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Observation of photonic anomalous Floquet
topological insulators
Lukas J. Maczewsky1,*, Julia M. Zeuner1,*, Stefan Nolte1 & Alexander Szameit1

Topological insulators are a new class of materials that exhibit robust and scatter-free

transport along their edges — independently of the fine details of the system and of the

edge — due to topological protection. To classify the topological character of two-dimensional

systems without additional symmetries, one commonly uses Chern numbers, as their sum

computed from all bands below a specific bandgap is equal to the net number of chiral edge

modes traversing this gap. However, this is strictly valid only in settings with static Hamil-

tonians. The Chern numbers do not give a full characterization of the topological properties of

periodically driven systems. In our work, we implement a system where chiral edge modes

exist although the Chern numbers of all bands are zero. We employ periodically driven

photonic waveguide lattices and demonstrate topologically protected scatter-free edge

transport in such anomalous Floquet topological insulators.
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T
he discovery of the quantized Hall effect1 revealed the
existence of a new class of extremely robust transport
phenomena, which are largely independent of sample size,

shape and composition. The scatter-free nature of these
phenomena can be linked to the existence of non-trivial
topological invariants associated with the systems’ bulk bands2.
Shortly after the discovery of topological insulators2–7, the
concept of topology was transferred to the photonic domain
of electromagnetic waves8 with the first realization in the
microwave regime implementing the photonic analogue of the
quantum Hall effect9. The search for an optical realization of
topological insulators has prompted a number of proposals10–14,
and culminated in various experimental realizations5,6. Photonic
topological insulators may enable novel and more robust
photonic devices such as waveguides, interconnects, delay lines,
isolators and couplers (or anything susceptible to parasitic
scattering by fabrication disorder). The field of topological
photonics15 evolved well afterwards and resulted in various
further studies, such as nonlinear waves in topological insulators
and the prediction of topological gap solitons16, topological states
in passive PT-symmetric media17, topological sub-wavelength
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Figure 2 | Bipartite lattice structure with periodic driving. (a) The coupling to the neighbouring waveguides occurs in four steps of equal length; in each

step, hopping takes place solely along the highlighted bonds with a coupling strength cj; all other couplings are zero. (b) If the coupling during each step is

100% cj ¼
2p
T

� �

, after a full driving period T, one observes the formation of localized bulk modes without dispersion and chiral edge modes travelling along

the lattice boundaries. (c) A schematic sketch of four lattice sites of the fabricated sample, in which the waveguides are drawn pairwise together to enable

evanescent coupling. The initial waveguide spacing is a¼40mm ensuring negligible coupling between adjacent guides. (d) The edge band structure of

periodic quasi-energies in the case cj ¼
2p
T
, exhibiting a flat bulk band (brown line) and dispersionless chiral edge modes. Dotted and solid orange lines

describe the dispersion of opposite edges, respectively.
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Figure 1 | Floquet band structure in a driven system. Conceptual sketch of

the band structure in a driven system, which is periodic in momentum k and

quasi-energy e. Essentially, the band structure is analogue to a torus (see

inset). This allows chiral edge modes to exist even if the Chern numbers of

all bands are equal to zero.
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settings18 and even three-dimensional systems exhibiting Weyl
points19.

It is commonly accepted that for two-dimensional spin-decoupled
topological systems a complete topological characterization is
provided by the Chern numbers of each band, which represent a
set of integer topological invariants20,21. The number of chiral edge
modes residing in a bandgap is given by the sum of the Chern
numbers of all bands below this gap. Hence, the Chern number
is equal to the difference between the chiral edge modes entering the
band from below and exiting it above15. However, this is strictly true
only for systems that are static, that is, where the Hamiltonian is
constant in time. In periodically driven (Floquet) systems, the Chern
numbers employed in the static case do not give a full
characterization of the topological properties22. The reason is that
in these systems, the fixed energy in the band structure is replaced by
a periodic quasi-energy. As a consequence, the Chern numbers of all
bands lying below a certain gap cannot be summed up since there
exists no lowest band in the (periodic) band structure. Moreover,
in such systems chiral edge modes are possible10,23, although the
Chern numbers of all bands may be zero (see Fig. 1 for an illustrative
sketch). These materials are called anomalous Floquet topological
insulators (A-FTI)22,24. Recently, it was shown that the appropriate
topological invariants for characterizing these new phenomena
are winding numbers22, which utilize the information in the
Hamiltonian for all times within a single driving period. This is in
contrast to the Chern numbers of the individual bands, which
only depend on the Hamiltonian evaluated stroboscopically once per
driving cycle. Recently, anomalous edge states were shown in static
network systems that are described by a scattering matrix and can be
mapped onto a Floquet lattice25,26. However, to date the
experimental demonstration of an A-FTI in an explicitly driven
system is still elusive.

Results
Tight-binding and Floquet description of the lattice. In our
work, we experimentally demonstrate an A-FTI in a two-

dimensional driven system being not only periodical in the lattice
directions x and y but also along the evolution coordinate. To
this end, we work in the photonic regime and employ arrays
of evanescently coupled waveguides. In such structures, the
light evolution is governed by the paraxial Helmholtz equation,
which is mathematically equivalent to the Schrödinger equa-
tion (see ref. 27 for details). Therefore, evanescently coupled
waveguide lattices are an excellent platform for testing
Schrödinger physics.

We consider a bipartite square lattice with two site species A
and B (with same on-site potential), as it was suggested in ref. 22.
Along the propagation direction, the structure consists of four
sections with each having length T/4 and the entire period is T.
In the first section, a particular A-site couples to neighbouring
B-site on its right, in the second section to its neighbouring B-site
above, and in the third and fourth section to its left and below,
respectively (as sketched in Fig. 2a). If a 100%-coupling
per section cj ¼

2p
T

� �

is present, this lattice structure exhibits
no transport in the bulk, as an excitation is trapped by moving
only in loops, whereas at the edge transport occurs
(see Fig. 2b). Figure 2c shows a sketch of how we realized this
lattice in our experiments. The inter-site coupling in the
individual sections n is achieved by appropriately engineering
directional couplers28. This system is described by the Bloch
Hamiltonian

HB k; zð Þ ¼ �
X

4

j¼1

0 cj zð Þeibjk

cj zð Þe� ibjk 0

� �

;

where the vectors {bj} are given by b1¼ � b3¼ (a,0) and
b2¼ � b4¼ (0,a), with a being the distance between adjacent
lattice sites. In addition, for each partial step n, the coupling
coefficients {cj(z)} are defined as cj¼ djnc. We start our analysis by
choosing the coupling coefficient c ¼ 2p

T
, such that during each

step complete coupling into the respective neighbouring
waveguide occurs. Obviously, the Hamiltonian is z-dependent,
which for waveguide lattices is analogue to time-dependence in
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Figure 3 | Experimental demonstration of flat band structure. Light distribution in the lattice after single-waveguide excitation for perfect coupling with

strength cj ¼
2p
T
¼ 2p

40
mm� 1 and after 3 full periods. The waveguide positions of the lattice are marked by white ellipses, the excited site is marked by a red

ellipse, and the trajectory is visualized with a white arrow. Evolution of the excited chiral edge state (a) along the edge, (b) around a corner and (c) along

artificial defects in the lattice structure. (d) If a bulk waveguide is excited, light follows a loop trajectory, as only localized flat band modes are excited. The

intensity in each figure is normalized to its maximum in the figure. One can clearly see that no scattering and no dispersion occurs, supporting the claim

that a dispersion-free chiral edge state was excited.
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quantum mechanics27 and, hence, no eigenstates exist. However,
due to the periodicity in z, Floquet theory can be applied to derive
a band structure of so-called quasi-energies e (ref. 22). A solution
of such a time-dependent Schrödinger equation are the Floquet
states c tð Þ ¼ f tð Þe� iet with f(tþT)¼f(t). Consequently, the
Floquet spectrum is periodic in its quasi-energies, in full
correspondence to the periodicity in the transverse momentum
caused by Bloch’s theorem. The temporal evolution of the system

is described by c tð Þ ¼ Pe
� i
R t

0
HðtÞdt

c 0ð Þ, such that
c Tð Þ ¼ e� ieTc 0ð Þ. Note that P is the time-ordering operator.

The time evolution operator U tð Þ ¼ Pe
� i
R t

0
HðtÞdt

includes the
effective stroboscopic dynamics after multiples of the period
T and the micro motion within a single period. This represents
the full Floquet regime, in contrast to the adiabatic system used in
our recent work5, in which the high-frequency driving allows for
the description with an effective time-independent Hamiltonian
Heff for all times t as c tð Þ ¼ e� itHeffc 0ð Þ.

Topological characterization by winding number. Our lattice
structure exhibits two flat degenerate bands (that appear as a
single band), as the bipartite character of the lattice arises only
from the sequential coupling steps with four equal coupling
coefficients cj and not from a sublattice potential. Since the sum of
the Chern numbers of all bands has to be zero, we find that the
Chern number of the flat band in our system is zero. Although,
when considering a finite system, we observe the formation of
chiral edge states (see Fig. 2d). In this vein, the Chern number is
not the appropriate topological invariant that characterizes the
existence and the amount of chiral edge states in our system. This
is the very nature of an A-FTI. As it was shown earlier22, in
periodically driven systems, the topological invariant
characterizing the number of chiral edge modes is the winding
number We , which is equal to the number of chiral edge modes
nedge in a bandgap at a certain quasi-energy e:

nedgeðeÞ ¼ We:
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Figure 4 | Winding number transition. (a) If the coupling coefficients are reduced to c ¼ 1:5p
T
, the bulk band is not flat anymore. However, chiral edge

modes still exist in the center of the Brillouin zone, and the winding number remains Wp/T¼ 1. (b) For c ¼ 0:85p
T
, the chiral edge states have disappeared,

and the winding number is Wp/T¼0. (c) Visualization of the phase transition using a single-waveguide excitation. As this populates all modes, the fraction

of the trapped intensity at the surface Iedge with respect to the total intensity Itot as a function of the coupling strength indicates the amount of existing

chiral edge modes. When the coupling is cop
T
, these modes disappear and essentially all light diffracts into the bulk. The different topological phases are

marked with dark orange (Wp/T¼ 1) and light orange (Wp/T¼0), in both regimes, however, the Chern number C is zero. The error bars result due to

uncertainties of the fabrication process and are estimated via linear propagation of errors.
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The winding number is directly related to the Chern number22:

We2 �We1 ¼ Ce1e2 ;

where Ce1e2 is the sum of the Chern numbers of all bands residing
between e1 and e2. Therefore, the difference of the number of
chiral edge modes entering a band from below and exiting it
above is equal to the Chern number of the respective band. We
describe the approach for calculating the winding number in
Methods section.

Experimental realization of flat band structure. For our
experiments, we fabricate the lattice sketched in Fig. 2c using the
laser direct-writing technology27. For details regarding the
fabrication, the lattice parameters and the characterization setup
we refer to Methods section. We start by launching light into
single sites of the lattice and observe light dynamics that is
summarized in Fig. 3. As clearly shown, the excited edge state
travels dispersionless and without any scattering along edges,
around corners and various defects (Fig. 3a–c). This highly
robust, unidirectional state is a clear signature of topological
protection. However, as opposed to a common Floquet
topological insulator, in our system we find a flat band of bulk
modes. This is shown by exciting the sites in the bulk of the lattice
and observing that light is trapped in a loop, indicating the
excitation of only localized modes (see Fig. 3d for one example).
As we observe the same dynamics for any bulk site, we can
conclude that there is indeed only one band, which consists of
localized degenerate states: a single flat band, which has to have a
Chern number of zero. This is the unequivocal proof of having
implemented an A-FTI, as clearly the Chern number does not
predict the existence of the chiral edge states.

Examination of the winding number transition. In the next
step, we will analyse the impact of the inter-site coupling on the
topological nature of the system. So far we considered perfect
hopping c ¼ 2p

T

� �

, that is, in each section n the light completely
couples to the neighbouring site, which results in an A-FTI phase.
However, when decreasing the hopping rate (which results in
only partial coupling), one will eventually leave the topologically
non-trivial phase22 and enter the trivial phase exactly at c ¼ p

T
.

This is clearly visible in the edge band structures: one example of
the topological non-trivial regime is shown in Fig. 4a c ¼ 1:5p

T

� �

and an example of the trivial regime in Fig. 4b c ¼ 0:85p
T

� �

.
Whereas for c4p

T
chiral edge states exist (topological phase,

Fig. 4a), at c ¼ p
T
a phase transition occurs and the edge states

disappear, such that for cop
T
the system is in a trivial phase

(Fig. 4b). Note, that in both phases the Chern number of the band
is zero, and only the value of the winding number changes. To
study this phase transition, we perform various measurements in
systems with decreasing coupling constant (see Methods section
for the experimental approach). We launch light into a single site
at the edge of the structure, as this populates the entire band
structure, and analyse the diffraction pattern. If there is an edge
state present, it is partially excited by the single-site excitation and
some of the evolving light will remain at the edge during
propagation. However, if there is no edge state present, after a
certain propagation length all of the light will have diffracted into
the bulk of the system. Our experimental results are summarized
in Fig. 4c, where we plot the intensity ratio Iedge/Itot as a function
of the coupling constant c. The error bars are due to slightly
fluctuating power of the writing laser and the signal to noise ratio
of the recorded charge-coupled device (CCD) images. For c ¼ 2p

T
indeed almost all of the light remains at the edge, as suggested by
the edge band structure shown in Fig. 2d. For a decreasing
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Figure 5 | Edge state observation for specific momentum excitation. The region where separated chiral edge modes exist in the edge band structure

reduces with decreasing coupling strength c. This is shown by exciting the band structure at kx ¼ � p
2a

using an appropriately tilted broad beam and

observing the diffraction pattern for (a) c ¼ 2p
T
, (b) c ¼ 1:63p

T
and (c) c ¼ 1:2p

T
. The excited waveguides are marked by red ellipses, the integration area to

calculate the part of the intensity residing at the edge Iedge is surrounded by a white dashed line. (d) The plot of the intensity fraction of the trapped light

clearly indicates that at kx ¼ � p
2a
the amount of intensity exciting edge states significantly reduces for decreasing coupling strength. The intensity in each

figure is normalized to its maximum. The respective edge band structures for c ¼ 1:63p
T
, and c ¼ 1:2p

T
are shown as insets. The error bars result due to

uncertainties of the fabrication process and are estimated via linear propagation of errors.
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coupling constant the fraction of light that remains at the edge
monotonously decreases until at cop

T
no edge states are present,

as the trivial phase is reached.

Edge state observation for specific momentum excitation.
Importantly, the region in reciprocal space where chiral edge
states being separated from the bulk bands are found reduces for
decreasing coupling strength: whereas in the centre of the edge
band structure around kx¼ 0 such states are always found until
the phase transition occurs, separated edge modes close to
the edge of the band structure (around kx ¼ � p

2a) conti-
nuously cease to exist for decreasing coupling. This is illustrated
when exciting the band structure only at the specific momentum
kx ¼ � p

2a
by using an appropriately tilted broad beam29.

In Fig. 5a–c, it is shown that the state completely remains at
the edge of the lattice for c ¼ 2p

T
(Fig. 5a), and partially spreads

into the bulk for c ¼ 1:63p
T
while a significant fraction is still

trapped at the edge (Fig. 5b). However, for c ¼ 1:2p
T
the light

almost completely diffracts away from the edge as no separated
chiral edge modes remain at kx ¼ � p

2a
for this low coupling

strength (Fig. 5c). Note that the chiral edge states reside on every
second waveguide solely, such that we excited only those with the
broad beam. Our results are summarized in Fig. 5d, where the
fraction of the light trapped at the lattice edge is plotted as a
function of the coupling strength. One clearly sees the drop in
light intensity at the edge, proving the disappearance of the edge
states for decreasing coupling strength. In addition, the edge band
structures for c ¼ 1:63p

T
and c ¼ 1:2p

T
are shown as insets to see

the region in k-space in which the topological edge states exist.
For c ¼ 2p

T
, the respective edge band structure is equal

to Fig. 2d.

Discussion
Summarizing our work, the results presented here clearly
demonstrate the significance of the winding number as
the appropriate topological invariant characterizing periodically
driven systems. Moreover, the chiral edge states in A-FTIs
are highly robust to distortions in the lattice structure
(including defects and imperfect hopping). Hence, our experi-
mental observation of an A-FTI opens a new chapter in the field
of topological physics. Only recently, a novel topological phase
was predicted in disordered A-FTI: the anomalous Floquet-
Anderson insulator30. But there are many more puzzles to solve:
What is the impact of nonlinearity on the formation of these
chiral edge states? Does the dimensionality play a significant role?
What are the possibilities to obtain different phases than
reported here? The answer to these and other intriguing
questions are now in reach. The authors of this work would
like to point out that a related work with similar results is
published in ref. 32.

Methods
Winding number. To calculate the number of chiral edge modes in a perio-
dically driven system, the behaviour of the system during a full driving period
has to be taken into account, by employing the time evolution operator
U k; tð Þ ¼ P exp � i

R t

0
dt0Hðk; t0Þ

� �

, with k as the momentum and P as the time-
ordering operator. In a system exhibiting a flat band at quasi-energy e¼ 0, the
winding number W can be calculated as22:

nedge ¼ W½U� ¼
1

8p2

Z

dtdkxdky � Tr U � 1@tU � U � 1@kxU ;U � 1@kyU
� 	� �

:

In the case of curved (dispersive) bands, the winding number in a gap is
We¼W½Ue�, with Ue being constructed as follows22:

Ue k; tð Þ ¼
U k; 2tð Þ if 0 � t � T

2

Ve k; 2T � 2tð Þ if T
2
� t � T:




Here, Ve(k,t)¼ exp(� iHeff (k)t) with Heff kð Þ ¼ i
T
logUðk;TÞ. The branch cut of

the logarithm is chosen such that:

log e� ieT þ i0� ¼ � ieT;
log e� ieTþ i0þ ¼ � ieT � 2pi:

Fabrication of the structures. The single-mode waveguides were written27 inside
a high-purity 15-cm-long fused silica wafer (Corning 7980) using a RegA 9000
seeded by a Mira Ti:Al2O3 femtosecond laser. Pulses centred at 800 nm with
duration of 150 fs were used at a repetition rate of 100 kHz and energy of 450 nJ.
The pulses were focused 671 to 883 mm under the sample surface using an objective
with a numerical aperture (NA) of 0.35, while the sample was translated at constant
speed of 100mmmin� 1 by high-precision positioning stages (ALS130, Aerotech
Inc.). The refractive index increase of each guide is B8� 10� 4, the mode field
diameters of the guided mode were 10.4 mm� 8.0 mm at 633 nm. Propagation losses
and birefringence were estimated at 0.2 dB cm� 1 and in the order of 10� 7,
respectively. The site spacing a¼ 40mm ensures that there is no unwanted coupling
between adjacent waveguides. In the individual sections of the lattice (shown in
Fig. 2c) the waveguides that couple converge to a spacing of 9.7mm to ensure
significant inter-site hopping. For perfect coupling cj ¼

2p
T

� �

, the length of a full
period is T¼ 40mm. Each bending is 4.17mm long, such that the additional losses
caused by the bending are as low as 4%. The coupling strength between the guides
was determined in preliminary experiments as a function of inter-site spacing and
interaction length; experimental errors arising due to uncertainties in the fabrication
and the measurement are B5%. For obtaining the different coupling strengths
between the individual sites the length of the coupling region was appropriately
designed, taking into account the weak coupling that occurs already in the bends28.
All samples contain 3 full periods, whereas the remaining 3 cm were used for
preparation of the injection distribution required in each case.

Characterization of the structures. For the observation of the light evolution,
light from a tunable Helium Neon laser (Thorlabs HTPS-EC-1) was launched into
the system using a NA¼ 0.35 objective. Whereas this is sufficient for single-site
excitation, for the broad excitation the beam was expanded with a slit and a
biconvex lens (f¼ 35mm) perpendicular to the orientation of the slit. Together
with every other waveguide starting 2 cm later in propagation direction and an
appropriate tilt of the sample we excite the correct transverse momentum29.
We fabricated several structures with different coupling strengths as described
above. However, in order to achieve more data points, we used different excitation
wavelengths (633, 604, 594 and 543 nm) that allowed us to further manipulate the
coupling strength31. We calibrated the wavelength-dependent coupling strength
for the different interaction lengths of the individual sections in independent
directional couplers.

Data availability. The data that support the findings of this study are available
from the corresponding author (A.S.) upon reasonable request.
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