud-

ied when sending a I wave towards the obstacle, as was done

in [4, 6]. The corresponding values of G2 are shown in the

right panel of Fig. 4 for ω ≈ 2.5Hz > ωmin. The power of

the reflected B wave is close to that of the incident one, as

expected from the validity of the WKB approximation in this

regime [3]. The negative-energy H wave remains relatively

small in amplitude. However, HI and HB correlations are

clearly visible, showing that H and B waves are produced

by the analog Hawking effect. This is further clarified by the

analysis of the scattering coefficients presented in the Supple-

mental Material.

To summarize, we observed the statistical properties of the

water depth fluctuations downstream from an obstacle in a

flow with a large maximum Froude number. The negative en-

ergy modes H are highly populated, strongly correlated with

the positive energy modes B, but more weakly correlated with

the I modes. The noise correlations have the main features

expected from the Hawking effect, whose correlations we ob-

served also in the stimulated case with a wave maker. Further

experiments and theoretical work are required to clarify all of

the processes behind these observations.
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and P. Zin, Phys. Rev. Lett. 115, no. 2, 025301 (2015).

[18] Observation of density correlations stemming from vacuum

fluctuations was reported in a flowing atomic Bose con-

densate while we were finishing this work: J. Steinhauer,

arXiv:1510.00621 (2015).

http://arxiv.org/abs/1510.00621


5
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SUPPLEMENTAL MATERIAL

Dispersion relation and critical frequencies in inhomogeneous

flows

To describe theoretically the system used in the experi-

ment, we assume water in the flume can be approximated by

an ideal, incompressible fluid in laminar, irrotational motion.

We also temporarily assume the velocity component along the

transverse direction of the flume is negligible, so as to work

with an effectively two-dimensional flow. Under these ap-

proximations, the linear fluid equations describing the evolu-

tion of small perturbations can be integrated from the bottom

up to obtain an effective one-dimensional equation involving

only quantities defined at the free surface, see [36, 37] for the

detailed derivation. Assuming further that the vertical com-

ponent of the velocity is negligible before the horizontal one

(which is satisfied far from the obstacle), this equation takes

the form

[(∂t + ∂xU(x)) (∂t + U(x)∂x)

+ig∂x tanh (ih(x)∂x)] δφ(t, x) = 0, (S1)

where δφ denotes the perturbation of the velocity potential

(i.e., ∂xδφ gives the perturbation of the velocity), h is the lo-

cal water depth of the background flow, and U its velocity

evaluated at the free surface. We used a quartic expansion of

this equation in the numerical simulations reported in the fol-

lowing. The total water height hT is given by the sum the

background height and the time-dependent linear fluctuation

hT (t, x) = h(x)− 1

g
(∂t + U∂x) δφ. (S2)

In a region where U and h are homogeneous, Eq. (S1) be-

comes

[

D2
t + ig∂x tanh (ih∂x)

]

δφ(t, x) = 0, (S3)

where Dt ≡ ∂t + U∂x is the time derivative in the rest frame

of the fluid. Since the x direction plays no particular role in

this frame (except for the boundary conditions), one can relax

the assumption that δφ be independent on y. Doing so, we

obtain
[

D2
t + ig~∇ tanh

(

ih~∇
)]

δφ(t, x, y) = 0, (S4)

where ~∇ =
(

∂x

∂y

)

. One can look for plane wave solutions in

δφ(t, x) ∝ exp (i (−ωt+ kx)) cos (nπy/l) , (S5)

where y is a Cartesian coordinate in the transverse direction,

l is the width of the flume, n ∈ N, and (ω, k) ∈ R
2. The

last factor comes from the boundary conditions at the walls of

the flume, i.e., that the y-component of the velocity, given by

∂yδφ, must vanish at y = 0 and y = l. (For definiteness, we

set the origin of y on one wall of the flume.) Plugging this

http://www.paralia.fr/jngcgc/13_10_faltot.pdf
http://arxiv.org/abs/1205.6751
http://arxiv.org/abs/1211.2001
http://arxiv.org/abs/1605.09752
http://arxiv.org/abs/1605.09752
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FIG. S1. Dispersion relation for the longitudinal modes (n = 0),

evaluated in the downstream asymptotic region (left panel) and at the

point where the water depth reaches its minimum (right panel). The

horizontal, dotted lines show the corresponding values of ωc where

the I and B roots merge, i.e., ωmax on the left panel and ωmin on the

right one. For the flow we used, see Fig. 2, one has ωmax ≈ 5Hz and

ωmin ≈ 0.8Hz.

into Eq. (S4) and noticing that, since tanh is an odd function,

the second term involves only even-order derivatives in each

direction, give the dispersion relation

(ω − U · k)2 = gp(k, n) tanh (hp(k, n)) , (S6)

where p(k, n) ≡
√

k2 + n2π2

l2 is the modulus of the projec-

tion of the wave vector on the free surface. Taking the small-k
limit, one can see that the velocity of long-wavelength waves

in the fluid frame is c =
√
gh. The Froude number F , de-

fined as the local fluid velocity divided by c, is thus equal to

U/
√
gh. Modes with n = 0 (continuous and dashed lines in

the top panel of Fig. 1) are homogeneous along the transverse

direction, while those with n > 0 are the transverse modes

(dot-dashed lines in the Figure). For the former, we distin-

guished modes with positive (continuous line) and negative

(dashed line) frequency ω − Uk in the rest frame of the fluid.

At fixed ω, the dispersion relation of longitudinal modes,

see Eq. (1), has an infinite number of roots in k, but only a

few of them are real. More precisely, if the flow is subcritical,

i.e., if |F | < 1, there are 4 real roots for |ω| smaller than a crit-

ical value ωc(v, h), and two real roots otherwise: two roots,

corresponding to the I and B modes, merge and become com-

plex when ω crosses ωc by increasing values. The value of ωc

depends on U and h, which leads us to define two important

frequencies, see Fig. S1:

• ωmax is the x → ∞ limit of ωc(h(x), v(x)). It is thus

the maximum value at which the wave-maker can send

a counter-propagating wave.

• ωmin is the minimum value of ωc, reached close to the

top of the obstacle. In the WKB approximation, an

incoming counter-propagating wave with ω < ωmin

has no turning point and is thus essentially transmit-

ted across the obstacle. On the contrary, a wave with

ω > ωmin has a turning point and will be essentially

reflected.

If the flow is (locally) supercritical, i.e., |F | > 1, then there

are only two real roots for any real value of ω. So, in a tran-

scritical flow (where, by definition, there is a supercritical re-

gion), ωmin = 0. In our setup instead, the Froude number

is everywhere smaller than 1, so ωmax > ωmin > 0. Their

respective values are ωmax ≈ 5Hz and ωmin ≈ 0.8Hz.

In a stationary background flow, the frequency of linear per-

turbations is conserved. The outgoing waves obtained by the

scattering of an incoming monochromatic wave of frequency

ω thus have the same frequency as the incoming one. Hence

their wave vectors ka evaluated far away from the obstacle

will be given by the real roots of Eq. (1) at that frequency ω.

One consequence of this is that 2-point correlation function

of the noise in the (k, k′) plane is localized where k and k′

correspond to the same frequency. This is shown in Fig. 3.

To obtain the curves, we considered all the possible doublets

(ka(ω), kb(ω)) where (a, b) ∈ {B, I,R,H}2, and drew their

locus when ω describes [−ωmax, ωmax]. These curves are also

shown in Fig. 4 to verify that the location of the peaks is con-

sistent with our analysis, and to identify the waves they in-

volve.

Experimental Setup

Our experiments were performed in the water channel of

the Pprime Institute, which is 6.8 m long and 0.39 m wide. A

PCM Moineau pump creates the water current and its flow rate

is regulated by a variator. The water is first injected into a con-

vergent chamber whose geometry and honeycomb structure

produce an outgoing flow devoid of practically all boundary-

layer effects and macro-vortices. At the downstream end of

the channel, there is a guillotine which can be set in vertical

motion around a mean height to generate a wave that propa-

gates upstream, see Fig. 1 in [23]. To measure the free surface,

as in [6, 22], a laser sheet was projected from above along the

center line of the channel. The laser beam is produced by an

Argon LASER (Spectra Physics 2W), guided by an optical

fiber to a cylindrical lens (placed at 1.44 m above the free sur-

face) which formed a LASER sheet. With a LASER power of

0.14 W (after the lens), the power density at the free surface is

around 0.05Wm−1. A fluorescent dye was added to the water

to delineate a laser line on the surface, specifically 50 g of flu-

orescein to reach a high concentration (≈ 12 gm−3) in order

to obtain a minimum penetration of the LASER sheet into the

fluid. Indeed, the LASER light intensity decreases by 90%
at 5 mm below the free surface. Three cameras (Jai CVM2

1600x1200) captured this LASER line on a 2.16 m wide visu-

alization window. Their resolution is 0.45 mm/px. We used

a sub-pixel detection method similar to that of [6] with an ac-

curacy of 0.1 mm, see also [22]. The Figure S3 shows the

stationary undulation (represented after free surface detection

with sub-pixel accuracy in Figure 2 by the red curve).
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FIG. S2. A sketch of the experimental setup for measuring free surface deformation. The flow goes from left to right, as indicated by the blue

arrow, while the incident mode I sent by the wave maker goes in the opposite direction, see brown arrow.

FIG. S3. Picture of the LASER line showing the stationary undulation over the obstacle. The distance between both vertical black lines is 1 m.

Windowing

The finite length LI of the spatial integration window has

two undesirable effects. First, the Fourier transform of a plane

wave has a main lobe with a non-vanishing width, which lim-

its the accuracy in determining the wave-vector k and ampli-

tude A. Second, it also shows side-lobes which produce arte-

facts in the correlation functions. At fixed LI , the magnitude

of these effects depend on the shape of the window function,

which must be suitably chosen to minimize the artefacts while

keeping a good accuracy on k and A. We found that a con-

venient choice is the Hamming window [34], which strongly

suppresses the amplitude of the first side-lobes at the cost of

multiplying the width of the main one by two with respect to

a rectangular window. As shown in Fig. S4, this suppression

efficiently erases the artefacts which are clearly visible with a

rectangular window.

Scattering coefficients

When sending a macroscopic coherent wave from the

downstream end of the flume, we measured the scattering co-

efficients for the B, H and transmitted modes. Their ampli-

tudes agree with results of numerical simulations only when

the static undulation of the background flow is taken into ac-

count, as we now describe.

In Fig. S5 we show the norms of the coefficients α, β, and

Ã entering in the scattering of the (unit norm) incoming mode
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FIG. S4. Comparison of the two-point correlation function G2(ω; k, k
′) of Eq. (3) evaluated using a rectangular window (left) and a Hamming

window (right) over x ∈ [0.45m, 1.45m], for the case when an incident wave of angular frequency ω = 2.5 Hz. k and k′ are expressed in

m−1.

⨯
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FIG. S5. Plots of the norm of the scattering coefficients |α| (blue cir-

cles), |β| (orange squares), and |Ã| (green crosses) observed when

sending I waves for seven different frequencies. For |α| and |β|, er-

ror bars arise from the extension in k space over the finite integration

window of 0.95m. Relative statistical uncertainties are smaller than

10% and do not contribute significantly. The transmission coefficient

Ã was obtained by a method similar to that of [23] and averaged over

the 80 realizations. Here, error bars show the standard deviation.

φI
ω into the four outgoing modes [21], see Fig. 2,

φI
ω → αω φB

ω + βω φH
ω +Aω φR

ω + Ãω φT
ω . (S7)

The most accurate way we found to measure αω and βω

consists in using the constructive interferences of the G2 of

Eq. (3):

|αω| =
G2(ω, kI , kB)

G2(ω, kI , kI)

∣

∣

∣

∣

∂ωkI
∂ωkB

∣

∣

∣

∣

1/2

,

|βω| =
G2(ω, kI , kH)

G2(ω, kI , kI)

∣

∣

∣

∣

∂ωkI
∂ωkH

∣

∣

∣

∣

1/2

. (S8)

In agreement with [21, 23], for ω ≤ ωmin ∼ 0.8Hz, |αω| and

|βω| both significantly decrease whereas the transmission co-

efficient |Ãω| becomes large (it should reach 1 when ω → 0).

For ω > ωmin, |αω| increases and saturates to a value close

to 1. |βω| also increases and then slowly decreases. In fact,

the maximal value of |βω| is significantly larger than that we

obtained by solving numerically the wave equation, see be-

low. We have not succeeded in measuring the coefficient Aω

relating long wavelength co-propagating modes. Simulations

indicate that it should be smaller than 0.2. Collecting the

data, and assuming that |Aω| . 0.2, the unitarity relation

1 = |αω|2 − |βω|2 + |Aω|2 + |Ãω|2 expressing the conser-

vation of the norm [21] is obeyed within error bars.

We here summarize the numerical procedure of [21] that

we applied in the present case. Under the conditions speci-

fied above Eq. (1), linear perturbations obey the wave equa-

tion (S1). A quartic truncation in ∂x gives

[(∂t + ∂xU) (∂t + U∂x) (S9)

−g

(

∂xh∂x +
1

3
∂x (h∂x)

3

)]

φ = 0,

where U and h are here x-dependent functions describing the

background flow and where φ is the perturbation of the veloc-
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FIG. S6. In a logarithmic scale, we show the norm of 4 scattering co-

efficients entering Eq. (S7), namely |αω| (blue), |βω| (orange), |Aω|

(red), and

∣

∣

∣
Ãω

∣

∣

∣
(green) as functions of ω.

ity potential at the free surface. It determines the linear varia-

tion of the water depth δh through δh = − 1
g (∂t + U∂x)φ.

We numerically solved Eq. (S9) in a background flow with

a water depth of the form

h(x) =heff + (h0 − heff)e
−x2/σ2

+
Au

4
cos (kux) (S10)

×
(

1 + tanh

(

x− xL

∆L

))(

1 + tanh

(

x− xR

∆R

))

,

and with U(x) = q/h(x). q and h0 are such that the maxi-

mal Froude number matches the observed value Fmax ≈ 0.85
and the asymptotic flow velocity is given by its effective value

Ueff = 0.37ms−1. The parameters xR/L and ∆R/L specify

the locations of the two ends of the undulation and their steep-

ness. Its amplitude and wave vector are given by Au and ku.

We first considered the case without undulation Au = 0,

see Fig. S6 where the logarithms of the norms of the four co-

efficients entering Eq. (S7) are represented as functions of the

angular frequency. Because of the quartic truncation of the

dispersion relation, the values of ωmax and ωmin slightly differ

from the actual ones: ωquart
max ≈ 4.4 Hz and ωquart

min ≈ 0.72 Hz.

We see that the transition from transmission below ωmin to

blocking above ωmin reproduces rather well what is found in

Fig. S5, in agreement with the analysis of [23]. In fact the

main difference concerns the maximal value of the norm of βω

and its decay for ω > ωmin. For instance, for ω = 3ωquart
min ,

the numerical prediction of |β| is 0.004, whereas the observed

value is |β| ∼ 0.3. We believe that this large discrepancy will

still be found when replacing the quartic wave equation by a

more accurate one. Hence the scattering on a flow without

undulation does not seem to reproduce the observed values of

|βω|.
This conclusion is reinforced by computing |βω| on back-

ground flows containing an undulation with similar proper-

ties as those we observed, see the red curve in Fig. 2. With

more precision, the undulation is attached on the downstream

1 2 3 4

ω10
-4

0.001

0.010

0.100

β

FIG. S7. We show |β| as a function of ω as a function of ω for the

background flow and for two undulations added on top of it. The

corresponding three water depths are given by Eq. (S10) with Au =
0 (continuous), Au = 3mm (dashed), and Au = 9mm (dotted).

One clearly sees the significant increase of the norm of βω when

including the scattering on the undulation.

side of the obstacle, i.e. xL ∼ 0, it has about 15 oscilla-

tions (kuxR ≈ 14.3) and is slowly damped with ku∆R ∼ 9.

The wave vector ku in Eq. (S10) has been chosen to match the

zero-frequency root of the quartic wave equation, see Eq. (S9).

Its peak-to-peak amplitude is 2Au = 6mm and 18mm. When

including the scattering on each of these two undulations, we

clearly see that the maximum value of |βω| is much larger, and

its decrease for large ω slower. We therefore conjecture that

the scattering on the undulation plays a significant role in the

properties of the coefficients represented in Fig. S5, and in the

strength of the correlations presented in Fig. 5.

Nonlinear effects

We now estimate the contribution of nonlinearities in the

stimulated case. To first order, their effect is to convert part of

the incident waves to harmonics with frequencies which are

multiples of that of the wave-maker, and/or to induce a spatial

dependence of the frequency [35]. To obtain the evolution of

the frequency content in space, we compute the Fourier trans-

form in time δh̃(ω, x) for each position. Results are shown in

Fig. S8 for the incoming frequency ωi = 3.14Hz. It clearly

shows the absence of instability (increase/decrease of the in-

coming frequency in space) or harmonics generation. For in-

stance, the ratio between the signal of the incoming frequency

and the first harmonic is the same than the signal-to-noise ra-

tio. We have checked that it remains true for all incident fre-

quencies show in Fig. S5. These results indicate that nonlinear

effects are negligible. Since the typical amplitude of the noise

fluctuations is ten times smaller than that of the waves sent

by the wave-maker, nonlinear effects should a fortiori play no

significant role in the noise.
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FIG. S8. Top: Absolute value of the time Fourier transform

|δh̃(ω, x)| for the stimulated case with the incoming frequency ωi =
3.14Hz (divided by its maximum value). Bottom: Signal-to-noise ra-

tio |δh̃(ω, x)||/δh̃(ωi, x)| against the space position (in the studied

region).

Correlations in a flow without obstacle

To verify that the correlations we observed are mainly

due to the scattering on the flow inhomogeneities induced

by the obstacle, we now briefly study the properties of the

noise for a flow over a flat bottom. For these measurements,

we used three cameras (Point Grey Research Grasshopper3

2048× 2048) which provide a 2.30m wide visualization win-

dow with a resolution of 0.37mm/px. The spatial window

used to compute the Fourier transform is 1m long and the

experiment lasted 102s, separated into 10 intervals of equal

duration to compute the averages.

The power spectrum of the noise in the (nearly homoge-

neous) flow is shown in Fig. S9. When comparing it with

Fig. 1 of the main text, the principal difference concerns the

power of the dispersive branches, which is strongly reduced.

FIG. S9. Power spectrum for the flow without obstacle. As in Fig. 1,

we show the square root of P , and use the same normalization.

This is a first indication that the mode conversion is much

smaller than in the case with obstacle. The correlation maps

at fixed ω in the k−k′ plane show no clear cross-correlations.

(This is why we do not show them.)

To quantify the low intensity of the cross-correlations, we

estimated the ratios |cIB| /nI and |cIH| /nI for several fre-

quencies, where

cab(ω) ≡
G2 (ω; ka(ω), kb(ω))

√

dka

dω
dkb

dω

,

and where nI is the normalized power spectrum of the in-

coming hydrodynamical I modes. Although the data seem

too noisy to determine a precise value, we found that these

two quantities remain smaller than 10−3. By comparison, for

the flow with obstacle these quantities are slightly larger than

10−2 for ω = 1Hz and larger than 0.1 for larger frequencies.

This strongly suggests that most of the observed correlations

presented in the main text come from the inhomogeneities of

the flow due to the obstacle, and the blocking of incoming

waves.

Classical and quantum correlations

It is interesting to compare the techniques we used to those

recently used by J. Steinhauer in his study of density fluctu-

ations in a condensed atom gas [18]. Before doing so, it is

worth comparing the two systems.

In both cases, one studies linear perturbations propagating

on top of an inhomogeneous flow. The dispersion relation is
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superluminal (anomalous) in [18] as the group velocity in the

frame of the fluid increases when increasing the wave number

k, whereas it is subluminal in our case. The main consequence

of this difference appears at the level of the characteristics of

the corresponding wave equations. In the superluminal case,

the turning point (where the wave is blocked) is located in the

supersonic region [38], whereas in our case it is located in the

subsonic region [21]. However, the scattering coefficients are

similar between the two cases. Indeed, as explained in [3]

there exists a map between them which preserves their main

properties in the weak dispersive limit.

More important differences appear at the level of the back-

ground flows. Firstly, J. Steinhauer created a (nearly) station-

ary flow which is analogous to a black hole (as the flow ve-

locity increases along the direction of the flow) whereas we

dealt with a stationary flow analogous to a white hole (in the

downstream region). As a result, in our case, the scattered

waves are described by the high wave number roots kB and

kH which both propagate against the flow on the same side

of the flow, whereas in [18] the scattered waves are described

by low wave-number roots which propagate on either side of

the horizon. Secondly, the flow created by J. Steinhauer is

clearly trans-critical as the Mach number M = v/c on the

supersonic side is of the order of 4 whereas our flow is sub-

critical since Fmax ≈ 0.85. Hence, in our case, only waves

with frequency above ωmin of Fig. S1 are essentially blocked,

whereas there is no such critical frequency in [18]. There is

yet another difference which concerns the number of modes

involved in the scattering at fixed ω. In our case, as can be

seen in Eq. (S7), the scattering involves four modes. In his

case instead, because the flow is transcritical and monotonic,

there are only three of them [14]. Finally, our white hole flow

is modulated on the downstream region by a zero-frequency

undulation which induces some extra scattering, as we dis-

cussed above.

Besides these differences, the important common fact is the

stationary linear mode mixing which involves negative energy

waves. Hence in both cases there is a steady production of cor-

related pairs of modes propagating away from the horizon in

the asymptotic uniform regions. Moreover, in both cases one

is dealing with a statistical ensemble of density perturbations.

In [18], the phonon state is described by an ultra low tem-

perature quantum state, apparently very close to the vacuum.

In our case, we have a random distribution of incoming per-

turbations. Hence in both cases the appropriate tool to study

the effects of the scattering is to consider the two-point func-

tion of Eq. (3), parametrized by the wave numbers k and k′

measured in the asymptotic homogeneous regions. Then, as

explained in the text, since the background flow and the prob-

ability distribution are both stationary, the cross-correlations

should only involve pairs of modes with roots ka(ω), kb(ω)
sharing the same frequency ω. At this level, there is an impor-

tant difference between observations of cold gases and surface

waves. In the present work, we measured the perturbations as

a function of time. From this we could extract the two-point

function at two different times, and therefore its behavior at

fixed ω. In [18] instead, in situ density perturbations are only

measured at one time and, to obtain statistically relevant infor-

mation, the measurements are repeated many times (always

after the same lapse since the formation of the sonic horizon).

In that case, only the equal-time correlation function is ob-

tained. As a result, only the integral over ω of Eq. (3) [38] is

obtained, something which could induce a certain blurring of

the cross-correlations.

Irrespectively of this difference, the key information con-

cerns the relative importance of the strength of the corre-

lation between the modes ka(ω) and kb(ω) with respect to

their power spectrum (their auto-correlations). This compar-

ison can be made precise by computing the ratio of Eq. (4).

When dealing with a classical ensemble of perturbations, this

ratio is necessarily smaller than 1, as this is guaranteed by a

Cauchy-Schwarz inequality. In classical terms, the value of

g2(ω; a, b) gives the fraction of modes ka(ω) and kb(ω) that

are correlated to each other. In quantum settings, the situation

is more subtle. When using normal ordered operators to com-

pute the auto-correlations, (i.e., the mean occupation number

of quasi-particles), g2(ω; a, b) can be larger than 1, or equiva-

lently, the difference ∆ = G2(ω; ka, ka) × G2(ω; kb, kb) −
|G2(ω; ka, kb)|2 can be negative for a small subset of (en-

tangled) states. In this case, the bi-partite state describing

the modes ka(ω) and kb(ω) is necessarily “non-separable”,

see [15–17] for a presentation of these notions and their im-

plementation in the context of the analog Hawking radiation.
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