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We report on the observation of surface gap solitons found to exist at the interface between uniform and
periodic dielectric media with defocusing nonlinearity. We demonstrate strong self-trapping at the edge of
a LiNbO3 waveguide array and the formation of staggered surface solitons with propagation constant
inside the first photonic band gap. We study the crossover between linear repulsion and nonlinear
attraction at the surface, revealing the mechanism of nonlinearity-mediated stabilization of the surface
gap modes.
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Interfaces between different physical media can support
a special class of localized waves known as surface waves.
Surface waves attract great attention with their possible
application in surface sensing and probing. In periodic
systems, staggered surface waves are often referred to as
Tamm states [1], first identified as localized electronic
states at the edge of a truncated periodic potential. Direct
observation of electronic surface waves in natural crystal-
line materials remains beyond practical reach, but success-
ful efforts were made to demonstrate their existence in
nanoengineered superlattices [2]. In optics, linear stag-
gered surface modes or Tamm states have been demon-
strated at surfaces separating periodic and homogeneous
dielectric media [3].

The nonlinear response of materials makes possible the
dynamic control of surface localization. This ability has
generated great interest in the study of nonlinear surface
waves in different fields of physics and most extensively in
optics. A self-focusing optical nonlinearity enables the
existence of localized waves at interfaces between homo-
geneous dielectric media [4–6] where no linear modes
exist. However, such surface modes are typically associ-
ated with high power requirements, and are not possible at
all if the nonlinear response is self-defocusing. The combi-
nation of periodicity and nonlinearity allows one to over-
come both of these limitations due to the ability of periodic
structures to dramatically modify beam diffraction. This
leads to a wealth of different types of modes localized at
and near the surface [7]. Furthermore, nonlinear surface
states hold promise for optical switching applications uti-
lizing the mechanism of low-power beam delocalization
and higher power confinement at the surface.

Self-trapping of light near the boundary of a self-
focusing photonic lattice was predicted recently [8] and
demonstrated in experiment [9] through the formation of

discrete surface solitons at the edge of a nonlinear wave-
guide array. In self-defocusing materials the existence of
surface gap solitons at the interface between uniform and
periodic media was also recently predicted theoretically
[8,10]. In this case, light localization occurs inside the
photonic band gap in the form of staggered surface modes
[10]. This enables one to extend the analogy with the
localized electronic Tamm states into the nonlinear regime,
so the surface gap solitons can be termed as nonlinear
Tamm states.

In this Letter we study experimentally self-action of a
narrow beam propagating near the edge of a LiNbO3

waveguide array with defocusing nonlinearity. For the first
time to our knowledge, we observe the formation of sur-
face gap solitons, or nonlinear Tamm states. While linear
surface modes do not exist in this type of system, discrete
light self-trapping is observed in the nonlinear regime
above a certain threshold power when the propagation
constant is shifted into the gap of the photonic transmission
spectrum. By employing a simple nonlinear discrete model
[11], we describe the crossover from discrete diffraction
and surface repulsion in the linear regime, to the appear-
ance of a purely nonlinear localized surface state at higher
optical intensities. We discuss the physical mechanism of
the nonlinearity-induced stabilization of the staggered sur-
face modes.

In our experiments, we study nonlinear surface localiza-
tion in a semi-infinite array of single-mode optical wave-
guides fabricated by a titanium in-diffusion process in a
monocrystal x-cut lithium niobate wafer, similar to that
recently used for the observation of discrete gap solitons
[12,13]. The fabrication process, described in Ref. [13],
results in a high-quality waveguide array with refractive
index contrast �n � 3� 10�4, waveguide spacing d �
9:0 �m, sample length 50 mm, and a total of 100 wave-
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guides. The inset in Fig. 1(b) shows schematically the
geometry of the waveguide array. The LiNbO3 sample
exhibits a strong photovoltaic effect which leads to defo-
cusing nonlinearity at visible wavelengths.

In the experimental setup an extraordinarily polarized
probe beam from a cw Nd:YVO4 laser (� � 532 nm) is
focused by a microscope objective (�20) to a full width at
half maximum (FWHM) of 2:7 �m at the input face of the
sample, and injected into the waveguide at the edge of the
array. The propagated wave packet at the output of the
sample is imaged onto a CCD camera. The FWHM of the
individual waveguide mode is 6 �m and 3 �m in horizon-
tal and vertical directions, respectively, allowing for a
single-waveguide input coupling. The waveguide array is
externally illuminated by a white-light source in order to
control the nonlinear response time. As shown in Ref. [13]
single site excitation provides an efficient method for
excitation of gap solitons in periodic defocusing nonlinear
materials, provided the refractive index contrast exceeds a
certain threshold. In this case the periodic structure appears
equivalent to a discrete system [13] and can be well de-
scribed by a nonlinear discrete model.

At low laser power (0:1 �W), we observe two major
effects. First, due to coupling between neighboring wave-
guides the probe beam experiences discrete diffraction and
spreads out in the horizontal plane upon propagation.
Second, the beam shifts dramatically to the right indicating
a strong repulsive effect of the surface. Figure 1(a) shows
the experimental image of the output intensity distribution
and the corresponding transverse intensity profile. After
linear propagation through the array the beam profile ac-
quires a complex form, where the major lobe is centered
approximately 42 lattice sites away from the input excita-
tion point (n � 0 at the edge of the array) due to the surface
repulsion. Figure 1(b) shows the corresponding optical
intensity distribution inside the sample, calculated with
the help of a simple analytical formula derived from a dis-
crete model an�z�� � A0in�Jn�2z�� � Jn�2�2z���, where
an�z�� is the discrete mode amplitude in the nth wave-
guide, A0 is the initial field amplitude in the input wave-
guide n � 0, z is the propagation distance, and � is the
intersite coupling coefficient [8]. In Fig. 1(b) the discrete
mode amplitudes have been multiplied by the continuous
waveguide mode intensity profile, and the agreement with
the experimental observation is found to be excellent. The
coupling coefficient is estimated to be � � 0:46 mm�1,
implying a total propagation of 23 coupling lengths.

Increasing the laser power leads to spatial beam self-
action through the defocusing photovoltaic nonlinearity.
The slow response of the nonlinearity allows us to monitor
directly the transient temporal dynamics of self-trapping
and soliton formation. Figures 1(c)–1(e) show the output
beam intensity profile at times 920, 1050, and 1550 s,
respectively, after the beam power is increased to P �
0:5 mW. The wave packet is seen first to contract and shift
towards the edge of the array, indicating a nonlinearity-
induced suppression of the surface repulsion [Fig. 1(c)].
Then partial self-trapping at the surface occurs, with a tail
of intensity lobes extending into the periodic structure
[Fig. 1(d)]. A series of zero intensity points between these
lobes indicates the self-induced dynamic formation of a
staggered phase structure which is clearly absent in
Fig. 1(a). Eventually, a strongly localized surface gap
soliton is formed [Fig. 1(e)]. The asymmetry of the pho-
tonic structure is reflected in the shape of the trapped beam
which decays monotonically into the continuum while
showing damped oscillations inside the array, resembling
the structure of a truncated Bloch mode. The defocusing
nonlinearity effectively decreases the contrast of the sur-
face waveguide, causing the localized mode to broaden and
penetrate substantially into the continuous medium.

In order to study in detail the crossover between linear
diffraction and nonlinear self-localization, we measure the
surface gap soliton formation time as a function of the
probe beam power. As seen in Fig. 2 the formation time
increases dramatically for decreasing input power until,
below a certain critical power, no localized surface mode is
observed. This so-called critical slowing down indicates
the existence of a threshold power below which the non-
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FIG. 1 (color online). Linear propagation of a narrow low-
power beam when only the edge waveguide of the array is
excited. (a) Measured transverse output intensity profile (P �
0:1 �W) and (b) corresponding theoretically calculated longi-
tudinal propagation inside the sample. Inset in (b) shows the
waveguide geometry. (c)–(e) Formation of the surface gap
soliton at the array output 920, 1050, and 1550 s, respectively,
after the input beam power is increased to P � 0:5 mW. Grey
shading marks the waveguide positions.
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linear response is too weak to cause self-trapping. While
the analytical form of the dynamics of the soliton forma-
tion near the threshold is not known, the value of the
threshold power was estimated as Pth � 42 �W by mod-
eling the measured dependence of the soliton formation
time (Fig. 2, red dots) on the beam power with a simple
singular relation A� B=�P� Pth� (Fig. 2, solid curve).
Figures 2(a)–2(c) show the beam intensity profiles corre-
sponding to the indicated data points. The width of the
localized mode decreases for increasing beam power, span-
ning about three lattice sites immediately above threshold
[Fig. 2(a)], and approximately a single lattice site at higher
power [Fig. 2(c)]. The decrease of the beam width is due to
the fact that stronger beam self-action at higher power
leads to a deeper surface defect, and hence more pro-
nounced beam localization.

An essential and unique feature of the observed surface
gap solitons is the staggered phase structure of the beam
tail inside the periodic medium. The alternating phase of
the field lobes reflects the fact that the propagation constant
of the self-localized mode lies within the photonic band
gap at the edge of the first Brillouin zone. To verify that this
is indeed the case in the experiment, we interfere the output
beam with a vertically inclined plane reference wave.
Figure 3(a) depicts a three-dimensional representation of
the spatial beam intensity distribution of the broad surface
gap soliton observed near the threshold [Fig. 2(a)].
Figure 3(b) shows a two-dimensional intensity plot of the
associated interference pattern. A half-period vertical shift
of the interference fringes, corresponding to an exact �
phase jump in the horizontal beam direction, is clearly
observed between each pair of lobes in the structure
[Fig. 3(b)]. The phase is seen to be constant in the con-
tinuous region. The staggered phase structure inside the
array and the constant phase in the continuum are signa-
tures of the two different localization mechanisms at play
[10]. The mode is confined from the continuum by total

internal reflection, while Bragg reflection is responsible for
localization inside the periodic structure.

In order to gain a deeper insight into the physics of
staggered surface soliton formation, we consider the sys-
tem of coupled-mode equations [14] for the normalized
mode amplitudes E0 and En �n � 1; 2; . . .�, assuming weak
coupling between the neighboring waveguides,
 

i
dE0

dz
� E1 �F �E0�E0 � 0;

i
dEn
dz
� �En�1 � En�1� �F �En�En � 0;

(1)

where F �E� � �=�1� jEj2� (� > 0 for defocusing non-
linearity) accounts for the saturable character of the pho-
tovoltaic nonlinearity [15] and allows for correct
description of the observed effects. This treatment is com-
plementary to Ref. [10] where pure Kerr nonlinearity was
considered.

Looking for stationary solutions in the form En�z� �
exp�i�z�En, we obtain the linear spectrum of extended
modes, � � 2 cosk (0 	 k 	 �). No localized surface
mode exists in the linear regime, as this would require
large index contrast between the waveguides and the con-
tinuum. However, the presence of defocusing nonlinearity
in the model (1) can give rise to localized states. To find
them we solve numerically the corresponding stationary
equations by a multidimensional Newton-Raphson
scheme. Since we are interested in surface localized
modes, we look for states with maxima near the surface
which decay quickly away from the edge of the array. This
approach is similar to the earlier studied cases of Kerr
nonlinearity [8,10] and agrees qualitatively with the analy-
sis of the continuous model [10].

Figure 4(a) shows the surface mode calculated by use of
the discrete nonlinear model (1) and multiplied by the

FIG. 3 (color online). (a) Three-dimensional representation of
the surface gap soliton observed near the threshold [Fig. 2(a)].
(b) Plane-wave interferogram demonstrating the staggered phase
structure of the surface gap soliton.
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FIG. 2 (color online). Measured surface localization time vs
probe beam power. Solid curve: A� B=�P� Pth� fit to experi-
mental data (red dots). Vertical dashed line marks the threshold
power (Pth � 0:042 mW). (a)–(c) Beam intensity profiles of
decreasing width corresponding to the indicated points.
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waveguide mode-field profiles. Using the discrete model
(1) provides reasonable agreement with the experimental
data. An example of such a comparison is shown in
Fig. 4(b) for the width of the localized surface state calcu-
lated numerically (solid curve) and measured experimen-
tally (diamonds) as a function of the beam power.
Nonlinear coupling constant � and scaling of the propaga-
tion variable zwere adjusted such that the model yields the
same diffractive field distribution (Fig. 1) and critical
power (Pth) as the experiment.

Despite being approximate, the discrete model can be
employed to reveal the physical mechanism of the
nonlinearity-induced surface mode stabilization. To this
end we follow earlier studies [16,17] and calculate the
effective energy of the mode, H � �

P
nf�EnE



n�1 �

E
nEn�1� � � ln�1� jEnj2�g, as a function of its collective
coordinate X � P�1P

nnjEnj
2, where P �

P
njEnj

2 is the
mode power. We employ a numerical constraint method
[17] which enables us to calculate all possible solutions of
Eqs. (1) for fixed values of power P. In this way one can
find solutions centered not only at particular waveguides
but also intermediate states centered between waveguides.
Applying this technique we constructed the effective po-
tential of the surface mode in a semi-infinite array. Figure 5
shows this effective potential, Ueff�X� � �H�X�, calcu-
lated for two different power values. The extremal points
of this curve defined by the condition dH=dX � 0 corre-
spond to stationary localized solutions. In comparison with
an infinite array, the truncation of the waveguide array
introduces an effective repulsive surface potential, which
is combined with the periodic potential of the array. As a
result, discrete surface modes are not possible in the linear
regime. As we see from Fig. 5(a), for low powers there
exists no solution of the equation dH=dX � 0 at the sur-
face site n � 0, and the surface repels the input beam as
clearly observed in experiment [see Fig. 1(a) and 1(b)].
However, when the input power exceeds the threshold
value, discreteness overcomes the surface repulsive force
and the localized state at n � 0 in the form of a surface gap
soliton becomes possible [Fig. 5(b)].

In conclusion, we have shown theoretically and demon-
strated experimentally that gap solitons can be stabilized
near the surface of a periodic medium with self-defocusing
nonlinearity in the form of staggered surface modes, pro-
viding experimental evidence of a nonlinear analog of
surface Tamm states in optics.

The authors thank A. A. Sukhorukov for discussions and
S. Flach for help with the constraint method, and acknowl-
edge support from Fondecyt (Grants No. 1050193 and
No. 7050173) and the Australian Research Council.

Note added in proof.—After submission of this Letter,
observation of similar surface solitons has been reported in
[18].
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FIG. 4 (color online). (a) Example of the staggered surface
mode calculated by use of the discrete nonlinear model (1) at
� � 8. The discrete mode amplitudes are marked by + signs.
(b) Normalized width of the localized surface state calculated
numerically (solid curve) and measured experimentally (dia-
monds) as a function of the beam power. Vertical dashed line
marks the threshold power (Pth � 0:042 mW).
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FIG. 5 (color online). Effective potential vs the collective co-
ordinate X (a) below and (b) above the threshold power. Integer
values of X correspond to the waveguide numbers. Black dot in
(b) refers to the stationary solution shown in Fig. 4(a).

PRL 97, 083901 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
25 AUGUST 2006

083901-4


