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Observation of nuclear-spin Seebeck effect
T. Kikkawa 1,2,3✉, D. Reitz4, H. Ito1, T. Makiuchi 1, T. Sugimoto1, K. Tsunekawa1, S. Daimon 1,

K. Oyanagi 3,5, R. Ramos 2,9, S. Takahashi2, Y. Shiomi6, Y. Tserkovnyak 4 & E. Saitoh1,2,3,7,8

Thermoelectric effects have been applied to power generators and temperature sensors that

convert waste heat into electricity. The effects, however, have been limited to electrons to

occur, and inevitably disappear at low temperatures due to electronic entropy quenching.

Here, we report thermoelectric generation caused by nuclear spins in a solid: nuclear-spin

Seebeck effect. The sample is a magnetically ordered material MnCO3 having a large nuclear

spin (I= 5/2) of 55Mn nuclei and strong hyperfine coupling, with a Pt contact. In the system,

we observe low-temperature thermoelectric signals down to 100mK due to nuclear-spin

excitation. Our theoretical calculation in which interfacial Korringa process is taken into

consideration quantitatively reproduces the results. The nuclear thermoelectric effect

demonstrated here offers a way for exploring thermoelectric science and technologies at

ultralow temperatures.
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T
hermoelectric effects enable the direct conversion of ther-
mal energy into electric energy, promising for power
generation and waste heat recovery. Most of the prevalent

thermoelectric generators have relied on the Seebeck effect, which
is the generation of an electric voltage by placing a conductor
junction in a temperature gradient1–3. Recently, in the study of
spintronics, a spin analog of the Seebeck effect—the spin Seebeck
effect (SSE)4–20—was discovered. The SSE is the generation of a
spin current, a flow of spin angular momentum, as a result of
a temperature gradient applied across a junction consisting of a
magnet and a metal17. In electronic SSE, a thermally generated
magnon flow in a magnet injects a conduction-electron spin
current into the adjacent metal via the interfacial electronic spin
exchange8,9,13,16. The spin current injected into a metal can be
converted into a voltage by the inverse spin Hall effect
(ISHE)21–24, enabling unexplored approaches toward thermo-
electric conversion and energy-harvesting technologies10,17,18.

Up to now, all the thermoelectric effects have been an exclusive
feature of electrons1–20. At low temperatures, however, their
efficiency is dramatically suppressed, as the thermodynamic
entropy of electrons steeply reduces to zero when approaching
absolute zero temperature, according to the third law of ther-
modynamics. In the case of Seebeck effects in semiconductors, the
entropy reduction is related to the exponential suppression of the
thermally excited charge carriers2, whereas, in SSEs, it is related to
the freezing out of spin fluctuations (magnons)15–17. Seebeck
effects in metals are also suppressed at low temperatures, as the
efficiency is governed by kBT=ϵF

1, where kB is the Boltzmann
constant, T the environmental temperature, and ϵF the Fermi
energy. Therefore, so far, the thermoelectric applications have
been limited to higher temperatures, as no mechanism in the
ultralow temperature regime (~mK range) has been found.

In solids, there is a hitherto unexplored entropy carrier that is
well activated even at ultralow temperatures: a nuclear spin.
Because of its tiny gyromagnetic ratio γn (~103 times less than
that of electrons25 γe), a nuclear spin exhibits much lower exci-
tation energy than that of electron spins in ambient fields,
allowing its thermal agitation. Here, a question arises: can nuclear
spins generate thermoelectric effects? If spin angular momentum
can be extracted from nuclei in the form of an electron spin
current under a temperature bias, it should generate a thermo-
electric voltage via the ISHE in an attached metal, realizing all-
solid-state thermoelectricity based on atomic nuclei.

Here we report an observation of the nuclear SSE (Fig. 1a) in a
heterostructure composed of a Pt film and a crystal of easy-plane
canted antiferromagnetic MnCO3

26–28 (Fig. 1d). In MnCO3,
55Mn nuclei, a 100% natural-abundance isotope, carry a large
spin I of 5/2 and exhibit strong hyperfine coupling with electrons,
which allows spin transfer between nuclei and electrons as
recently found in the spin pumping measurements under nuclear
magnetic resonance28. In MnCO3 single crystals covered with Pt
films, we found a strong thermoelectric signal enhancement down
to 100mK (Fig. 1e), as shown below, which demonstrates ther-
moelectric generation at ultralow temperatures. The experimental
results are quantitatively reproduced by a theory for nuclear SSE
in which the Korringa process29 due to the hyperfine coupling
between nuclear spins in the MnCO3 and conduction-electron
spins in the attached Pt is taken into consideration (Fig. 1a).

Results
Sample and measurement setup. We have used the ISHE21–24 in
the Pt film to detect a spin current injected into the film. The
ISHE converts a spin current, Js, into an electric field, EISHE,
through the spin–orbit interaction of conduction electrons, which
can be strong in heavy metals such as Pt10,17. When a spin

current induced by a nuclear SSE carries spin polarization ŝ
parallel to the net nuclear-spin polarization I along the spatial
direction Js, EISHE is given by (Fig. 1b)

EISHE ¼ 2e

_
ρθSHEJs ´ ŝ ð1Þ

where ρ and θSHE are the resistivity and the spin Hall angle of the
Pt layer, respectively. By measuring EISHE, nuclear SSEs can be
detected electrically. We note that, as the spin current Js flows
normal to the Pt/MnCO3 interface (Js k x), the resultant voltage
signal V is maximal for ŝ ðkIÞ k z, when EISHE is measured along
the y direction shown in Fig. 1b. However, because of the tiny
Zeeman coupling of nuclear spins, it is challenging to control
nuclear-spin polarization by using B, unlike electronic magneti-
zation in conventional magnets. Nevertheless, we can overcome
the difficulty by using a magnetic ordered material carrying a
large nuclear spin and strong hyperfine coupling. We have
noticed that an antiferromagnet MnCO3 (I ¼ 5=2)26–28 satisfies
all such conditions. Below the Néel temperature (TN ¼ 35K) of
MnCO3, the Mn2+ sublattice magnetizations M1 and M2

are aligned in the (111) plane and canted slightly from the
collinear antiferromagnetic configuration due to the bulk
Dzyaloshinskii–Moriya interaction26 (see Fig. 1d and Supple-
mentary Note 1). The hyperfine (Overhauser) fields Bhf acting on
the 55Mn sublattice nuclear spins I1 and I2 due to M1 and M2

reach as large as 57 T28, which induce nuclear-spin polarization
(~40% at 100 mK) and orient I1 and I2 along the M1 and M2

directions, respectively30, as shown in Fig. 1d. Moreover, the net
nuclear-spin polarization (I1 and I2) direction can be controlled
by applying B, as the canting angle θ of M1 and M2 changes with
B, owing to the very weak magnetocrystalline anisotropy
(~0.1 mT within the easy plane26, see Fig. 1d). The advantage
enables us to prepare a controllable nuclear-spin polarization in
MnCO3, making nuclear SSE experiments feasible.

The SSE devices used in the present study consist of a 10 nm-
thick Pt strip [200 μm long (l) and 100 nm wide (w)] deposited
on the top of an insulating MnCO3 (111) (3 ´ 3´ 0:5mm3)
crystal (see “Methods” and Supplementary Note 2). The Pt
strip acts as a heater as well as a spin-voltage converter based
on the ISHE for measuring nuclear SSEs: by applying an a.c.

current Ic ð¼
ffiffiffi

2
p

Irms sin ωtÞ to the Pt strip to generate heat
and measuring the second harmonic voltage V generated in the
Pt by a lock-in technique11,14, we can selectively detect the
ISHE voltage arising from the temperature drop across the Pt/
MnCO3 interface induced by the Joule heating ∝ I2rms of the
applied current. The SSE experiments were conducted with a
4He cryostat down to 1.82 K using a Pt/MnCO3 device named
Device 1 and with a 3He–4He dilution refrigerator down to 100
mK using a similar device named Device 2. The Pt/MnCO3

devices were mounted in the cryostats and the magnetic field B
was applied along the z direction as shown in Fig. 1b. Further
details are described in “Methods.”

Observation of nuclear SSE. In Fig. 2a, we show the voltage V
data measured at T ¼ 20K and 1.82 K for the Pt/MnCO3 Device
1. At 20 K, no voltage signal appears with the application of B. On
the other hand, at a lower temperature T ¼ 1:82K, an uncon-
ventional voltage signal shows up. The sign of V/I2rms reverses by
reversing the B direction. The signal intensity increases mono-
tonically with increasing B from zero and it takes a broad peak at
around 4 T. For further high B, V/I2rms starts to decrease. We
confirmed that the observed signal shares the characteristic fea-
ture of ISHE induced by SSE10,17; V appears only when a heat
current is applied and the V intensity scales linearly with the heat
power∝ I2rms. The signal intensity is maximal when B k z but
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vanishes when B ? z, consistent with the prediction of Eq. (1).
The sign of V reverses when the Pt strip (θSHE>0) is replaced with
tungsten exhibiting a negative10 θSHE. The results confirm that the
voltage signal is induced by thermally driven spin currents and
ISHE (see Supplementary Notes 3–5 for details).

Surprisingly, the signal intensity persists down to the ultralow
temperature regime. Figure 2c, d show the B dependence of
V/I2rms at 1.8 K < T < 50 K for Device 1 and at 100 mK < T < 1.6 K
for Device 2, respectively. With decreasing temperature T starting
from 50 K, the SSE signal appears below ~10 K and its intensity
dramatically increases by further decreasing T (see Fig. 2c and b,
in which the T dependence of the maximum V/I2rms is plotted).
Importantly, the signal intensity continues to increase down to
ultralow temperatures on the order of ~100 mK (see Fig. 2d and
the inset to Fig. 2b). Moreover, the signal persists in the higher
field range up to 14 T even at such ultralow temperatures, which
is totally distinct from the conventional SSE driven by electronic
magnetization dynamics. For instance, in ferrimagnetic Y3Fe5O12,
the SSE intensity decreases monotonically with decreasing
temperature below 20 K and completely disappears below 5 K at
14 T due to the freezing out of magnons15–17. The maximum
output of Device 2 normalized by its electrical resistance RPt,

heating power RPtI2rms, and geometric factor l�1 is as large as

Vmaxl/(R2PtI2rms)∼ 58 nAmW−1 at 101 mK, which is nearly two
orders of magnitude higher than that of a prototypical room-
temperature SSE device made of Pt/Y3Fe5O12 (~1 nAmW−1)
having the same electrode and heater dimensions [see Supple-
mentary Note 7 and Eq. (3) in Supplementary Note 9 for details].

Nuclear- and electron-spin excitation spectra in MnCO3. We
now discuss the results in terms of the nuclear- and electron-spin
excitation features in MnCO3. In Fig. 1c, we show the electronic
and nuclear-spin excitation spectra in MnCO3

26–28 for several
fields at T= 100 mK, whose thermal energy kBT is depicted as the
green dashed line. Above kBT, thermal excitation is exponentially
suppressed. The lower branch at around 600MHz, corresponding
to 30mK, originates from the nuclear-spin excitation ωn, whose
excitation gap is dominated by the strong hyperfine internal field
Bhf= ωn/γn∼ 57 T. The upper branches represent the electronic
spin-wave modes ωmk, which shift toward higher frequencies with
increasing B due to the strong Zeeman effect. At B= 14 T, the
electronic spin excitation gap ωm0ð� γeBÞ is ~19 K, two orders of
magnitude greater than the thermal energy= 100 mK, resulting
in a negligibly small value of the Boltzmann factor
expð�_ωm0=kBTÞ� 10�82 � 1: If the SSE we measured were
driven by the electronic spin-wave modes, the SSE signal would
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Fig. 1 Concept of nuclear-spin Seebeck effect in Pt/MnCO3. a Schematic illustration of the nuclear SSE induced by the Korringa relaxation process29, the

spin-conserving flip-flop scattering between a nuclear spin, I, of 55Mn in MnCO3 and an electron spin, S, in Pt via the interfacial hyperfine interaction. Iz

represents the z component of the nuclear spin I. b Schematic illustration of the nuclear SSE and the ISHE in a Pt/MnCO3 hybrid structure, where MnCO3

contains nuclear spin I= 5/2 on 55Mn (100% natural abundance). When a temperature gradient (∇T) is applied across the Pt/MnCO3 interface, a spin

current (Js) carrying a spin polarization vector ŝ is induced in the Pt layer by the nuclear SSE, which is subsequently converted into an electric field (EISHE)

via the ISHE in the direction of Js ´ ŝ
22. Here, ŝ is along the external magnetic field B. c A calculated dispersion relation of the electronic spin wave and

energy of the nuclear-spin excitation in MnCO3 at a temperature T of 100mK for several magnetic fields26–28. The energy level of 100mK is plotted with a

green dashed line. At T= 100mK, the electronic spin waves are frozen out, whereas nuclear spins remain thermally active. d Schematic illustration of the

orientation of the Mn2+ sublattice electronic magnetizationM1 andM2, and the 55Mn nuclear spins I1 and I2 in MnCO3 in the (111) plane when the external

field B is applied in the plane (B k z). Below the antiferromagnetic ordering temperature TN= 35 K of MnCO3, M1 and M2 are aligned in the (111) plane and

canted slightly from the pure antiferromagnetic ordering direction due to the bulk Dzyaloshinskii–Moriya interaction26 (Supplementary Fig. 1). The canting

angle θ increases with the external field. θ= 0.26° at zero field, whereas θ= 12° at B= 14 T. Due to the strong hyperfine (Overhauser) field of Bhf ~ 57 T,

the sublattice nuclear spins I1 and I2 orient antiparallel to the electronic magnetizationM1 and M2 directions, respectively. Here, the antiparallel orientation

originates from the nature of the contact hyperfine interaction and the relative sign of the nuclear and electronic gyromagnetic ratios γn and γe
30. e

Experimental demonstration of the nuclear SSE in Pt/MnCO3. Temperature (T) dependence of the thermoelectric voltage V (normalized by the applied

heat power∝ I2rms) at B= 2 T. The error bar represents the SD. The inset shows the B dependence of V/I2rms at T= 101 mK. Theoretical results for the

nuclear SSE are also plotted with solid curves.
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be completely suppressed by applying a strong field of 14 T, as
with the conventional SSE of Y3Fe5O12

15. This clearly shows the
irrelevance of the electronic SSE to the observed signal at low
temperatures. On the other hand, the nuclear-spin mode can be
greatly excited even by such a small thermal energy of ~100 mK
and it remains almost unaffected by the applied B due to the tiny
Zeeman effects, much weaker than the hyperfine internal field ~
57 T (Fig. 1c); the nuclear spins can contribute to SSEs even in
such a low-T and high-B environment. The results also suggest
that direct coupling between nuclear spins in the MnCO3 and
electrons in the Pt at the interface should be responsible for the
SSE, rather than the interfacial electronic exchange mediated by
the gapped magnons under strong magnetic fields.

Theoretical model for nuclear SSE. We theoretically model the
nuclear SSE in which direct nuclear-electron coupling due to the

Korringa process29 is taken into consideration. In the model, the
spin current Jne is generated by the interfacial hyperfine inter-
action between nuclear spins in the MnCO3 and conduction-
electron spins in the Pt under the temperature bias Te � Tp (see

Fig. 3a and Supplementary Note 9 for details). Here, Te and Tp
represent effective temperatures for electrons in the Pt and
phonons in the MnCO3 near the interface, respectively. The
nuclear-spin current Jne arises in proportion to the effective
temperature difference between the electrons in the Pt (Te) and
nuclei in the MnCO3 (Tn): Jne ¼ ΓnekBðTe � TnÞ. Here Tn may
deviate from the electron Te due to the nuclear-phonon ther-
malization in MnCO3 given by Jnp ¼ ΓnpkBðTn � TpÞ; resulting

in the finite spin current Jne. The expression for the nuclear SSE
coefficient reads

Sn ¼ g"#n
4πI

πχb
_ωn

kBT

Te � Tn

Te � Tp

" #

ð2Þ

where g"#n is the nuclear spin-mixing conductance per unit area, χ
the normalized antiferromagnetic transverse susceptibility such
that θ ¼ χb is the canting angle, b � _γeseB the normalized
magnetic field with saturated spin density se (se � S=V , for
volume per site V), and T the average temperature. The bracketed

expression in Eq. (2) is evaluated as ðTe � TnÞ=ðTe � TpÞ ¼
ð1þ Γne=ΓnpÞ

�1 from the steady-state condition Jne ¼ Jnp
31.

Here, Γne∝ 1/T [Eq. (1) shown in Supplementary Note 9] and
Γnp∝ 1/Tω2

m0 is derived by Fermi’s Golden rule for the nuclear-
phonon thermalization rate mediated by virtual magnons (see
Supplementary Note 9), which allow us to evaluate the B
dependence of Te � Tn. As shown in Fig. 3b, it is maximal at zero
field by the strong thermalization (i.e., Tn � Tp) and decreases

gradually with B. There is a crossover field Bc, marked by Γnp
falling below Γne (see the results at T ¼ 100mK and 1 K in
Fig. 3b). In Fig. 3c, we compare the B dependence of the
experimental V/I2rms (blue plots) for Device 2 and calculated
V/I2rms based on the nuclear SSE Sn (red solid curve) at
T ¼ 100mK. Of important note, the experimental data are
quantitatively reproduced by the calculation. Such agreement is
confirmed also for other B and T regions (see Fig. 3d, e). A non-
monotonic field response of V now becomes evident: for B � Bc,
the SSE signal increases in proportion to B (Sn / B), owing to the
increased canting angle, and it takes a maximum at B � Bc. For
B � Bc, the SSE signal decreases monotonically with B
(Sn / B�1) due to the reduction of thermal nonequilibrium Te �
Tn (/ B�2) between the electron and nuclear systems (see
Fig. 3b). We also evaluated the electronic SSE, Sm, driven by the
antiferromagnetic spin-wave mode ωmk (see Supplementary
Note 9 for details) and found that its intensity, as well as B and T
dependencies, do not explain the experimental results (see Fig. 3c
and its inset), which confirm that the nuclear SSE dominates the
observed SSE.

Discussion
We finally discuss the difference between the previous nuclear-
spin pumping28 and the present nuclear SSE. For the nuclear-
spin pumping, the measured voltage is maximal at a relatively
low field of ~0.3 T and then starts to decrease with B. In such a
low-B range, the excitation gap of electronic spin-wave branch
in MnCO3 is comparable to that of the nuclear spins, and a
nuclear-spin wave, hybridized electronic spin-wave and nuclear-
spin mode32–34, is excited. The experimental result in ref. 28 was
thereby attributed to the coherent nuclear spin-wave formation,
the electronic (magnetization) component of which pumps a
spin current into an adjacent metallic layer in analogy with the
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B dependence of V/I2rms for the Pt/MnCO3 Devices 1 (c) and 2 (d) at

selected temperatures. The Pt/MnCO3 Device 1 exhibits electrical

resistance one order of magnitude higher than that for Device 2, resulting in

an overall higher intensity of V/I2rms in the Pt/MnCO3 Device 1 (see

Supplementary Note 6 for details).
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conventional electronic spin pumping for a magnet/metal
bilayer. On the other hand, the present nuclear SSE increases
with B up to around 4–5 T, whereas nuclear-electronic hybri-
dization is quickly suppressed as the electronic spin waves
become gapped out. This suggests that a different physical
mechanism governs the nuclear SSE, which is reasonable, as the
nuclear pumping in the SSE is not limited to a coherent long-
wavelength dynamics. We thus develop a nuclear SSE theory in
terms of interfacial Korringa relaxation, in which nuclear-spin
fluctuation directly transmits a spin current into an attached
metallic layer via interfacial hyperfine interaction, and found
quantitative agreement between the experiment and calculation.
The Korringa mechanism does not need strong nuclear-
electronic spin hybridization in the magnetic layer and also
electronic spin transfer at the interface. This may extend a class
of materials applicable for nuclear spintronics; materials having
magnetic elements with nuclear spins and strong hyperfine
interaction, such as 55Mn and 59Co (both of which are 100%
natural abundance), can be potential sources of nuclear-spin
currents.

In summary, we demonstrated the thermoelectric conversion
driven by nuclear spin: the nuclear SSE. The nuclear SSE is
enhanced at ultralow temperatures, in stark contrast to conven-
tional electron-based thermoelectricity. It is surely worthwhile to
explore nuclear SSEs in other systems to show the generality of
the phenomenon. Materials of interest include easy-axis anti-
ferromagnetic insulators having a large nuclear spin and exhi-
biting a spin-flop transition, at which the electronic magnon gap
comes close to the low energy scales relevant to the nuclear
dynamics35; for the nuclear SSE, this is instrumental in thermal
equilibration of the nuclei within the magnetic material.

The present work may serve as the bridge between nuclear-spin
science and thermoelectricity and marks the beginning of a
research field “Nuclear thermoelectricity”. It is also worth
exploring the reciprocal of the nuclear SSE, as it will be applied to
making a nuclear heat pump working at ultralow temperatures.

Methods
Sample preparation. We used single-crystalline MnCO3 slabs with a size of 3 × 3 ×
0.5 mm3, which are commercially available from SurfaceNet. The largest plane is
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(111) in the rhombohedral representation36,37. On the top of the (111) plane of the
MnCO3 slabs, 10 nm-thick Pt strips (200 μm long and nominally 100 nm wide) were
patterned by electron beam lithography and lift-off methods (see also Supplemen-
tary Note 2). The Pt strips were deposited by magnetron sputtering in a 10−1 Pa Ar
atmosphere. For a control experiment, we also prepared W/MnCO3 devices, where
the Pt strips are replaced with 10 nm-thick W strips (200 μm long and 500 nm wide)
exhibiting a negative θSHE

10,38,39.

SSE measurement. We measured the SSE by a standard lock-in
technique11,14,40,41 with a PPMS (Quantum Design) from 1.8 to 50 K and a 3He–
4He dilution refrigerator (KelvinoxMX200, Oxford Instruments; cooling power
of 200 µW at 100 mK) from 100 mK to 10 K. An a.c. charge current

(Ic ¼
ffiffiffi

2
p

Irms sin ωt) was applied to the Pt strip with a current source (6221,
Keithley) and the generated voltage V across the strip was recorded with a lock-
in amplifier (LI5640, NF Corporation). For the measurements with the dilution
refrigerator, we further introduced a voltage preamplifier (1201, DL Instru-
ments) and a programmable filter (3625, NF Corporation) to reduce signal noise.
The typical a.c. charge current property is as follows: the root-mean-square
(rms) amplitude Irms of 0.1–5 μA and the frequency ω=2π of 13.423 Hz. All the
V–B data are anti-symmetrized with respect to the magnetic field B.

Data availability
The data that support the findings of this study are available from the corresponding

author upon reasonable request.

Code availability
The codes used in theoretical simulations and calculations are available from the

corresponding authors upon reasonable request.

Received: 11 June 2021; Accepted: 29 June 2021;

References
1. Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Saunders College,

1976).
2. Goldsmid, H. J. Introduction to Thermoelectricity (Springer-Verlag, 2009).
3. Bell, L. E. Cooling, heating, generating power, recovering waste heat with

thermoelectric systems. Science 321, 1457–1461 (2008).
4. Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781

(2008).
5. Uchida, K. et al. Spin Seebeck insulator. Nat. Mater. 9, 894–897 (2010).
6. Jaworski, C. M. et al. Observation of the spin-Seebeck effect in a ferromagnetic

semiconductor. Nat. Mater. 9, 898–903 (2010).
7. Uchida, K. et al. Observation of longitudinal spin-Seebeck effect in magnetic

insulators. Appl. Phys. Lett. 97, 172505 (2010).
8. Xiao, J., Bauer, G. E. W., Uchida, K., Saitoh, E. & Maekawa, S. Theory of

magnon-driven spin Seebeck effect. Phys. Rev. B 81, 214418 (2010).
9. Rezende, S. M. et al. Magnon spin-current theory for the longitudinal spin-

Seebeck effect. Phys. Rev. B 89, 014416 (2014).
10. Uchida, K. et al. Longitudinal spin Seebeck effect: from fundamentals to

applications. J. Phys. Condens. Matter 26, 343202 (2014).
11. Wu, S. M., Pearson, J. E. & Bhattacharya, A. Paramagnetic spin Seebeck effect.

Phys. Rev. Lett. 114, 186602 (2015).
12. Seki, S. et al. Thermal generation of spin current in an antiferromagnet. Phys.

Rev. Lett. 115, 266601 (2015).
13. Bender, S. A. & Tserkovnyak, Y. Interfacial spin and heat transfer between

metals and magnetic insulators. Phys. Rev. B 91, 140402 (2015).
14. Wu, S. M. et al. Antiferromagnetic spin Seebeck effect. Phys. Rev. Lett. 116,

097204 (2016).
15. Kikkawa, T., Uchida, K., Daimon, S. & Saitoh, E. Complete suppression of

longitudinal spin Seebeck effect by frozen magnetization dynamics in
Y3Fe5O12. J. Phys. Soc. Jpn 85, 065003 (2016).

16. Rezende, S. M., Rodríguez-Suárez, R. L., Cunha, R. O., Lopez Ortiz, J. C. &
Azevedo, A. Bulk magnon spin current theory for the longitudinal spin
Seebeck effect. J. Magn. Magn. Mater. 400, 171–177 (2016).

17. Uchida, K. et al. Thermoelectric generation based on spin Seebeck effects.
Proc. IEEE 104, 1946–1973 (2016).

18. He, J. & Tritt, T. M. Advances in thermoelectric materials research: Looking
back and moving forward. Science 357, eaak9997 (2017).

19. Lebrun, R. et al. Tunable long-distance spin transport in a crystalline
antiferromagnetic iron oxide. Nature 561, 222–225 (2018).

20. Li, J. et al. Spin current from sub-terahertz-generated antiferromagnetic
magnons. Nature 578, 70–74 (2020).

21. Azevedo, A., Vilela Leão, L. H., Rodriguez-Suarez, R. L., Oliveira, A. B. &
Rezende, S. M. dc effect in ferromagnetic resonance: evidence of the spin-
pumping effect? J. Appl. Phys. 97, 10C715 (2005).

22. Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current
into charge current at room temperature: inverse spin-Hall effect. Appl. Phys.
Lett. 88, 182509 (2006).

23. Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin
Hall effect. Nature 442, 176–179 (2006).

24. Costache, M. V., Sladkov, M., Watts, S. M., van der Wal, C. H. & van Wees, B.
J. Electrical detection of spin pumping due to the precessing magnetization of
a single ferromagnet. Phys. Rev. Lett. 97, 216603 (2006).

25. Abragam, A. Principles of Nuclear Magnetism (Clarendon, 1961).
26. Fink, H. & Shaltiel, D. Nuclear frequency pulling in a Dzialoshinskii-Moriya-

type weak ferromagnet: MnCO3. Phys. Rev. 136, A218–A222 (1964).
27. Abdurakhimov, L. V. et al. Nonlinear NMR and magnon BEC in

antiferromagnetic materials with coupled electron and nuclear spin
precession. Phys. Rev. B 97, 024425 (2018).

28. Shiomi, Y. et al. Spin pumping from nuclear spin waves. Nat. Phys. 15, 22–26
(2019).

29. Korringa, J. Nuclear magnetic relaxation and resonance line shift in metals.
Physica 16, 601–610 (1950).

30. Watson, R. E. & Freeman, A. J. Origin of effective fields in magnetic materials.
Phys. Rev. 123, 2027 (1961).

31. Gorter, C. J. Paramagnetic Relaxation (Elsevier Publishing Company, 1947).
32. Suhl, H. Effective nuclear spin interactions in ferromagnets. Phys. Rev. 109,

606 (1958).
33. Nakamura, T. Indirect coupling of nuclear spins in antiferromagnet with

particular reference to MnF2 at very low temperatures. Prog. Theor. Phys. 20,
542–552 (1958).

34. de Gennes, P. G., Pincus, P. A., Harmann-Boutron, F. & Winter, J. M. Nuclear
magnetic resonance modes in magnetic material. I. Theory. Phys. Rev. 129,
1105–1115 (1963).

35. King, A. R., Jaccarino, V. & Rezende, S. M. Nuclear magnons and nuclear
magnetostatic modes in MnF2. Phys. Rev. Lett. 37, 533–536 (1976).

36. Borovik-Romanov, A. S. Investigation of weak ferromagnetism in the MnCO3

single crystal. J. Exptl Theor. Phys. 36, 766–781 (1959).
37. Lee, J. B. et al. Canted antiferromagnetism on a nanodimensional spherical

surface geometry: the case of MnCO3 small hollow nanospheres. Phys. Rev. B
86, 224407 (2012).

38. Pai, C.-F. et al. Spin transfer torque devices utilizing the giant spin Hall effect
of tungsten. Appl. Phys. Lett. 101, 122404 (2012).

39. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin
Hall effects. Rev. Mod. Phys. 87, 1213–1259 (2015).

40. Vlietstra, N. et al. Simultaneous detection of the spin-Hall magnetoresistance
and the spin-Seebeck effect in platinum and tantalum on yttrium iron garnet.
Phys. Rev. B 90, 174436 (2014).

41. Cornelissen, L. J. et al. Nonlocal magnon-polaron transport in yttrium iron
garnet. Phys. Rev. B 96, 104441 (2017).

Acknowledgements
We thank Y. Chen, J. Lustikova, T. Hioki, N. Yokoi, H. Chudo, M. Imai, K. Sato, and G.

E. W. Bauer for fruitful discussions and T. Nojima for his valuable comments on low-

temperature experiments. This work was supported by JST ERATO “Spin Quantum

Rectification Project” (JPMJER1402), JST CREST (JPMJCR20C1 and JPMJCR20T2),

JSPS KAKENHI (JP19H05600, JP19K21031, JP20H02599, JP20K22476, and

JP20K15160), MEXT [Innovative Area “Nano Spin Conversion Science” (JP26103005)],

and Daikin Industries, Ltd. The work at UCLA was supported by the US Department of

Energy, Office of Basic Energy Sciences under Award number DE-SC0012190. K.O.

acknowledges support from GP-Spin at Tohoku University. R.R. acknowledges support

from the European Commission through the project 734187-SPICOLOST (H2020-

MSCA-RISE-2016), the European Union’s Horizon 2020 research and innovation pro-

gram through the Marie Sklodowska-Curie Actions grant agreement SPEC number

894006 and the Spanish Ministry of Science (RYC 2019-026915-I).

Author contributions
T.K., T.S., and K.O. fabricated the devices. T.K. and T.M. constructed the experimental

setup with the help of R.R. and K.O. T.K., T.M., H.I., T.S., K.T., and S.D. performed the

experiments and collected the data. T.K. and H.I. analyzed the data with input from D.R.

D.R. and Y.T. developed the theoretical explanations. E.S. and Y.T. conceived and

supervised the project. T.K. and D.R. wrote the paper with review and input from E.S.

and Y.T. T.K., D.R., H.I., T.M., T.S., K.T., S.D., K.O., R.R., S.T., Y.S., Y.T., and E.S.

discussed the results and commented on the manuscript.

Competing interests
The authors declare no competing interests.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24623-6

6 NATURE COMMUNICATIONS |         (2021) 12:4356 | https://doi.org/10.1038/s41467-021-24623-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Additional information
Supplementary information The online version contains supplementary material

available at https://doi.org/10.1038/s41467-021-24623-6.

Correspondence and requests for materials should be addressed to T.K.

Peer review information Nature Communications thanks Sergio Rezende and the other,

anonymous, reviewer(s) for their contribution to the peer review of this work. Peer

reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2021

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24623-6 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:4356 | https://doi.org/10.1038/s41467-021-24623-6 | www.nature.com/naturecommunications 7

https://doi.org/10.1038/s41467-021-24623-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Observation of nuclear-spin Seebeck effect
	Results
	Sample and measurement setup
	Observation of nuclear SSE
	Nuclear- and electron-spin excitation spectra in MnCO3
	Theoretical model for nuclear SSE

	Discussion
	Methods
	Sample preparation
	SSE measurement

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information


