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Observation of second sound in graphite over
200 K
Zhiwei Ding 1,3, Ke Chen1,3, Bai Song 1, Jungwoo Shin1, Alexei A. Maznev2, Keith A. Nelson 2✉ &

Gang Chen 1✉

Second sound refers to the phenomenon of heat propagation as temperature waves in the

phonon hydrodynamic transport regime. We directly observe second sound in graphite at

temperatures of over 200 K using a sub-picosecond transient grating technique. The

experimentally determined dispersion relation of the thermal-wave velocity increases with

decreasing grating period, consistent with first-principles-based solution of the Peierls-

Boltzmann transport equation. Through simulation, we reveal this increase as a result of

thermal zero sound—the thermal waves due to ballistic phonons. Our experimental findings

are well explained with the interplay among three groups of phonons: ballistic, diffusive, and

hydrodynamic phonons. Our ab initio calculations further predict a large isotope effect on the

properties of thermal waves and the existence of second sound at room temperature in

isotopically pure graphite.
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Thermal transport in dielectrics and semiconductors is often
mediated by the random-walk behavior of phonons and
follows Fourier’s law of heat diffusion. However, Fourier’s

law breaks down at sufficiently small length scales or low tem-
peratures, where unusual regimes of ballistic and hydrodynamic
phonon transport are observed. In the ballistic regime, phonons
can travel a distance longer than the conduction length scale
without scattering, leading to an effective thermal conductivity
value that diminishes as the length scale is reduced. This regime
has been studied extensively owing to its importance in applica-
tions such as electronics thermal management and thermoelectric
energy conversion1–4. The hydrodynamic regime takes place
when momentum-conserving normal scattering (N-scattering) is
stronger than momentum-destroying resistive scattering (R-
scattering), leading to a collective drift motion of phonons under
a temperature gradient. This strongly correlated collective motion
of phonons leads to peculiar thermal transport phenomena such
as second sound5–11, phonon Poiseuille flow6,12,13 and Knudsen
minimum12,14, parallel to the hydrodynamic regime of strongly
correlated electrons15–18. For over half a century, phonon
hydrodynamic transport was deemed exotic and mattered only at
extremely low temperatures. However, phonon hydrodynamics at
substantially higher temperatures in low-dimensional and van der
Waals materials has recently been theoretically predicted and
experimentally observed, stimulating renewed interest, especially
in second sound12,13,19–25.

Second sound is the wavelike propagation of heat26. First
observed by Peshkov in 1944 in superfluid 3He at 1.4–1.6 K27 and
explained with Landau’s two-fluid model28, it was later predicted
to exist also in solids when phonon-phonon N-scattering dom-
inates over R-scattering8. Experimentally, second sound in solids
was initially observed via heat-pulse methods near liquid-helium
temperatures, for example, at 1.2–4.0 K in Bi29 and 10–18 K in
NaF30. Some of us recently reported observation of second sound
above 100 K in graphite using the transient thermal grating
(TTG) technique21 in which the thermal transport length scale is
imposed by the use of crossed excitation laser pulses that produce
an optical interference pattern of alternating peaks and nulls at
the sample, resulting in a sinusoidally varying temperature
“grating” profile. The observation of second sound in graphite is
further confirmed via the transient hydrodynamic lattice cooling
by picosecond laser irradiation of graphite31. The kinetics of
transport from the heated transient grating peaks to the unheated
nulls are measured through time-resolved diffraction of probe
laser light from the surface modulation caused by thermal
expansion at the heated grating peaks. Transport by second sound
was expected to be observable at even higher temperatures for
TTG spatial periods smaller than those used in our previous study
as suggested by the theoretical calculations21,32. However, the
temporal resolution of our continuous-wave-laser-probed TTG
system (~0.5 ns) imposed a lower limit of the grating period of
about 6 µm, below which the kinetics could not be resolved.

Theoretically, phonon-mediated second sound is described as
damped temperature waves derived either from the phonon
Peierls-Boltzmann transport equation (PBTE)5,6,9,10 or equili-
brium correlation functions11,33. In particular, the dispersion of
second sound has been analyzed by applying a temperature
perturbation to the PBTE9 and analytically solving it for the
quasi-momentum auto-correlation function11. However, all these
efforts focus on the frequency windows within which we can
observe second sound, while the wavevector dependence of the
second-sound velocity, i.e., the dispersion of the velocity, has not
been discussed.

While second sound originates from phonons in local thermal
equilibrium caused by strong normal scattering (a drifting
equilibrium)6, ballistic phonons can also generate a wavelike heat

flow, as was evident in past experiments on NaF and Bi29,30, in
which heat pulses due to ballistic longitudinal and transverse
phonons reached the detectors before the arrival of second sound.
These thermally excited phonons were sometimes mistakenly
attributed to first sound, but it was shown34 that heat-pulse
excitation used in the earlier experiments cannot excite a
mechanical wave of large amplitude. Mechanically excited first
sound can be damped by phonons in local equilibrium via the
Landau-Rumer35 and Akhiezer mechanisms36, because the
wavelength of the first sound is much longer than the phonon
thermalization length, i.e., the phonon mean free path (MFP). If
the MFP is longer than the wavelength of the first sound, it was
called zero sound, in analogy to the propagation of zero-sound
waves across a Fermi liquid in the ballistic limit37–40. In analogy
to the zero sound for mechanical sound waves, we call the ballistic
thermal wave “thermal zero sound.” In heat-pulse
experiments29,30, phonons are excited in all directions by the
heater, but only those propagating within a small solid angle
subtended by the detector are recorded, leading to thermal zero-
sound velocities close to those of the longitudinal and transverse
phonons. Oscillations due to thermal zero sound were also cal-
culated theoretically by solving the PBTE under the constant
MFP approximation for the TTG experimental geometry41.

In this work, we report the observation of second sound at
record-high temperatures of over 200 K via pulsed-laser-probed
TTG measurements at grating periods of around 2 μm. The
thermal transport that is measured also includes contributions
from thermal zero sound due to ballistic phonons. We show that
the transport can be viewed as a mixture of three groups of
phonons: hydrodynamic phonons experiencing strong normal
scattering, contributing to second sound; ballistic phonons con-
tributing to thermal zero sound; and resistive phonons con-
tributing to diffusion along the temperature gradient. Using exact
solutions of the PBTE, we demonstrate increasing contributions
of thermal zero sound to the TTG signal with decreasing grating
period. We also predict a large isotope effect on second sound.
Notably, room-temperature second sound is expected in iso-
topically enriched graphite. What is reported here is the “drifting”
second sound as discussed by Hardy5 where collective drift
motion of phonons due to strong N-scattering is essential. This
“drifting” second sound is distinguished from “driftless” second
sound suggested by a recent report on measurements in a rapidly
varying temperature field42.

Results
Observation of second sound in graphite above 200 K. As
discussed in Ref. 21, second sound has recently been observed in
graphite at around 100 K via TTG measurement with a
continuous-wave (CW) probe laser. However, with a CW probe
and the measurement bandwidth of Ref. 21, the time resolution
was limited to ~0.5 ns which prevented measurements at smaller
grating period where second sound is expected at much higher
temperatures. In this work, we replaced the CW laser with a
femtosecond pulsed laser and used the standard ultrafast mea-
surement technique in which the pump-probe delay time is varied
to acquire time-dependent signals43,44. The experimental details
can be found in Material and methods and the Supplementary
Materials (SM1). Following the Green function approach devel-
oped by Chiloyan et al.45, we also theoretically simulate the TTG
response using first-principle calculations with no fitting
parameters (SM2).

As demonstrated in the simulated TTG signal (Fig. 1a), second
sound is characterized by a sign reversal in the heterodyned TTG
signal21. Shortly after TTG excitation, the diffracted signal field
from the modulated surface profile in which thermal expansion
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has occurred at the grating peaks is superposed constructively
with a reference field, yielding a positive heterodyned signal.
Second sound moves heat away from the peaks and into the nulls
in wavelike fashion, not merely equalizing the temperature as in
ordinary thermal transport but raising the temperature at the
nulls above that of the peaks. Thermal expansion becomes more
pronounced at the nulls than at the peaks, reversing the surface
modulation profile and therefore reversing the phase of the
diffracted signal field. The resulting destructive superposition
with the reference field yields a negative heterodyned TTG signal,
a clear signature of wavelike transport. The strength of the
wavelike feature can be measured expediently by the ratio of the

negative dip depth to the initial signal peak height. Figure 1b
summarizes experimental results recorded at different grating
periods and temperatures, using the normalized dip depth as the
metric for the wavelike contribution to transport. The calculated
temperature windows for second sound at each grating period are
also indicated. A normalized depth of about 0.05 marks the
experimental limit below which we cannot clearly observe second
sound. TTG signals often contain oscillations due to acoustic
vibrations, which have much lower damping rates. We found that
the acoustic signal could be suppressed by maximizing the peak
height through adjustment of the reference field phase as
discussed in SM1. At 250 K (Fig. 1c), any sign flip in the signal
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Fig. 1 Measured (points) and simulated (curves) heterodyned TTG signals for graphite after normalization with respect to the peak height at early
times. a The simulated temperature response at 125 K with a 10 μm grating period. The negative dip is the hallmark of wavelike thermal transport and its
depth represents the second-sound strength. b TTG second-sound temperature window at different grating periods. The color bar shows the normalized
dip depth. The circles (diamonds) indicate observation (no observation) of wavelike transport. TTG signals at (c) 250 K, (d) 200 K, and (e) 100 K for
various grating periods. f The calculated effect of vacancies on TTG signal at 100 K for a 6 µm period.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27907-z ARTICLE

NATURE COMMUNICATIONS |          (2022) 13:285 | https://doi.org/10.1038/s41467-021-27907-z | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


is obscured by the acoustic signal at the experimental signal-to-
noise ratio. But the clear hallmark of second sound is observed at
200 K (Fig. 1d) and 225 K (Fig. S3a). The calculated temperature
windows (Fig. 1b) indicate that second sound can persist for
longer thermal transport length scales at lower temperatures,
which is consistent with the present and previous21 experimental
observations at 100 K (Fig. 1e). A larger discrepancy between
experiment and simulation is observed at 100 K (Fig. 1e) than
200 K (Fig. 1d), which might result from the increasing
importance of phonon-impurity scattering at lower temperatures
compared to phonon-phonon scattering. At 100 K (Fig. 1f), about
0.02% vacancy density could explain the discrepancy between
simulation and experiment, while the simulated response at 200 K
showed a much smaller effect at the same level of defect (Fig. S4).

Dispersion of measured thermal wave. Based on the TTG signal,
the velocity vp and propagation length lp of the thermal waves can
be estimated from the dip position td and normalized depth ΔTd
as (Fig. 1a):

vp ¼
l
2td

ð1aÞ

lp ¼
l

�2 lnð�ΔTdÞ
ð1bÞ

where l is the grating period. Equation (1a) follows from the
definition of the dip position as the time duration it takes for the
thermal wave to travel from a high-temperature region to an
adjacent low-temperature region, that is, half the grating period;
Eq. (1b) arises from the fact that the amplitude of an exponen-
tially decaying wave drops to expð�l=2lpÞ over a distance of l=2.
Using Eq. (1), we determined the thermal-wave velocity and
propagation length at different temperatures and grating periods,
from both experimental and simulated TTG signals. As shown in
Fig. 2a, b, there is a qualitative agreement between the simulations
and experiment. The quantitative discrepancy is attributed to
defects in our graphite samples.

Refs. 5–8 used Callaway model46 to study second sound. The
Callaway model splits the scattering term in the PBTE into two
different relaxation terms: resistive scattering and normal
scattering that drive the phonon distribution to the local
equilibrium Bose-Einstein distribution and displaced Bose-
Einstein distribution respectively. From the energy and momen-
tum conservation equations, the second-sound velocity vss and
propagation length lss in the x-direction can be written as47:

v2ss ¼
Cqqxvx
ωq

D E2

Cqq2x
ω2
q

D E
Cq

D E ð2aÞ

lss ¼
2vss

Cqq
2
x

ω2
q

D E
Cqq2x
ω2
qτqR

D E ð2bÞ

Where Cq, qx , vx ,ωq, and τ�1
qR are the mode-specific heat

capacity, wavevector, group velocity, frequency, and R-scattering
rate, respectively, and <>means summation over all the phonon

modes i.e., Cq

D E
¼ ∑qCq. We refer to the second-sound velocity

and propagation length obtained from Eq. (2) as the intrinsic
limits (Fig. 2a, b, d). To further understand the dispersion of the
measured wave velocity, we also simulated the TTG temperature
response at the ballistic limit, where phonons propagate without
interactions. Wavelike behavior due to thermal zero sound is also
seen in the calculated response in the investigated temperature
range in the ballistic regime (Fig. 2c and Fig. S5), although the

wave contains multiple frequencies from different polarizations.
A similar wave propagation velocity could be defined based on
the position of the first dip and is referred to as thermal zero
sound velocity. The thermal zero sound is faster than the intrinsic
second-sound speed at all the investigated temperatures (Fig. 2d)
as expected, because second sound involves mixing and scattering
of different phonons to approach a local thermal equilibrium5,6.
We can also consider longitudinal and transverse waves
separately as these waves do not interact in the ballistic limit,
as plotted in Fig. 2c. At 100 K, the flexural mode dominates the
signal and its superposition with longitudinal and transverse
waves leads to higher thermal zero sound velocity. Both the
second sound velocity obtained from Eq. (2a) and the thermal
zero sound velocity increase from 100 to 125 K first, then start to
decrease upon further rise in temperature (Fig. 2d). However, the
group velocity of the measured thermal wave, which includes
both second sound and thermal zero sound, decreases mono-
tonically with increasing temperature at a fixed grating period
(Fig. 2a and Fig. S6a). As the grating period decreases, the
measured wave propagation speed increases from the intrinsic
second sound velocity to the thermal zero sound velocity (Fig. 2a)
since a greater portion of the phonon MFPs exceed the grating
spacing. On the other hand, the measured wave propagation
length increases at longer grating periods (Fig. 2b) because of the
reduced contributions of ballistic phonons with effective
propagation lengths limited by the grating period.

The measured grating-period-dependent wave propagation
speed yields a convex dispersion relation, which is consistent with
the calculated dispersion (Fig. 2e, also Material and methods and
SM4). In addition, the gap between the real and imaginary parts
of the frequency is maximized at mid-wavevector, which is
consistent with the trend of the second-sound strength metric
(i.e., normalized dip depth) we defined (Fig. 2f).

Three groups of phonons. Phonons participating in thermal
transport are a mixture of those experiencing no scattering, those
experiencing both N- and R-scattering, and those experiencing
R-scattering only48. The observed thermal wave is formed by a
superposition of ballistic, diffusive, and hydrodynamic phonons.
The dispersion and temperature-dependence of the measured
thermal waves can thus be understood via the interplay among
these three groups of phonons. Such a picture could also explain
the heat-pulse experimental observations as detailed in SM5. To
qualitatively describe how much the ballistic/diffusive component
is contributing to the measured thermal waves, we estimate the
fraction of the initially excited phonons with traveling distance
shorter/longer than the corresponding MFP as:

f b ¼
<Cqv

2
x f

q
bðΛo=dÞ>

<Cqv2x>
ð4aÞ

f d ¼
<Cqv

2
x f

q
dðΛR=dÞ>

<Cqv2x>
ð4bÞ

where d is the traveling distance, Λo is the total MFP, considering
all scattering processes, and ΛR is MFP considering only resistive
scattering processes. Here f b=d is the fractions of ballistic and
diffusive contribution to the transport. The fraction of hydro-
dynamic contribution f h could be approximated as: 1� f b � f d .
f qb=d is the ballistic/diffusive contribution function for phonon
mode q. Details on the definition of traveling distance d and
function f qb=d are provided in SM6. Figure 3 shows the approxi-
mated fractions of ballistic, hydrodynamic, and diffusive phonons
defined at different grating periods and temperatures.
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As the grating period decreases, more phonons have MFPs
exceeding the period and therefore contribute to ballistic
transport (Fig. 3a), hence the wave propagation velocity increases
from the bulk second sound velocity to the thermal zero sound
velocity (Fig. 2a). For the same reason, the second sound
propagation length increases with longer grating period (Fig. 2b),
as more phonons participate in the second sound wave type of
propagation rather than ballistic transport (Fig. 3a). The velocity
of the wavelike mode at fixed grating period monotonically
decreases with increasing temperature (Fig. 2a and Fig. S6a), as
less phonons participate in ballistic transport at higher
temperature due to increasing phonon scattering rates (Fig. 3a).

The second-sound strength, as measured by the normalized dip
depth, is greatest at an intermediate grating spacing (Fig. 2f).
This can be understood as follows. When the spacing is large,
R-scattering dominates. The increased diffusive transport leads
to a smaller dip depth. When the spacing is small, ballistic
phonons, which do not dip much below zero due to super-
position of three different polarizations, mix with second sound
waves and diminish the measured normalized dip depth. The
thermal wave we observed at 200 K mainly comes from second
sound, which is supported by the large difference between the
experimental signals and the ballistic limit in Fig. 1d and the
MFP analysis in SM 7.
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Strong isotope effect. Large enhancement in the thermal con-
ductivity via isotope enrichment has been reported in high-
thermal-conductivity materials49. Isotope scattering is a
R-scattering process and can significantly influence second sound.
Figure 4a and b compare simulated wave propagation speed and
propagation length in isotopically-enriched graphite with natural
graphite. In isotopically enriched graphite, the propagation speed
is more than 15% higher than in natural graphite across all

grating periods at 125 K, and larger enhancements in the pro-
pagation length are observed. Moreover, in isotopically pure
samples, our simulations indicate that we could observe second
sound even at room temperature at the grating periods of 1.0 μm
and 1.5 μm (Fig. 4c, d). The smaller measured wave propagation
speed (Fig. 4a) in natural graphite than in isotopically enriched
graphite can be understood as arising from the increased con-
tribution of diffusive phonons.

Discussion
The picture of three groups of phonons reduces to Fourier dif-
fusion when diffusive phonons dominate. In the TTG experiment,
thermal transport can be observed in the form of second sound
when hydrodynamic phonons are dominant and thermal zero
sound when ballistic phonons are dominant. When the three
groups of phonons co-exist, the wave propagation velocity
increases with decreasing grating period because (1) the thermal
zero sound contributes more at shorter grating period, and (2) the
thermal zero sound velocity is higher than the intrinsic second
sound velocity. The latter is guaranteed because second sound
involves mixing of phonons via normal scattering processes. For
example, for a Debye material with sound velocity v, the velocity
of the thermal zero sound should be around 0:7v, while that of
the intrinsic second sound is v=

ffiffiffi
3

p
: (See SM8 for details.)

We directly observe second sound in graphite above 200 K
through TTG experiments. The measured TTG signal also
includes contributions from thermal zero sound, i.e., the propa-
gation of ballistic phonon thermal waves. The experimental
results can be explained by the coexistence of ballistic, diffusive,
and hydrodynamic phonons. The measured wave propagation
velocity increases with decreasing grating period due to the
increased influence of the thermal zero sound. The experimental
results in thermal wave dispersion and strength are in qualitative
agreement with first-principles simulations. In isotopically pure
graphite, we predict that second sound can be observed even at
room temperature, and with higher propagation speed and longer
propagation length than seen in our measurements to date. A sign
reversal in the thermal response due to nonlocal thermal con-
ductivity is also reported in a recent theoretical study50, however,
the nontrivial relation between nonlocal thermal transport and
second sound is beyond the scope of our present study.

Methods
Sample. The natural graphite samples used in this work were obtained from
Naturally Graphite©. Based on Atomic force microscopy (AFM) images, the
average area of grain is estimated as 382 ± 270 μm2 with the grain size larger than
20 μm. More details are provided in SM9.

Thermal transient grating measurements. To capture the fast dynamics of
second sound at micrometer transport lengths, we employ femtosecond laser
pump-probe spectroscopy. A schematic illustration of our femtosecond laser
thermal transient grating experimental setup is shown in Fig. S1. Ultrafast laser
pulses (duration about 290 fs) with 515 nm and 532 nm wavelengths are produced
by a second harmonic generator from a 1030 nm amplified laser output and by an
optical parametric amplifier, respectively. The repetition rate of the laser pulses is
25 KHz. The 515 nm pulse is used as the pump and the 532 nm pulse is used as the
probe. The pump pulse is modulated by an optical chopper at a frequency of
around 2 KHz and directed into a delay stage, which can introduce up to 16 ns time
delay between the pump and probe pulses. The pump and probe laser beams cross
vertically at a phase mask, which diffracts them into horizontally separated +1 and
−1 orders which are recombined at the sample after passing through a two-lens
imaging system. The crossed pump diffraction orders generate the excitation
interference pattern at the sample. The +1-probe diffraction order is taken as a
reference beam, and its intensity is reduced by an attenuator made of a 100 nm Au
film coated on a 170 μm-thick glass slide. The −1 diffraction order is taken as the
probe beam. An uncoated 170 μm thick glass slide mounted on a rotation stage is
used to adjust the heterodyne phase shift between the probe and the reference
fields. All the beams are focused onto the surface of a natural graphite sample
mounted in a cryostat chamber, with pump and probe/reference spot sizes (1/e2

diameters) of 120 μm and 105 μm, respectively. The diffracted probe pulse spatially
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Fig. 3 The three groups of phonons. Approximated fraction of excited
phonons in the (a) ballistic, (b) hydrodynamic, and (c) diffusive regime
based on Eq. (4).
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and temporally overlaps with the reflected reference pulse. After passing through
Lens 2, the diffracted probe pulse and reflected reference are redirected by a mirror
and collected by a photodetector as the heterodyned TTG diffraction signal. The
output of the photodetector is analyzed by a lock-in amplifier, which is synchro-
nized with the optical chopper. The pump and probe pulse energies are set at 70 nJ
and 52 nJ, respectively. The surface temperature rise due to the pulses is estimated
to be <3 K.

Computational details. All the first-principle calculations are performed by
Vienna Ab Initio Package51–53 with projector-augmented-wave pseudopotentials
and local density approximation for the exchange-correlation energy functional. To
include the nonlocal vdW interactions, we use an explicit nonlocal density func-
tional named optB88 functional54,55. The geometrical optimization of the unit cell
was performed with a 24 × 24 × 10 grid of k-point sampling. The second-order
(third-order) force constants were calculated using a real space supercell approach
with a 5 × 5 × 2 (4 × 4 × 2) supercell and 6 × 6 × 6 (8 × 8 × 6) k-grid. The Phonopy
package56 was used to obtain the second-order force constants. The thirdorder.py
and ShengBTE packages57 were used to obtain the third-order force constants and
the phonon scattering matrix on a 16 × 16 × 8 wavevector mesh.

Temperature response calculation. The calculation is based on the temperature
response with an arbitrary heating profile derived earlier45. An expression for the
temperature response function for a general heating profile is given as:

4eTðΩ; kÞ ¼ eQðΩ; kÞ sum A�1~p
� �

sum½iA�1D~c� ð5Þ

where Ω and k are the frequency and wavevector from the Fourier transform. We
define the sum operation of a vector to add up the values of its elements, i.e.,
sum½a� ¼ ∑μaμ . The details of Eq. (5) can be found in SM2.

To obtain the temperature response in a TTG measurement with grating period
l, we need to substitute the following heating profile [Eq. (6)] into Eq. (5) and take
the inverse Fourier transform:

eQ Ω; kð Þ ¼ δ
2π
l

� �
þ δ � 2π

l

� �
ð6Þ

Second sound as damped temperature-wave equation. As discussed earlier47,
using the energy and momentum conservation equations derived from the PBTE
with the Callaway model, a damped temperature-wave equation can be derived as
Eq. (7):

∂2T
∂t2

þ 1
τss

∂T
∂t

� v2ss
∂2T
∂x2

¼ 0 ð7Þ

with the second sound velocity vss and relaxation time τss given by Eq. (8).

v2ss ¼
Cqqxvx
ωq

D E2

Cqq2x
ω2
q

D E
Cq

D E ð8aÞ

τss ¼
Cqq

2
x

ω2
q

D E
Cqq2x
ω2
qτqR

D E ð8bÞ

However, Eq. (8) does not capture the wavevector dependence of the decay
length and or the second sound speed. Thus, we refer to the second sound velocity
obtained from Eq. (8) as the intrinsic limit.

Ballistic limit. In the ballistic regime, phonons move without interactions. Each
phonon at a given wavevector q will simply move along the x-axis with a velocity
equal to the x-component of the group velocity vx . If we assume the initial heating
is thermally distributed, i.e., each mode is excited proportional to its contribution
to heat capacity, then the temperature response of the TTG can be expressed as:

4T ¼ 2Q
CqcosðqvxtÞ

D E
C2

ð9Þ

where Q is the total heating and C is total heat capacity. The TTG temperature
response function at the ballistic limit at different temperatures obtained with Eq.
(9) is shown in Fig. 2c. The time of the first dip td can be obtained by setting the
derivative of 4T to zero [Eq. (10)]:

d4T
dt

j
t¼td

¼ �2Q
Cqqvxsin qvxtd

� �D E
C2 ¼ 0 ð10Þ
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Then thermal zero sound velocity can be obtained as Eq. (11):

vtzs ¼
l

2td
ð11Þ

The detailed derivation of Eq. (9) is provided in SM3.

Dispersion of measured thermal wave. If the second sound wave is approxi-
mated as a damped wave, then the TTG signal can be written as Eq. (12):

4TðtÞ ¼ exp �Ωit
� �

cosðΩr tÞ ð12Þ
The Fourier transform is shown in Eq. (13):

f4T ωð Þ ¼ 1

Ωi þ i ω�Ωr

� �þ 1

Ωi þ i ωþ Ωr

� � ð13Þ

This is sharply peaked near Ωr ; near this frequency, the frequency spectrum can
be approximated as Eq. (14):

gjΔTðωÞj2 � 1

Ω2
i þ ðω�ΩrÞ2

ð14Þ
Therefore, the frequency of the temperature wave could be obtained by

Lorentzian fitting of the temperature response function at a specified wavevector
given by Eq. (5). The detailed derivation is provided in SM4.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author on reasonable request.
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