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The ability to control and tune interactions in ultracold atomic gases has paved the way towards
the realization of new phases of matter. Whereas experiments have so far achieved a high degree
of control over short-ranged interactions, the realization of long-range interactions would open up
a whole new realm of many-body physics and has become a central focus of research. Rydberg
atoms are very well-suited to achieve this goal, as the van der Waals forces between them are many
orders of magnitude larger than for ground state atoms [1]. Consequently, the mere laser excitation
of ultracold gases can cause strongly correlated many-body states to emerge directly when atoms
are transferred to Rydberg states. A key example are quantum crystals, composed of coherent
superpositions of different spatially ordered configurations of collective excitations [2–5]. Here we
report on the direct measurement of strong correlations in a laser excited two-dimensional atomic
Mott insulator [6] using high-resolution, in-situ Rydberg atom imaging. The observations reveal the
emergence of spatially ordered excitation patterns in the high-density components of the prepared
many-body state. They have random orientation, but well defined geometry, forming mesoscopic
crystals of collective excitations delocalised throughout the gas. Our experiment demonstrates the
potential of Rydberg gases to realise exotic phases of matter, thereby laying the basis for quantum
simulations of long-range interacting quantum magnets.

The strongly enhanced interaction between Rydberg
atoms makes them unique building blocks for a vari-
ety of applications ranging from quantum optics and
quantum information processing [1, 7, 8] to engineer-
ing of exotic quantum many-body phases [9–11]. For
the latter purpose, two main ideas have been explored
theoretically. On the one hand, the weak admixing of
a Rydberg state to the atomic ground state using off-
resonant laser coupling was suggested as a way to benefit
from the long-range interactions without persistent pop-
ulation in the Rydberg state [9, 10, 12]. On the other
hand, direct laser excitation leads to the formation of
a gas of Rydberg excitations, also called Rydberg gas.
This strongly correlated system [13] can exhibit highly
non-classical states characterized by the coherent super-
position of ordered structures in the spatial distribution
of the Rydberg excitations [2–5, 14–16]. Here the excit-
ation dynamics proceeds on a timescale of a few micro-
seconds, on which the atoms can be considered frozen in
space, representing strongly interacting effective spins.
At the heart of the formation of such correlated states
lies the dipole blockade effect [1, 7, 8] that prevents sim-
ultaneous Rydberg excitation of two close-by atoms [17–
21]. Recent experiments using two trapped atoms have
shown how this blockade effect can be used to imple-
ment fast two-qubit quantum gates [22, 23]. In larger
ultracold atomic ensembles, the coherence of the collect-
ive excitation was demonstrated [24–26] and evidence for
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strong correlations could be found by observing univer-
sal scaling laws for the number of excited Rydberg atoms
[27, 28]. However, direct measurements of spatial order-
ing have remained an outstanding challenge. Import-
ant steps in this direction were recently explored using a
field-ion-microscope [20], allowing for the measurement of
the blockade radius in a three-dimensional Rydberg gas.
Recent theoretical works, on the other hand, have pro-
posed detection schemes with potential resolution below
the blockade radius, based on conditional Raman transfer
[29] or electromagnetically induced transparency [30].

Here, we demonstrate an alternative approach that
permits direct imaging of spatial excitation patterns, and
precise measurements of correlation functions. This al-
lows to probe the underlying spatially ordered constitu-
ents of the excited many-body state, revealing crystal-
line excitation patterns of its high-density components.
Two key advancements form the basis of our observations.
First, a two-dimensional atomic Mott insulator provides
a dense and well-ordered initial system that maximises
coherence times during the excitation dynamics. Second,
we developed an all-optical technique to image individual
Rydberg atoms in-situ with high spatial and temporal
resolution.

The physical system considered here is a two-
dimensional gas of alkali atoms trapped in a rotationally
invariant harmonic confinement potential and pinned in
a square optical lattice. The gas was prepared deep in the
Mott-insulating phase, ensuring uniform filling with one
atom per site within a disk of radius R ≃

√

Nata2lat/π,
where Nat is the total number of atoms and alat the
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Figure 1. Schematics of the many-body excitation. a,
Energy spectrum in the absence of optical driving. States
with more than one excitation form a broad energy band
(gray shading) above the degenerate manifold comprising the
ground state and all singly excited states. For each excita-
tion number Ne > 1, the states with lowest energy correspond
to spatially ordered configurations, which maximise the dis-
tance between the Rydberg excitations. The minimal interac-
tion energy (black arrows) is determined by the finite system
size and increases with Ne. Possible spatial configurations of
the excitations (blue dots) in the initial Mott-insulating state
(black dots) are shown schematically as circular insets next
to their respective interaction energy. The blockade radius is
depicted by the blue shaded disc around the excitation. b,
Simplified level scheme of 87Rb showing the transitions used
for the Rydberg excitation and detection.

lattice spacing. The atoms were initially in their elec-
tronic ground state, |g〉, and then resonantly coupled to
a Rydberg state, |e〉. In the interaction picture, the in-
ternal dynamics of the atoms is governed by the many-
body Hamiltonian:

Ĥ =
~Ω

2

∑

i

(

σ̂(i)
eg + σ̂(i)

ge

)

+
∑

i 6=j

Vij
2
σ̂(i)
ee σ̂

(j)
ee . (1)

Here, the vectors i = (ix, iy) label the lattice sites in
the plane. The first term in this Hamiltonian describes
the coherent coupling of the ground and excited states

with Rabi frequency Ω, where σ̂
(i)
ge = |ei〉〈gi| and σ̂

(i)
eg =

|gi〉〈ei| are the local transition operators. The second
term is the van der Waals interaction potential between
two atoms in the Rydberg state. In our case it is repulsive
and takes the asymptotic form: Vij = −C6/r

6
ij , with

the van der Waals coefficient C6 < 0 and rij = alat|i −
j| the distance between the two atoms at sites i and

j. The projection operator σ̂
(i)
ee = |ei〉〈ei| measures the

population of the Rydberg state at site i. This model is
valid as long as the mechanical motion of the atoms and
all decoherence effects can be neglected (Supplementary
Information).

The dynamics of this strongly correlated system can

be understood intuitively from its energy spectrum in
the absence of optical driving. It is instructive to group
the large number of many-body states, 2Nat , according to
the number of Rydberg excitations, Ne, contained in each
state (Fig. 1a). All singly excited states (Ne = 1) with
different positions of the Rydberg atom have identical
energies and form a Nat-fold degenerate manifold. For
multiply excited states (Ne > 1), this degeneracy is lif-
ted by the strong van der Waals interaction, giving rise to
a broad energy band (Fig. 1a). Starting from the ground
state, the creation of the first excitation is resonant, while
the sequential coupling to many-body states with larger
number of excitations is rapidly detuned by the interac-
tions. In fact, the rapid variation of the van der Waals po-
tential with distance prevents the excitation of all those
states where Rydberg atoms are separated by less than
the blockade radius, Rb, defined by ~Ω = −C6/R

6
b
. The

existence of this exclusion radius is expected to have a
striking consequence: while the total many-body state
exhibits finite-range correlations on a scale of Rb [13], its
high-density components with a Rydberg density close
to 1/R2

b
should display a crystalline structure, meaning

that the position of the Rydberg atoms is correlated over
a distance comparable to the system size.

The excitation dynamics of all configurations should
occur in an entirely coherent fashion, resulting in highly
non-classical many-body states. First, the approximate
rotational symmetry of our system leads to symmetric
superpositions of all microscopic configurations with dif-
ferent orientation but identical relative positions of the
Rydberg atoms. Second, since the coupling addresses
all states within an energy range ∼ ~Ω, it produces a
coherent superposition of many-body states with differ-
ent number of excitations and slightly different separa-
tion between the Rydberg atoms (Fig. 1a). This collect-
ive nature of the excited many-body states dramatically
changes the timescale on which their dynamics occurs.
The coupling strength to the state with a single excita-
tion is enhanced by a factor

√
Nat ≫ 1 [8] and the coup-

ling to states with Ne > 1 is similarly enhanced, with
Nat replaced by the number of energetically accessible
configurations in each Ne-manifold [3].

Our experiments began with the preparation of a two-
dimensional degenerate gas of 150 to 390 87Rb atoms
confined to a single antinode of a vertical (z-axis) optical
lattice [31]. The gas was brought deep into the Mott-
insulating phase by adiabatically turning on a square op-
tical lattice with period alat = 532 nm in the xy-plane.
Within the system radius, R = 3.5 µm to 5 µm, the prob-
ability of a lattice site to be occupied by a single atom was
typically 80%. The atoms were then initialised in the hy-
perfine ground state |g〉 ≡ |5S1/2, F = 2,mF = −2〉 and
coupled to the Rydberg state |e〉 ≡ |43S1/2,mJ = −1/2〉
(Fig. 1b). The coupling was achieved through a two-
photon process via the intermediate state |5P3/2, F =
3,mF = −3〉 using lasers of wavelengths 780 nm and
480 nm and σ− and σ+ polarisation, respectively (Fig. 1b
and Methods). The resulting two-photon Rabi frequency
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was Ω/(2π) = 170(20) kHz, yielding a blockade radius
of Rb = 4.9(1) µm. Following the initial preparation, we
suddenly switched on the excitation lasers and let the
system evolve for a variable duration t. After the excit-
ation pulse, we detected the Rydberg excitations by first
removing all atoms in the ground state with a resonant
laser pulse, then deexciting the Rydberg atoms to the
ground state via stimulated emission towards the inter-
mediate state (Fig. 1b and Methods) and finally record-
ing their position using high-resolution fluorescence ima-
ging [31]. The accuracy of the measurement was limited
by the probability of 75(10)% to detect a Rydberg atom
and by a background signal due to on average 0.2(1) non-
removed ground state atoms per picture (Supplement-
ary Information). The spatial resolution of our detection
technique is limited to about one lattice site by the resid-
ual motion of the atoms in the Rydberg state before deex-
citation (Supplementary Information). Repeating the ex-
periment many times allowed for sampling the different
spatial configurations of Rydberg atoms constituting the
many-body state and to measure their respective statist-
ical weight.

In Fig. 2a we show typical images of microscopic config-
urations with Ne = 2-5. In order to analyse the structure
of the many-body state, we group the individual images
according to their number of excitations and determine

the spatial distributions of the excitations, ρe(i) = 〈σ̂(i)
ee 〉,

where 〈 · 〉 denotes the average from repeated measure-
ments. These distributions display a typical ring-shaped
profile (Fig. 5), which results from the blockade effect and
from the rotational symmetry of the system. Crystalline
structures become visible once each microscopic config-
uration has been centred and aligned to a fixed reference
axis (Fig. 2b and Methods).

For our smallest sample (R ≈ 3.5 µm), we observe
strong correlations between Ne = 2 excitations that
are localized at a distance ∼ 6 µm, due to the inter-
action blockade. In the same dataset, configurations
with Ne = 3 show an arrangement on an equilateral tri-
angle, revealing both strong radial and azimuthal or-
dering. These correlations persist for larger numbers
of Rydberg excitations, which we can prepare in lar-
ger samples (R ≈ 5 µm). They form quadratic and
pentagonal configurations for Ne = 4 and Ne = 5, re-
spectively. However, since their interaction energy is lar-
ger, these states are populated only with low probability,
leading to a reduced signal-to-noise ratio. Our experi-
mental data is in good agreement with numerical sim-
ulations of the many-body dynamics according to the
Hamiltonian of Eq. (1), for the same atom numbers,
temperature and laser parameters as in the experiment
(Fig. 2c and Supplementary Information). These simula-
tions are based on a truncation of the underlying Hilbert
space, exploiting the dipole blockade, and neglect any
dissipative effects ([3] and Supplementary Information).
The spatial distributions of excitations provided by the
simulation reproduce all the features observed in the ex-
periment. The only apparent discrepancy is the overall
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Figure 2. Mesoscopic crystalline components of the

many-body states. Spatial distribution of excitations for
the observed microscopic configurations sorted according to
their number of excitations Ne = 2-5 (top to bottom row). a,
Examples of false-colour fluorescence images in which deex-
cited Rydberg atoms are directly visible as dark-blue spots. b,
Histograms of the spatial distribution of Rydberg atoms ob-
tained after centring and aligning the individual microscopic
configurations to a reference axis (Methods). The initial atom
distribution had a diameter of 7.2(8) µm and 10.8(8) µm for
Ne = 2-3 and Ne = 4-5, respectively. c, Theoretical predic-
tion from numerical simulations of the excitation dynamics
governed by the many-body Hamiltonian of Eq. (1) for the
same conditions as in the experiment (Supplementary Inform-
ation).

slightly larger size of the measured structures, which can
be attributed to the spatial resolution of our detection
method, as discussed below.

For a more quantitative analysis of spatial correlations,
we also measured the pair correlation function (Fig. 3a)

g(2)(r) =

∑

i 6=j δr,rij 〈σ̂
(i)
ee σ̂

(j)
ee 〉

∑

i 6=j δr,rij 〈σ̂
(i)
ee 〉〈σ̂(j)

ee 〉
, (2)

which characterizes the occurrence of two excitations be-
ing separated by a distance r. Here δr,rij is the Kronecker
symbol that restricts the sum to sites (i, j) for which
rij = r. In contrast to the spatial distributions presented
above, the average is now taken over all values of Ne. The
pair correlation function g(2)(r) shows a strong suppres-
sion at distances smaller than r = 4.8(2) µm, which coin-
cides with the expected blockade radius Rb = 4.9(1) µm.
Moreover, we find a clear peak at r = 5.6(2) µm and evid-
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Figure 3. Correlation functions of Rydberg excitations. a, Pair correlation function. The blockade effect results in a
strong suppression of the probability to find two excitations separated by a distance less than the blockade radius Rb = 4.9(1) µm.
Moreover, we observe a peak at r ≃ 5.6 µm and a weak oscillation at larger distances. The initial atom distribution had a
diameter of 10.8(8) µm. The experimental data (blue circles) are compared to the theoretical prediction both taking into account
the independently characterized imperfections of our detection method (green line) and disregarding these imperfections (gray

line). The dashed line marks the value of g(2) in the absence of correlations. The error bars represent the standard error of the

mean (s.e.m.) of g(2)(r). b, Azimuthal correlation function. The crystalline structure of the high-density components is best
visible in the angular correlations around the centre of mass of the distribution of excitations, characterized by the correlation
function g̃(2)(∆φ) defined in Eq. (3). By construction, this function is symmetric around 180◦. Correlations are observed at the
angles expected for the respective crystals shown in the insets. The peaks close to 180◦ are more pronounced since the centre
of mass of a configuration is likely to lie close to the intersections of the diagonals, due to the blockade effect. Error bars, s.e.m.

ence for weak oscillations extending to the boundaries of
our system. This indicates that the overall many-body
state only exhibits finite-range correlations. Our theor-
etical calculation of g(2)(r) (gray line in Fig. 3a) exhibits
similar features, but shows more pronounced oscillations
and vanishes perfectly within the blockade radius. These
discrepancies can be attributed to several imperfections
of the detection technique. The sharp peak at short dis-
tances r . 1 µm results from hopping of single atoms to
adjacent sites during fluorescence imaging with a small
probability of approximately 1%, which is falsely detec-
ted as two neighbouring excitations. The non-zero value
of g(2)(r) for distances r . 3 µm arises from the imperfect
removal of the ground state atoms. Finally, the shift and
slight broadening of the peak in the correlation function
is attributed to the residual motion of the Rydberg atoms
before imaging (Supplementary Information). When ac-
counting for these independently characterized effects in
the theoretical calculations (green line in Fig. 3a), we
recover excellent agreement with the measurements.

Since our system size is comparable to the blockade ra-
dius, the excitations in states with Ne > 1 are localised
along the circumference of the system. We characterize
the resulting angular order by introducing an azimuthal
correlation function that reflects the probability to find
two excitations with a relative angle ∆φ measured with
respect to the centre of mass of the distribution of excit-
ations:

g̃(2)(∆φ) =

∫

dφ

2π

〈n̂(φ)n̂(φ+∆φ)〉
〈n̂(φ)〉〈n̂(φ+∆φ)〉 . (3)

Here n̂(φ) =
∑

i δφ,φi
σ̂
(i)
ee is the azimuthal distribution of

excitations, with (ri, φi) the polar coordinates of the site
i. As can be seen in Fig. 3b, the spatially ordered struc-
ture is clearly visible as correlations at relative angles
∆φ = ν × 360◦/Ne, with ν = 1, 2, . . . , Ne, even for the
largest excitation numbers.

We finally analyse the many-body excitation dynam-
ics of the system. In Fig. 4a we show the time evol-
ution of the average number of Rydberg excitations,

N̄e =
∑

i〈σ̂
(i)
ee 〉, which quickly saturates to a small value

N̄e ≃ 1.5, much smaller than the total number of atoms
in the system, Nat = 150(30). The saturation is reached
in ∼ 500 ns, a factor of ten faster than the Rabi period
2π/Ω, due to the collective enhancement of the op-
tical coupling strength. The probability to observe Ne

Rydberg excitations shows a similar saturation profile for
each excitation number Ne (Fig. 4b-d), but on a times-
cale that increases with Ne, from about 200 ns for Ne = 1
to about 600 ns for Ne = 3. This can be attributed to the
variation of the collective enhancement factor associated
with the number of energetically accessible microscopic
configurations for a given Ne. The theoretical excitation
dynamics corresponding to the Hamiltonian (1) shows
remarkable agreement with the experimental data when
including the finite detection efficiency. This provides
evidence that the dynamics observed in the experiment
is coherent, as expected on these timescales, which are
much shorter than the lifetime of the Rydberg state of
25(5) µs in the lattice and the timescale of other decoher-
ence effects (Supplementary Information). The absence
of high-contrast Rabi oscillations in the time evolution of
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the average number of Rydberg excitations is caused by
the strong dephasing between many-body states with dif-
ferent interaction energies arising from the different spa-
tial distribution of excitations. However, remnant sig-
natures of Rabi oscillations can still be observed. In
particular, the population of the singly excited states
shows a peak around t = 200(50) ns (Fig. 4b), which
matches the π-pulse time of the enhanced Rabi frequency
π/

(√
NatΩ

)

= 240(40) ns. Further evidence for the co-
herence of the dynamics can be found in the spatially re-
solved analysis of the excitation dynamics (Supplement-
ary Information).

In conclusion, we have characterised the strongly
correlated excitation dynamics of a resonantly driven
Rydberg gas using optical detection with unpreceden-
ted spatial resolution, and observed mesoscopic Rydberg
crystals in the high-density components of the produced
many-body states. One future challenge lies in the de-
terministic preparation of ground-state Rydberg crystals
with a well-defined number of excitations via adiabatic

sweeps of the laser parameters [3, 4, 14]. Together with
the demonstrated imaging technique, this would enable
precise studies of quantum phase transitions in long-
range interacting quantum systems on the microscopic
level [2–4, 15]. Combining the dipole blockade effect with
the single-atom addressing demonstrated already in our
experimental setup, one could also engineer mesoscopic
quantum gates [32], which can serve as an experimental
“toolbox” for digital quantum simulations of a broad class
of spin models, including such fundamental systems as
Kitaev’s toric code [33].
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METHODS

Rydberg excitation and detection scheme The
two excitation laser beams were counterpropagating

along the z-axis, with an intermediate-state detuning
δ/(2π) = 742(2)MHz (Fig. 1b). During the sequence, a
magnetic offset field of B ≃ 30G along the z-axis defined
the quantisation axis. The excitation pulse was per-
formed by switching the laser at 780 nm while the laser
at 480 nm was on. The temporal resolution of our meas-
urement was thus set by the rise time of the 780 nm
light, which was ≃ 40 ns. Immediately after the excit-
ation pulse, we used near-resonant circularly-polarised
laser beams to drive the transitions |5S1/2, F = 1〉 →
|5P3/2, F = 2〉 and |5S1/2, F = 2〉 → |5P3/2, F = 3〉 and
remove all ground state atoms, with a fidelity of 99.9%
in 10 µs. Subsequently, the Rydberg atoms were stimu-
lated down to the ground state by resonantly driving the
|43S1/2,mJ = −1/2〉 → |5P3/2, F = 3,mF = −3〉 trans-
ition for 2 µs.

Computation of the histograms The histograms
shown in Fig. 2b are based on the digitised atom dis-
tribution reconstructed from the raw images [31]. They
reflect the Rydberg atom distribution in a region of in-
terest covering a disc of radius Rmax = 1.5 × R. Each
individual image was aligned in the following way. First,
we set the origin of the coordinate system to the centre
of mass of the atom distribution. Then, for each atom we
determined the angle between its position vector and a
reference axis, and rotated the images about the origin by
the mean value of these angles (repeating this operation
would leave the configuration unchanged). The histo-
grams contain data taken at different evolution times up
to 4 µs, as we found no significant temporal dependence
of the excitation patterns. The theoretical calculations
used the same parameters as in the experiment (including
temperature and atom number distribution of the initial
state) and followed the same procedure to determine the
Rydberg atom densities. Both the experimental and the-
oretical histograms were normalised such that the value
at each bin represents the probability to observe a mi-
croscopic configuration with a Rydberg atom located at
this position.

SUPPLEMENTARY INFORMATION

I. SPATIAL DISTRIBUTION OF THE

EXCITATIONS WITHOUT ROTATIONAL

ALIGNMENT

Here we show the spatial distribution of excitations
based on the same data as in Fig. 2b and 2c of the main
text but without the rotational alignment procedure de-
scribed in the Methods section.
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II. SPATIALLY RESOLVED ANALYSIS OF THE

EXCITATION DYNAMICS

The coherence of the dynamics can be revealed in a
more obvious way by studying the time evolution of the
spatial distribution of the Rydberg excitations. For this
purpose, we considered the subset of microscopic config-
urations with only one excitation. Because the block-
ade radius is only slightly smaller than the system dia-
meter, only those configurations in which the excitation
is located close to the edge of the system are significantly
coupled to configurations with two excitations. This res-
ults in different time constants for the dynamics at dif-
ferent distance r from the centre. We have investigated
this effect theoretically by calculating the time evolution
of the relative probability for the excitation to be located
close to the centre of the system (green line in Fig. 6). In
contrast to Fig. 4 of the main text, we now observe Rabi-
like oscillations with notable amplitude over long times-
cales. We performed the corresponding measurement in
the experiment for two pulse durations (blue circles) and
find reasonable agreement. This provides further evid-
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Figure 5. Spatial distribution of the distribution of

excitations before rotation. a, Histograms constructed
from the experimental data. The Rydberg atoms are excited
with higher probability close to the edge than in the centre
of the cloud. The resulting ring-shaped excitation region is
clearly visible for Ne = 2 and 3. The contrast decreases for
Ne = 4 and 5 due to the lower number of occurences in the
experiment. b, Theoretical predictions for the excitation from
initial clouds of same temperature and atom number as in the
experiment (see Fig. 2 for details).
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Figure 6. Excitation dynamics at the centre of the

system. Relative number of excitations in the central nine
sites as a function of the excitation pulse duration for micro-
scopic configurations with a single excitation Ne = 1. The
theoretical calculation (green line, inset) reveals the coher-
ent evolution, which is hardly visible in the time evolution of
the total excitation number. Two experimental points (blue
circles) were obtained from an additional dataset containing
about 800 images per pulse duration. It was characterized by
the temperature of the initial state T = 9(2) nK, the atom
number Nat = 210(30) and the radius R = 4.2(5) µm. These
experimental parameters were included in the numerical sim-
ulation. The error bars denote one standard deviation of the
mean (s.e.m.).

ence for the coherence of the many-body dynamics in
the experiment.

III. ADDITIONAL INFORMATION ON THE

DATASETS

The experimental data results from three different
datasets (A, B and C). Each dataset was characterized
by a temperature, T , atom number, Nat, and diameter,
2R, which we extracted from a fit to the ground state
atom distribution in the initial state [34] (Table I). The
datasets A and B were used for Fig. 2 and 3, while the
dataset C was used for Fig. 4. The distribution of the
number of excitations in the datasets A and B is detailed
in Table II, where we also indicated which subset of im-
ages was used for which figures. The dataset C consisted
of 54 images per pulse duration and the relative distri-
bution of excitations is directly visible in Fig. 4.
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dataset A dataset B dataset C

T (nK) 8(4) 13(2) 9(4)
Nat 150(30) 390(30) 150(30)
R (µm) 3.6(4) 5.4(4) 3.6(4)

Table I. Temperature T , atom number Nat and radius R for
the datasets A, B and C. Errors, s.d.

dataset A dataset B

number of
excitations

number of
images figures

number of
images figures

0 177 – 321 –
1 235 – 375 3a
2 191 2a, 3b 390 3a
3 65 2a, 3b 308 3a
4 7 – 177 2a, 3a, 3b
5 1 – 64 2a, 3a, 3b
6 0 – 14 –
7 0 – 5 –

Table II. Distribution of the number of excitations in the data-
sets A and B. For each subset of images we have also indicated
in which figure of the main text it has been used.

IV. NUMERICAL CALCULATIONS

In order to determine the dynamics governed by the
Hamiltonian in Eq. (1), we expand the many-body wave
function, |ψ〉, of the Nat-atom system in terms of Fock-
states

|ψ〉 = c(0)|0〉+
∑

i1

c
(1)
i1

|i1〉+
∑

i1,i2

c
(2)
i1,i2

|i1, i2〉+ . . .

+
∑

i1,...,iNat

c
(Nat)
i1,...,iNat

|i1, . . . , iNat
〉 ,

where |i1, . . . , iNe
〉 corresponds to a state with Ne

Rydberg excitations located at lattice sites i1 to iNe
,

and c
(Ne)
i1,...,iNe

denotes the respective time dependent

amplitude. The basis states are eigenfunctions of the
Hamiltonian (1) in the absence of laser driving, with en-

ergy eigenvalues E
(Ne)
i1,...,iNe

=
∑Ne

α<β Viαiβ . For a system

of Nat atoms, this basis set expansion yields a set of
2Nat coupled differential equations (Fig. 7). Due to the
exponential growth of the number of many-body states
with Nat, a direct numerical propagation is practically
impossible for the large number of atoms in our experi-
ments, Nat ∼ 100. In order to make the calculations feas-
ible, we exploit the blockade effect and discard all many-
body states containing Rydberg atom pairs separated by
less than a critical distance Rc. For the present simu-
lations, we obtain well-converged results for Rc ≃ Rb/2,
where Rb is the blockade radius. The resulting geometric
constraint not only reduces the number of relevant many-
body states within a given Ne-manifold, but, due to the
finite system size, also restricts the total number of excit-

ations Ne necessary to obtain converged results. For the
parameters considered in this work, a maximum number

of Rydberg excitations of Ne
(max) = 6 was found suffi-

cient. This procedure allows to significantly mitigate the
otherwise strong exponential scaling of the underlying
Hilbert space dimension, and yields a power-law depend-

ence ∼ N
N(max)

e
at of the number of relevant basis states on

the total number of atoms. This makes the computations
feasible, albeit still demanding, for such large systems as
in our experiment.

V. OPTICAL DETECTION SCHEME

We developed a fully-optical detection technique for
Rydberg atoms, which represents an alternative to the
usual detection schemes based on the ionisation of
Rydberg atoms [18, 20, 35, 36]. Here, we provide addi-
tional details to those given in the main text, especially
regarding the detection efficiency and spatial resolution.

A. Stimulated deexcitation of the Rydberg atoms

We stimulated the Rydberg atoms down to the ground
state by resonantly driving the |43S1/2,mJ = −1/2〉 →
|5P3/2, F = 3,mF = −3〉 transition. The Rabi fre-
quency associated with this resonant single-photon trans-
ition was typically several MHz. In combination with
the short lifetime of the 5P3/2 state (27 ns), this allows
for a very efficient and fast (< 2 µs) pumping to the
ground state. The laser light resonant with the trans-
ition between the Rydberg and the intermediate states
was produced by a resonant electro-optical modulator
(EOM) in the path of the excitation laser at 480 nm,
which created a sideband at the desired intermediate-
state detuning δ/(2π) = 742MHz. The other sideband
and the carrier have negligible influence on the atoms in
the deexcitation phase since they are off-resonant. The
EOM also allows for the required fast switching of the
deexcitation light within < 1 µs.

B. Spatial resolution

Two effects can in principle limit the spatial resolution
of our detection technique. The first one is the residual
hopping of the atoms during the fluorescence imaging
phase. We found that such an event can occur in our
experiment with a probability of approximately 1% per
particle. When this happens, the moving atom will yield
a fluorescence signal on two adjacent sites, which can
be falsely attributed to two distinct atoms by the recon-
struction algorithm. This detection artifact results in a
correlation signal at short distances r < 1 µm (Fig. 3a).
However, due to their rarity these events have negligible
influence on the spatial resolution. The second effect is
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V(a)

V(a)

2V(a)

Ne = 0

Ne = 1

Ne = 2

Ne = 3

Figure 7. Schematics of the numerical calculations. The underlying many-body level structure is shown for the example
of a one-dimensional chain of five atoms. The atomic states are symbolised by effective spins, with spin-down (blue arrows)
and spin-up (red arrows) corresponding to the atomic ground and Rydberg state, respectively. In the displayed example,
we consider strong interactions V (a) ≫ ~Ω between adjacent Rydberg excitations, while next-nearest neighbour interactions
V (2a) = V (a)/64 < ~Ω are assumed to be smaller than the laser coupling strength. Consequently, the dynamics of near
resonant basis states (orange boxes) is explicitly calculated in the simulations, while strongly shifted states (grey boxes) do
not participate in the excitation dynamics and are discarded (see text for further details). The near-resonant laser coupling
between relevant many-body states is indicated by the green arrows. Due to the strong geometrical constraint imposed by the
interaction blockade combined with the finite system size, many-body states containing more than Ne = 3 Rydberg excitations
do not need to be considered.

the possible motion of the Rydberg atoms in the optical
lattice potential before the imaging phase. For Rydberg
atoms, the lattice potential has similar amplitude but
opposite sign compared to ground state atoms [37]. An
excited atom therefore finds itself at a maximum of the
periodic potential and can move in the xy-plane with an
average velocity of ∼ 30 nm/µs, for a typical depth of the
optical lattice potential of Vlat = 40Er. Both effects lead
to a possible motion of the Rydberg atoms by about one
lattice site during the 10 µs of the removal pulse. The
recoil velocity acquired in the two-photon excitation pro-
cess is insignificant in comparison as it is oriented along
z-direction and only of smaller magnitude ≃ 4 nm/µs.

C. Detection efficiency

The detection efficiency for Rydberg atoms in our
setup is limited by the lifetime of the Rydberg state and
by the anti-confining character of the optical lattice po-
tential for the Rydberg atoms. If a Rydberg atom decays
to the ground state during the removal pulse, it will be
removed as well and not detected. The residual motion
of the Rydberg atoms in the lattice potential also leads
to a reduction of the detection efficiency when the atoms
move away from the focal plane of the imaging system,
which has a depth of focus of order 1 µm. Both effects can
be reduced by minimising the time the atoms spend in
the Rydberg state after the excitation pulse, by reducing

the duration of the removal pulse for the ground state
atoms. A removal pulse duration of 10 µs turned out to
offer the best compromise between a good detection effi-
ciency of Rydberg atoms and a low survival probability
of ground state atoms.

We estimated the detection efficiency in three differ-
ent ways. First, we measured the lifetime of the atoms
in the Rydberg state in the lattice by varying the dur-
ation of the removal pulse. We fitted a 1/e-decay time
τ = 25(5) µs, which corresponds to a detection efficiency
of 65(5)%. A second estimation is provided by the time
evolution of the number of Rydberg excitation displayed
in Fig. 4. Here the theoretical prediction matches the
data best when assuming a detection efficiency of ∼ 75%,
which is compatible with the previous estimate. Finally,
the statistical weight of the different number of excita-
tions can also be related to the detection efficiency. This
last estimation points to a higher detection efficiency of
∼ 80%. Combining all these values with equal weight,
we finally obtain a detection efficiency of 75% with an
uncertainty of about 10%.

VI. VALIDITY OF THE THE MODEL

The validity of the Hamiltonian in Eq. (1) for our ex-
perimental system relies on two main assumptions, which
are discussed in this section: the positions of the atoms is
frozen during the dynamics and all decoherence sources
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can be neglected.

A. Movement of the atoms during the dynamics

The ground state atoms were confined in a three-
dimensional optical lattice of depth Vxy = 40(3)Er in
the xy-plane and Vz = 75(5)Er along the z-axis, where
Er = (2π~)2/(8ma2

lat
) denotes the recoil energy of the lat-

tice, and m the atomic mass of 87Rb. For the minimum
lattice depth used in the experiment of Vlat = 40Er, the
time associated to the inverse of the tunnelling matrix
element was ~/J ≃ 700ms, and therefore negligible com-
pared to the timescale of the internal dynamics. The
Rydberg atoms move in the lattice potential with a typ-
ical velocity of 30 nm/µs (see discussion in Section V B),
which can also be neglected.

B. Light scattering from the intermediate state

One source of decoherence in our experimental sys-
tem is light scattering from the intermediate state used
in the two-photon excitation process. The laser beam
off-resonantly driving the ground-to-intermediate-state
transition had a detuning of 742MHz and an intensity of
∼ 450mW/cm2, yielding a scattering rate of 9× 104 s−1.
This corresponds to a coherence time of 11 µs, which is
a factor of ten longer than the typical timescale of the
many-body dynamics.

C. Laser linewidth

The finite spectral width of the optical radiation driv-
ing the transition to the Rydberg state acts as a deco-
herence source and was reduced by carefully stabilising
the frequency of the excitation lasers. We could achieve
a two-photon linewidth of ≈ 70 kHz, leading to a coher-
ence time of 14 µs. Technical details on the laser setup
are provided in Section VII.

D. Two-photon Rabi frequency

We determined the two-photon Rabi frequency by driv-
ing Rabi oscillation in a very dilute system, where the
average distance between two atoms was larger than the
blockade radius of the 43S state, for which the van der
Waals coefficient is C6 = −1.6× 10−60 J m6 [38]. The
measurement was very time-consuming in our experi-
mental setup since at such densities only a few atoms are
located within the waist of the excitation lasers, resulting
in a very low signal (about one Rydberg excitation per
image) with relatively large fluctuations. We could ob-
serve one period of the Rabi oscillation, as expected from
the combined coherence time of light scattering and laser
linewidth of 6 µs, and extracted from the data a Rabi
frequency of Ω/(2π) = 170(20) kHz.

The waists of the two laser beams of wavelength 780 nm
and 480 nm [39] driving the two-photon transition were
57(2) µm and 17(5) µm, respectively. The largest systems
we studied had a radius of 5.4 µm, leading to a variation
in the coupling strength to the Rydberg state by < 20%
over the whole system.

VII. LASER SETUP

The light at a wavelength of 780 nm was produced
by a diode laser whose frequency was stabilised using a
modulation transfer spectroscopy in a rubidium vapour
cell. The light at 480 nm was generated by frequency-
doubling light at 960 nm, which was emitted from a di-
ode laser and amplified by a tampered amplifier. This
second laser was stabilised by a phase-lock to a master
laser, which allows for tuning its frequency while main-
taining the narrow laser linewidth. The master laser at
960 nm was locked to a temperature stabilised ULE cav-
ity in a vacuum chamber. The short-term linewidth of
both excitation lasers was measured using an independ-
ent resonator (EagleEye, Sirah Laser- und Plasmatechnik
GmbH, Germany), which can resolve linewidths down to
∼ 20 kHz. We obtained a linewidth of 20 kHz for the laser
at 480 nm and 50 kHz for the laser at 780 nm. We meas-
ured the long-term stability of the two-photon excitation
to be 50 kHz over several hours (FWHM of the centre of
the line) using EIT-spectroscopy in a rubidium vapour
cell [40].
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