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Abstract

We experimentally study light self-trapping in triangular photonic lattices in-

duced optically in nonlinear photorefractive crystals. We observe the formation

of two-dimensional discrete and gap spatial solitons originating from the first

and second bands of the linear transmission spectrum.

c© 2006 Optical Society of America

OCIS codes: 190.4420, 190.5940

1



Photonic crystals are expected to find many applications in modern optical technologies

because of their unique properties arising from the effects of micro-periodicity. In particular,

the photonic bandgaps allow one to strongly modify and even suppress the propagation

of light in certain directions and at certain frequencies.1 Therefore photonic crystals and

periodic structures in general offer a wealth of new possibilities to efficiently manipulate the

flow of light in optical systems.

Two-dimensional periodic photonic structures can be fabricated in various geometries.

Among them triangular lattices with a hexagonal lattice symmetry are known to support

larger bandgaps and, therefore, most of the currently fabricated planar photonic structures

possess the hexagonal symmetry. Furthermore, the triangular lattice geometry appears

naturally in the stacking method fabrication of photonic crystal fibers.2

Embedding structural defects into otherwise regular periodic structures allows for in-

creased functionality and the realization of photonic crystal waveguides3 and high-Q optical

cavities.4 In both of these cases, as well as in photonic crystal fibers, light is bound to a

lattice defect by modified total internal reflection or Bragg reflection from the surrounding

bandgap structure. Efficient trapping, however, requires careful engineering and high accu-

racy fabrication of the periodic structure as well as the embedded defects, and this typically

represents a limiting factor in the practical realization of such devices.

Alternatively, beam self-localization can be used to dynamically introduce refractive in-

dex defects in lattice structures with a strong nonlinear response, resulting in the formation

of spatial lattice solitons.5 Such an approach avoids the need for embedded structural de-

fects to trap the light, and shows inherent advantages for all-optical applications due to the

nonlinearity-induced beam control. Efficient nonlinear directional transport6 and immobile

localizations7 were recently demonstrated experimentally for square lattices. Nonlinear mo-

bility and localization of light in triangular lattices, however, remains largely unexploited.

In this Letter, we report on the first experimental study of nonlinear light self-localization

in triangular lattices in the form of discrete and gap solitons.5 We demonstrate that the

self-localized beams are immobile and can be considered a nonlinear equivalent of high-Q

cavities in photonic crystals.

In experiment, we optically induce a two-dimensional triangular lattice [see Fig. 2(a)] in a

biased photorefractive SBN:60 crystal by interfering three ordinarily polarized broad beams

from a frequency-doubled Nd:YVO4 cw laser. The experimental setup resembles those de-
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scribed earlier.6,8 Because of strong electro-optic anisotropy the lattice writing beams prop-

agate linearly in the crystal while extraordinarily polarized probe beams simultaneously

experience the induced periodic potential and a strong photorefractive self-focusing nonlin-

earity.9

The propagation of an optical beam along the triangular lattice is governed by the par-

abolic equation for the slowly varying amplitude of the electric field7–9

i
∂E

∂z
+ D

(
∂2E

∂x2
+

∂2E

∂y2

)
+ F(x, y, |E|2)E = 0, (1)

where x and z are the transverse and propagation coordinates normalized to the charac-

teristic values xs = 1μm and zs = 1mm, respectively, D = zsλ/(4πn0x
2
s) is the diffraction

coefficient, λ is the wavelength in vacuum, and n0 is the average refractive index of the

medium. The function F(x, y, |E|2) = −γ(Ib + Ip(x, y) + |E|2)−1 characterizes the total re-

fractive index modulation induced by the optical lattice and the probe beam. Here Ib = 1 is

the normalized constant dark irradiance, Ip(x, y) = Ig| exp(ikx)+exp(−ikx/2− iky
√

3/2)+

exp(−ikx/2 + iky
√

3/2)|2 is the three-wave interference pattern which induces a triangular

lattice [see Fig. 1(c)] with period along the x axis d = 4π/(3k), Ig is the lattice intensity,

and γ is a nonlinear coefficient proportional to the applied dc field.10 The parameters are

chosen to match the experimental conditions: n0 = 2.35 is the refractive index of the bulk

photorefractive crystal, λ = 532 nm is the laser wavelength in vacuum, the lattice period is

d = 23μm or d = 30μm, γ = 2.36, and Ig = 0.49. The applied electric field is 5 kV/cm.

Light propagation in the linear regime is characterized by the spatially extended eigen-

modes or Bloch waves.1 The Bloch waves are found as solutions of the linearized equation (1)

in the form E = ψ(x, y) exp(iβz+iKxx+iKyy), where ψ(x, y) possesses the same periodicity

as the underlying lattice. The dispersion relations β(Kx, Ky) are periodic and fully defined

by their values in the first irreducible Brillouin zone,11 shown in Fig. 1(a). The calculated

bandgap spectrum is shown in Fig. 1(b) for lattice period d = 30μm. The lattice exhibits a

full two-dimensional bandgap for typical experimental parameters.

In a self-focusing medium, the nonlinear response increases the beam propagation con-

stant, shifting it inside the gaps for modes associated with the top of the dispersion bands

(i.e. points with maximum β), and allowing for the formation of self-trapped waves or spa-

tial solitons.5 It follows that in a triangular lattice, solitons can originate, in particular, from

the Γ point at the top of the first band (discrete solitons9) and the Y point at the top of the
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second band (gap solitons12)[see Fig. 1(b)].

In order to excite both types of self-trapped waves in the experiment, we shape the

probe beams so as to approximate the symmetry of the Bloch waves associated with the

corresponding points in the linear transmission spectrum. The calculated Bloch wave at the

top of the first band (Γ point) is shown in Fig. 1(d). It exhibits a strong intensity modulation

with peaks coinciding with those of the lattice [see Fig. 1(d)], and a constant phase in the

transverse plane. This fundamental Bloch wave is excited by a Gaussian beam focused onto

a single lattice site at the input face of the crystal [Fig. 2(b)]. The spectral components of

the input beam are centered around the Γ point in Fourier space [Fig. 1(a) and Fig. 2(c)]. At

low laser power (10 nW ) the beam experiences discrete diffraction, and most of the light is

coupled out of the central lattice site upon propagation, as shown in the three-dimensional

plot of the output beam intensity distribution in Fig. 2(d). At high laser power (1 μW ), on

the other hand, the beam localizes at the central lattice site, resembling a discrete lattice

soliton [see Fig. 2(e)]. Figure 2(f) shows the calculated nonlinear output beam, and the

agreement between theory and experiment is good. This observation represents a clear

evidence of beam self-trapping in the total internal reflection gap of the triangular lattice.

The calculated Bloch wave associated with the Y point at the top of the second band is

shown in Figs. 1(e,f). It has a more complex intensity and phase structure and represents a

state with a reduced symmetry. The phase structure of the second band wave is staggered

in the vertical direction with a π phase jump between each zigzag shaped intensity band

extending in the horizontal direction. The intensity peaks are positioned off-center with

respect to the lattice sites.

The second band wave is excited experimentally by a two-beam interference pattern

consisting of horizontal fringes with a staggered phase structure along the vertical direction

[Fig. 3(a)]. The period of the interference pattern is matched to that of the corresponding

Bloch wave, and the spectral components of the two input beams are centered around the Y

point in Fourier space [Fig. 1(a) and Fig. 3(b)]. Despite the rather crude approximation to

the actual Bloch wave profile, the second band mode is successfully excited in the experiment,

as seen in Fig. 3(c) which shows the central part of the linear output from the crystal.

At low power the second band wave strongly diffracts in the lattice [Fig. 3(d)] while at high

power it localizes to almost a single lattice site with two out-of-phase and off-center lobes,

thus preserving the Bloch wave symmetry. This is verified by interferometric measurements
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revealing a clear π phase jump at the center of the localized beam [Fig. 3(f)]. Numerical

simulations confirm the observed intensity [Fig. 3(g)] and phase [Fig. 3(h)] structure of

the localized beam. Again we find that observations agree well with theory, although some

asymmetry and noise in the excited wave is seen in experiment. The observations in Fig. 3

represent a clear evidence of beam self-trapping inside the first Bragg reflection bandgap

of the triangular lattice, and as such demonstrates a nonlinear analog to photonic crystal

high-Q cavities.

The localized gap state is found to be experimentally robust and immobile in any direc-

tion, an observation standing in stark contrast to the strong directional mobility of reduced-

symmetry gap solitons in square lattices.6

We note that gap solitons can also be associated with the J point of the second spectral

band12 [Figs. 1(a,b)] where the phase structure at the soliton core is rotated by 30 degrees

compared to the Y state. According to numerical calculations, the internal energies of the

Y and J gap solitons are almost identical under our experimental conditions, and transfor-

mation between these states could therefore be induced by a small input beam asymmetry.

Indeed, the observed second band wave is seen to be slightly rotated at the crystal output.

In conclusion, we have demonstrated experimentally light self-localization and the for-

mation of two-dimensional discrete and gap spatial solitons in optically induced triangular

photonic lattices. We believe our results may be useful for other periodic photonic structures

with similar geometry such as planar photonic crystals and micro-structured optical fibres.

We acknowledge support from the Australian Research Council.
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FIGURE CAPTIONS

Fig. 1. (Color online) (a) Lattice unit cell in Fourier space; (b) Bloch-wave dispersion along

the contour passing through the high-symmetry points marked in (a); (c) Refractive-index

profile of the triangular lattice; (d,e) Bloch waves corresponding to the Γ and Y points

in (a,b): (d) intensity at the Γ point of the 1st band, (e,f) intensity and phase at the Y

point of the 2nd band.

Fig. 2. (Color online) (a-c) Experimental images of (a) triangular lattice (period 23μm),

(b) single-beam input intensity distribution, and (c) Fourier spectrum of input and lattice

beams. In (a,b) the dashed hexagon indicates the lattice unit cell, and in (c) the edge of

the 1st Brillouin zone as defined by the three lattice beams. (d,e) Measured linear discrete

diffraction and nonlinear self-trapping, respectively, from the top of the 1st band. The plot

dimensions are 150μm along both x and y. (f) Numerically calculated intensity of discrete

soliton.

Fig. 3. (Color online) Experimental images of (a) two-beam input intensity distribution,

(b) Fourier spectrum of input and lattice beams, and (c) linear 2nd band Bloch wave at the

crystal output. In (b) the dashed hexagon indicates the edge of the 1st Brillouin zone, and

in (c) the lattice unit cell. (d,e) Measured linear discrete diffraction [as in (c)] and nonlinear

self-trapping, respectively, from the top of the 2nd band. The plot dimensions are 150μm

along x and 200μm along y. (f) Measured phase interferogram for the self-trapped beam in

(e). (g,h) Numerically calculated gap soliton intensity distribution and phase, respectively.

The lattice period is 30μm.
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