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Time-reflection is a uniform inversion of the temporal evolution of a signal, which arises 
when an abrupt change in the properties of the host material occurs uniformly in space.1-3 
At such a time-interface, a portion of the input signal is time-reversed, and its frequency 
spectrum is homogeneously translated while its momentum is conserved, forming the 
temporal counterpart of a spatial interface. Combinations of time-interfaces, forming time-
metamaterials and Floquet matter4, exploit the interference of multiple time-reflections for 
extreme wave manipulation, leveraging time as a new degree of freedom5. Here, we report 
the observation of photonic time-reflection and associated broadband frequency translation 
in a switched transmission-line metamaterial whose effective capacitance is homogeneously 
and abruptly changed via a synchronized array of switches. A pair of temporal interfaces 
are combined to demonstrate time-reflection-induced wave interference, realizing the 
temporal counterpart of a Fabry-Perot cavity6. Our results establish the foundational 
building blocks to realize time-metamaterials and Floquet photonic crystals, with 
opportunities for extreme photon manipulation in space and time7-8. 

Reflection is a universal phenomenon occurring when a traveling wave encounters an 
inhomogeneity. Spatial reflections arise at a sharp discontinuity in space: here, momentum is 
exchanged between an incoming wave and the interface, which acts as a momentum bath, while 
frequency is conserved. As the basis of wave scattering, spatial reflections play a key role in wave 

mailto:aalu@gc.cuny.edu


 

2 
 

control and routing, as well as in the formation of resonant modes, filtering, band engineering and 
metamaterial responses. Recently, advances across nonlinear wave sciences have stirred 
significant interest in the use of time as a new degree of freedom for wave scattering, leveraging 
time-varying media as reservoirs that mix and exchange energy with the waves in the system. As 
examples of these opportunities, photonic time-crystals and Floquet wave phenomena have raised 
interest across the broader physics community9-16. In this context, time-reflection (TR) constitutes 
the temporal counterpart of spatial reflection, with dual features. This effect occurs at a time-
interface, i.e., when the properties of the host medium are switched homogeneously in space over 
a timespan much faster than the wave dynamics. Upon TR, an input wave is partly time-reversed: 
its energy and frequency content are generally transformed, while momentum is conserved because 
of spatial translational symmetry. 

Time-reversal is a key functionality for a variety of applications, from channel estimation in 
communication systems, to compensation of signal distortion and dispersion. The most common 
way of realizing time-reversal is through the digitization and retransmission of a recorded signal 
through a computer17, but with significant requirements in terms of processing time and energy, as 
well as memory demands. In the analog domain, time-reversal can be achieved by periodically 
modulating the properties of the host medium at twice the frequency of the signal. This 
phenomenon has been observed in acoustics18, in magnonics19 and, for electromagnetic waves, 
both at radio-frequencies17 and, with lower efficiency, in optics20. However, parametric 
phenomena are inherently slow and narrowband, relying on extended exposure of the signal of 
interest to a periodic modulation driving the resonant coupling between positive and negative 
frequencies20, and hence subject to instabilities leading to highly dispersive and nonlinear 
distortions. On the contrary, TR at a time-interface enables ultrafast, and ultrabroadband time-
reversal and, where desirable, efficient frequency translation of an arbitrary waveform. While 
several exciting theoretical proposals have been put forward to exploit these features for a variety 
of exotic photonic functionalities, including subwavelength focusing21 imaging through random 
media22, temporal anti-reflection coatings and advanced frequency filtering6, inverse prisms23, 
temporal aiming24, analog computing25, and the ultrafast generation of squeezed states of quantum 
light26, time-interfaces have so far only been observed for water waves3, remaining elusive to 
photonics and thus drastically limiting their impact. The key challenge in this quest consists in 
designing and realizing a setup capable of imparting sufficiently strong and fast variations to the 
electromagnetic properties of a material uniformly in space, hence requiring a metamaterial 
featuring a temporal response much faster than the temporal wave dynamics. Energy and 
dispersion requirements may also become very demanding when imparting such strong and fast 
modulations of the material properties27, factors that have been hindering the experimental 
demonstration of TR in electromagnetics to date. 

Here, we are able to tackle these challenges, and demonstrate time-interfaces and TR in a 
microwave transmission-line metamaterial (TLM) periodically loaded by a deeply subwavelength 
array of lumped capacitors, synchronously added to, or removed from, a microstrip through 
voltage-controlled reflective switches. Upon switching, we can uniformly and strongly change the 
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effective capacitance per unit length of the TLM much faster than the temporal variations of the 
broadband signals propagating through it. This realizes a time-interface, with associated photonic 
TR, as well as broadband, efficient frequency translation, as conceptually shown in Fig. 1a. As we 
discuss in the following, by switching in and out the capacitive loads we are able to modify 
drastically and abruptly the electromagnetic properties of the TLM without affecting its linear 
dispersion and without large energy requirements. By implementing a pair of such time-interfaces, 
we form a temporal slab in which the reflected and refracted signals at each time-interface 
interfere, demonstrating the temporal analogue of a Fabry-Perot filter6. Our results establish the 
fundamental building blocks to exploit time as a new degree of freedom for extreme wave 
manipulation in metamaterials4,5,28. 

 
Fig. 1: Observation of photonic time-reflection. (a) Illustration of a time-interface in a uniformly switched TLM. A 
step-like bias signal (in green) is used to uniformly activate a set of switches distributed along the TLM, with spacing 
much smaller than the wavelengths of operation. Upon closing (opening) of the switches, the effective TLM 
impedance is abruptly decreased (increased) by a factor of two, causing a broadband forward-propagating signal (in 
blue) to be split into a time-refracted and a time-reflected signal, both with redshifted frequencies (in red). (b) Photo 
of the fabricated time-switched TLM. (c) Reflection at a spatial interface causes the reflected signal to invert its profile 
in space, while (d) a temporal interface breaks time-translation symmetry in a spatially homogeneous medium, 
uniformly inverting in time the evolution of an input signal. (e) Simulated and measured dispersion relation of the 
fabricated TLM before (blue) and after (red) activating the switches. The purple arrow indicates broadband transitions 
induced by spatial reflection, coupling positive and negative momenta, while the green arrow indicates TR, coupling 
positive and negative frequencies. (f) Experimental observation of photonic TR at a time-interface with an asymmetric 

pulse consisting of a smaller input signal (yellow marker in input port voltage 1V ) followed by a larger one (purple 

marker). Within 3ns after the switch logic (middle panel) turns on, a portion of the input signal undergoes TR, 
propagating back to the input port, where the two signals are measured in reverse order, (purple marker, then yellow, 
see also zoomed inset), with flipped polarity. After 140≈  ns, the time-refracted signal, having undergone a spatial 

reflection at the end of the TLM, returns to the 1V  port in the original yellow-purple order. In the lower panel, the 

output-port voltage 2V  shows the time-refracted signal, broadened in time due to the broadband redshift of its 
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frequency content induced by the time-interface. Signal amplitudes are plotted accounting for the power lost in the 
splitter and impedance change (see SI Sec. S3). 

A photograph of our fabricated TLM is shown in Fig. 1b. A broadband input signal is injected 
from one of the ports, and it travels along the meandered microstrip line, loaded by an array of 30 
switches connected in series to an array of subwavelength-spaced capacitors (unit cell length 

20.1≈  cm, see SI Secs. S1, S2 for details on the TLM design and implementation). The meandered 
microstrip emulates an unbounded medium with close-to-linear dispersion and, while the signal is 
fully within the TLM, a control signal for the switches is sent via a pair of much shorter microstrips 
(with 80 times faster transit time across the TLM), synchronously triggering all the switches with 
a rise-time ≈ 3 ns, much faster than the temporal dynamics of the incoming wave (see SI Sec. S8 
for details on switch synchronization). This switching event is much faster than half of a wave 
period, and its amplitude is of order unity, as required for efficient TR29, resulting in an efficient 
time-interface. 

At a spatial interface (Fig. 1c), translational symmetry is broken, hence the reflected waves 
undergo parity inversion ( z z→− ) and a receiver at the source location registers the features of a 
reflected signal in the same order as they were originally sent, akin to a sound echo. Frequency is 
conserved in this scenario, while wavevector and momentum are not. Conversely, at a time-
interface (Fig. 1d) time-translation symmetry is broken while spatial symmetry is preserved. 
Hence, the “echo” associated with the time-reversed ( t t→− ) signal is detected backwards, while 
the signal retains its original spatial profile due to momentum conservation. In addition, the 
broadband frequency content of the input signal is abruptly transformed, as predicted by the band 
diagrams of our TLM, shown in Fig. 1e. Blue and red lines depict the TLM dispersion curve before 
and after the switching, comparing simulated (lines) and measured (circles) results. Given the 
small spacing between neighboring loads compared to the relevant wavelengths, the curves follow 
a linear dispersion, with different slopes corresponding to the different effective capacitance before 
and after the switching. Wave scattering at a spatial discontinuity (Fig. 1c) is equivalent to a 
horizontal transition in the dispersion diagram (purple arrow in Fig. 1e), preserving frequency and 
generating waves with new positive and negative momenta. Conversely, a time-interface (Fig. 1d) 
corresponds to a vertical transition (green arrow in Fig. 1e), which preserves wavenumber and 
generates new positive and negative frequencies, efficiently translating the entire frequency 
spectrum of a broadband input wave, while conserving the entire spatial structure of the pulse. 

These features are clearly observed in our time-domain experimental measurements (Fig. 1f): we 
excite the TLM with an input signal consisting of an asymmetric pair of Gaussian pulses, measured 
by the input port voltage 1( )V t  as a first smaller pulse (yellow marker) followed by a larger one 
(purple marker). Approximately 15 ns after the activation of the switches (middle panel of Fig. 1f, 
see Methods for details on the timing), we record the time-reflected signal at the input port, whose 
zoomed-in view reveals it to be the TR-copy (purple→  yellow) of the input. This TR-signal has 
inverted polarity with respect to the input signal, indicating that the TR coefficient is negative, as 
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expected from the scattering coefficients for a reduction in wave impedance achieved by 
connecting the lumped capacitors in our TLM (see SI Sec. S5 for derivation): 
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where in our system 1 50Z ≈ Ω  is the line impedance before switching and 2 25Z ≈ Ω  is the line 
impedance after switching. Approximately 140 ns later, an attenuated signal is received at the input 
port, corresponding to the time-refracted signal that has been traveling to the end of the TLM and 
then spatially reflected backwards at the mismatched termination. As expected, this second signal 
has inverted symmetry compared to the TR signal (yellow→  purple). The TR signal, as well as 
the time-refracted signal at the output port 2V  (Fig. 1f, bottom panel), retain the same spatial profile 
as the incident signal due to the preserved spatial symmetry, but slow down, as they travel in a line 
with increased effective permittivity. This phenomenon underpins the broadband and efficient 
frequency translation process occurring abruptly at the time-interface, based on which each 
frequency component of the input signal is transformed according to 1 2 2 1 1( / )Z Zω ω ω=→  (see 
SI Sec. S5 for derivation). 

 

Fig. 2. Spectral analysis of photonic time-reflection. Leftmost panels: schematics of negative (top row) and positive 
(bottom row) switching of the effective impedance. 1f  (blue) and 2f  (red) denote the wave frequencies when the 

switches are closed and open respectively. (a-b) Amplitude (top) and phase (bottom) of the spectra of the measured 
(shaded) and theoretical (dotted) time-refraction (T) and TR (R) coefficients upon an impedance (a) decrease and (b) 
increase, measured from the Fourier transforms of the respective scattered pulses. Note the π  phase shift upon TR in 
(b), contrasting with the TR coefficients derived in the literature when switching the medium permittivity. (c-d) 
Carrier-wave measurements of incoming (blue), TR (purple) and time-refracted (yellow) in the time (left column) and 
frequency (right column) domains, showing broadband (c) redshift and (d) blueshift induced by the time-interface. (e-
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f) Theoretical (dashed) and measured broadband (e) redshift and (f) blueshift of outgoing TR (dot-dashed purple line) 
and time-refracted (continuous yellow line) signals induced by the time-interface, obtained by scanning the carrier 
frequency of a narrow-band input signal. Purple circles and yellow squares denote the scenarios in panels (c-d). 

In Fig. 2a, we retrieve the TR (R) and time-refraction (T) coefficients by Fourier analyzing the 
measured output signals 1V  and 2V  in Fig. 1f, as detailed in the SI Sec. S4. The retrieved amplitudes 
(top panel) and phases (bottom) of the temporal scattering coefficients as a function of the input 
wavevector k  (lower horizontal axis) and corresponding input frequency (upper horizontal axes), 
agree well with our theoretical predictions assuming an instantaneous switching event (dashed 
lines). As expected, the time-refracted signal is in phase with the input, while the TR signal flips 
sign for all input momenta of our broadband pulse spectrum. The slight wavevector dependence 
of the scattering coefficients at higher frequencies can be attributed to the finite switching speed 
(see SI Secs. S9, S10 for an investigation of the switching rise time), the frequency dispersion 
associated with nonidealities of the circuit components, as well as the finite spacing between 
neighboring switches.  

Our results not only demonstrate efficient TR at a time-interface, but they also imply the evidence 
of a new form of boundary conditions associated with time-interfaces. Our platform enables fast 
and efficient impedance changes by adding and removing reactance to the TLM through switches, 
rather than modifying the reactance in time. Since the involved additional capacitors are static, this 
operation enables much faster transitions, without heavy requirements on energy, hence addressing 
the challenges pointed out in Ref. 27. In turn, our time-switched TLM do not necessarily conserve 
charge at the temporal boundary, different from the common assumption in the existing literature 
on time-interfaces1,2,6,8,30. When closing the switches and connecting the capacitors, we do 
preserve the total charge in the TLM, which ensures continuity of the displacement field D . In 
contrast, when we open the switches, we abruptly cut-off the charged capacitors from the TLM, 
creating a charge discontinuity while preserving the voltage. In other words, a new boundary 
condition needs to be introduced at this type of time interface, in which the electric field E  and 
not D  is conserved. This modified temporal boundary condition leads to new scattering 
coefficients (see SI Sec. S5): 

 2 1
2 1

22
Z

Z
R Z

→ =
− , (2) 

which is different from Eq. (1). Indeed, our experiments confirm a close agreement between the 
experimentally retrieved scattering spectra (Fig. 2b) for the charge-discontinuous time-interface 
and the predictions given by Eq. (2), and unveil the importance of considering the specific 
dynamics of a temporal interface in order to correctly predict its resulting temporal scattering. 

To quantify the broadband nature of frequency translation at our photonic time-interfaces, we 
carried out temporal scattering experiments with relatively narrow-band input signals (bandwidth 

30≈ MHz) at time-interfaces featuring increasing (decreasing) impedance, as shown in Fig. 2c 



 

7 
 

(2d). We observe a clear redshift (blueshift) of the carrier frequency from 1 60f =  MHz to 

2 34.5rf =  MHz and 2, 33.6tf =  MHz ( 2 33.6f =  MHz to 1, 49.5rf =  MHz and 1, 50.1tf =  MHz), 

accompanied by a shrinking (broadening) of the pulse width from 1Δ 21f =  MHz to 

2, 2,Δ Δ 16.0r tf f= =  MHz ( 2Δ 29.1f =  MHz to 1,Δ 48.3rf =  MHz and 1,Δ 42.0tf =  MHz). In Figs. 2e 

and 2f, we sweep the input carrier wavenumbers k  (bottom axes), or equivalently the input 
frequencies (top axes) for the two switching scenarios, and observe the output frequency (vertical 
axes). When activating the time-interface by closing the switches and decreasing the wave 
impedance (Fig. 2e), the center frequency of both TR ( 2,rf ) and time-refracted ( 2,tf ) waves is 

redshifted almost uniformly by 55%≈ , over a range of input carrier frequencies spanning the 
interval 30-70 MHz (see SI Sec. S6 for details on frequency translation measurements). As control 
experiments, we also measured the frequency up-conversion by the reversed time-interface (Fig. 
2f). While scanning the input frequency from 20-34 MHz, the observed blueshift exactly mirrors 
the process demonstrated by Fig. 2e. We stress that the bandwidth and linearity of the frequency 
conversion process at a time-interface are only limited by the dispersion of our TLM, as opposed 
to conventional narrowband frequency conversion processes, opening exciting opportunities in a 
wide range of photonic applications. 

By combining multiple time-interfaces, it is possible to leverage TR-induced interference to 
manipulate more markedly the input signals. For example, by combining two time-interfaces we 
form a temporal slab, realized by closing and reopening the switches after a delay. These sequential 
TR events induce temporal wave interference. Due to causality, scattering phenomena at a 
temporal slab are markedly different from those in a spatial slab: while multiple scattering occurs 
in a spatial slab (Fig. 3a), generating a superposition of refracted and reflected waves, a temporal 
slab produces a total of four scattered waves after the second time-interface (Fig. 3b). In order to 
experimentally probe the properties of the temporal slab, we launch broadband signals into our 
TLM (Fig. 3c, black portion of the plots), and observe the total time-scattering (colored portions). 
For each duration of the temporal slab ( 15,25,35τ = ns, see SI Sec S7 for definition of τ ), we 
indeed observe the two expected reflected pulses, each having undergone one TR and one time-
refraction process, in opposite order. Notably, as opposed to conventional photonic time-
interfaces1,2,8 and recent theoretical work on temporal slabs6,30, both TR-signals here are out of 
phase with respect to the input signal, due to the different temporal boundary condition discussed 
above, and as shown in the phase spectra in Fig. 2a and 2b. Importantly, all scattered pulses have 
approximately the same duration as the input signal, since the second time-interface converts back 
the frequency spectrum to the original frequencies, corresponding to two opposite vertical 
transitions in the dispersion diagram.  

As it can be observed in Fig. 3c, the time delay between the consecutive scattered pulses is 
proportional to the slab duration. This suggests that the temporal slab can be tuned to control wave 
interference, thereby realizing the temporal analogue of a Fabry-Perot etalon which enables 
accurate shaping of the output frequency content. In order to demonstrate this effect explicitly (see 
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also SI Sec. S7), we take the Fourier transform of the TR signal ( )rV t , and normalize it against the 
transform of the input signal ( )iV t . This reveals the total reflection spectra (Fig. 3d) of the different 
temporal slabs as functions of the input wavenumber k  (bottom horizontal axis), or equivalently, 
the input frequency 1f  (top axis). For each slab duration, specific values of k  feature zero 
reflection, due to destructive temporal interference between two TR waves, in analogy with the 
reflection zeros of a Fabry-Perot cavity. In this case, however, the associated phase accumulation 
does not occur in space, but rather in time. To further highlight the versatile spectral control offered 
by our temporal slab through temporal interference, in Fig. 3e we examine the total TR at a fixed 
input wavenumber 1.8k =  rad/m (dashed vertical line in Fig. 3d), as we increase the slab duration, 
for six pulses of different half-maximum durations ranging from 5 ns to 10 ns, comparing measured 
and theoretical results. We observe how the total amplitude of the time-reversed waves can be 
continuously tuned by varying τ , granting us dynamic control over wave interference at the two 
time-interfaces without having to change the lumped capacitance values. In SI Sec. S11, we also 
consider the case of an inverse slab, whereby the switches are first opened and then closed again. 

 

Fig. 3. Wave scattering from a temporal slab. (a) Conceptual sketches of a spatial and (b) a temporal slab with 
stepped wave impedance. Inside a spatial slab, multiple partial reflections occur, gradually decaying with increasing 
scattering orders, whereas at a temporal slab only four scattered waves interfere with each other. (c) Experimentally 

measured voltages at input ( 1V ) and output ( 2V ) ports after temporal slabs with varying durations. Here, 

[15 ns, 25 ns, 35 ns]τ ∈  is the “ON” time of the control signal, and the corresponding logic states for the switches are 
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indicated by the green blocks. In each plot, the double reflection induced by the slab (cyan, purple and magenta 
portions) are clearly visible. The elapsed time between reflected pulses is proportional to the slab duration. (d) 
Normalized amplitudes of the total TR signals as a function of wavenumber k  for the different temporal slabs of 
panel c, exhibiting zero reflection at selected frequencies, controlled by the slab duration. (e) For fixed k  (dot-dashed 
vertical line in panel d), we measure the normalized reflection amplitude as a function of switching duration τ , 
demonstrating large, continuous spectral tunability. 

To conclude, in this work we have reported the first observation of photonic time-reflection for 
broadband and efficient phase conjugation and frequency translation at single and double time-
interfaces, as well as the demonstration of controlled time-reversal-induced interference 
phenomena from a temporal slab formed by a pair of time-interfaces. These results establish the 
key building blocks towards the realization of time-metamaterials and photonic time crystals, 
opening a wide range of opportunities in the rising field of time-varying photonic media7,8,28, with 
applications for ultrafast wave routing24 and focusing3,21, negative refraction31,32, efficient and 
broadband spectral filtering and frequency manipulation33, novel forms of ultrafast energy 
mixing34,35, and photonic Floquet matter4,12. Our approach to realize time-interfaces using external 
reactive elements added and removed through switches is key to these demonstrations, and it can 
be straightforwardly configured to introduce at the same time spatial and temporal interfaces, for 
instance by activating only a portion of the switches, thus blending together spatial and temporal 
degrees of freedom and enabling even more flexibility in wave control and manipulation. Field-
programmable gate arrays controlling the switches may realize real-time reconfigurability and 
even self-adaptation of the response. 

More broadly, our results open a pathway to employ time-interfaces for broadband, efficient phase 
conjugation and frequency conversion arising over very short time scales, of great relevance for a 
variety of applications in electromagnetics and photonics. Efficient time-reversal is important in 
the context of wireless communications and radar technologies, for instance for channel 
estimation, which is now performed through complex digital computations, to estimate complex 
propagation channels and compensate for signal distortion and dispersion. Broadband efficient 
frequency conversion is also key for applications spanning from night-vision systems to quantum 
photonics. Of particular interest would be to extend these concepts to higher frequencies, and we 
envision several available routes, from modern CMOS technology, which may deliver switching 
speeds up to 2 orders of magnitude faster than those reported here, extending the frequency range 
to the THz regime, as well as all-optical approaches leveraging giant nonlinearities in graphene, 
which offer low switching power and times as short as 260 fs36, or flash ionization in plasmas with 
even shorter switching times37. 
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Methods 
Simulations 

All circuit simulations are performed in Keysight Advanced Design SystemsS1. Time domain 
simulations are carried out using the Transient solver, while frequency domain analysis is done 
with the S-Parameters solver. 
 

The main TLM carrying the signal is modelled with physical transmission line sections with 
characteristic impedance 𝑍𝑍𝑜𝑜 = 50 Ω, length 𝑑𝑑 = 0.208 m, effective dielectric constant 𝜖𝜖𝑟𝑟,𝑒𝑒𝑒𝑒𝑒𝑒 =
8.36, attenuation constant 𝛼𝛼 = 0.5 (at 𝑓𝑓 = 100 MHz, dielectric loss tangent tan 𝛿𝛿 = 0.0019. It 
should be noted that the effective dielectric constant of 8.36 is consistent with expectations from 
well-known design formulas with microstrip lines. To further model the non-idealities associated 
with our manufactured circuit, each unit cell is connected to its nearest with a 2 pF capacitor, and 
to its second nearest neighbor with a 1 pF capacitor. This models the parasitic capacitive coupling 
between the unit cells, which limits our operating bandwidth by introducing dispersion and 
bandgaps. These values are found to produce consistently good match between experimental and 
simulation results. 

 
The switches are implemented as ideal voltage controlled reflective switches with 1 Ω 

resistance in the “on” state. Each switch connects a node on the transmission line to a series RLC 
circuit, with an 82 pF capacitor representing the load, a 4 Ω resistor representing the parasitic 
losses, and an 8 nH inductor representing the parasitic inductance of the grounding vias. These 
values are extracted from measurements of a single unit cell: the parasitic component values are 
swept in frequency domain simulations until a good match with the measured S-parameters is 
observed. 
 
Experiments 

The TLM sample is fabricated in house using a 1.52 mm thick Rogers TMM 13i substrate, 
which has a nominal dielectric constant of 12.85 ± 0.35, and a loss tangent of 0.0019. See SI Secs. 
S1, S2 for details of the circuit layout and choices of all circuit components.   
 

During our measurements, the input signal consists of a train of repeated copies of an 
arbitrarily shaped pulse. Since the input pulses generally have durations in the order of tens of ns, 
which is much shorter than the period of the pulse train (> 1μs), we can effectively treat each 
pulse as a single isolated event. The signals entering the TLM through the input port is probed 
with a T-connector attached to an oscilloscope, while the exiting signals are probed directly with 
the scope. See SI Sec. S2 for a simplified schematic of the experimental setup. 
 

To control the switches, we use a rectangular pulse train that is phased locked to the input 
pulse train. By adjusting the relative phase between the two signals, we can control the timing of 
the interface. Notably, the switches that we used have internal grounding circuitry which, upon 
opening, will dissipate all charges stored on the capacitorS3. This is crucial for the accurate 
realizing of our two distinct types of time-interfaces. 
 

To induce the temporal reflection, we activate the switches after the input signal is registered 
in 𝑉𝑉𝑜𝑜1(𝑡𝑡), but before it is recorded in 𝑉𝑉𝑜𝑜2(𝑡𝑡), corresponding to a time when the signal is completely 
contained within the TLM. The time-reflected signal will travel backwards towards Port 1 of the 
transmission line, where it will again enter the input T-connector. Identical copies of the time-
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reflection (with 3.5 dB attenuation) are fed to the source and the oscilloscope. Hence, the actual 
amplitude of the temporal reflection generated by our time-interface is larger than that recorded 
by Port 1. See Supplementary Information for the effect of the T-connector and impedance 
mismatch. 

 
To measure the frequency translation of our time-interface, we launched signals with varying 

carrier frequencies into the transmission-line, and observed the time-reflected as well as refracted 
signals. See SI Secs. S6, S12 for a typical time-domain measurement result, and the accounting of 
video leakage. We performed Fourier analysis on the time-gated incident, refracted, and reflected 
signals to observe their individual frequency content. The frequency spectra for each signal will 
consist of a sharp peak, aligned with its center frequency. 
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Supplementary Information 
 
S1. Theoretical Design and Optimization of the Loaded Transmission Line Metamaterial 

Each unit cell of our transmission line, once the switches have been activated, can be 
approximately modelled by the T-network shown in Fig. S1, where 𝑑𝑑 is the physical length of the 
cell (i.e. one turn of the meandered microstrip on our printed circuit board), and 𝑗𝑗𝑗𝑗 = 𝑗𝑗𝜔𝜔𝜔𝜔𝑍𝑍𝑜𝑜 is the 
susceptance of the capacitive load, normalized against 𝑍𝑍𝑜𝑜, the characteristic impedance of the 
unloaded TLM. The voltage and currents at the input port of such a network can be related to those 
at the output port by its ABCD matrix, which readsS2, 

 

 �𝐴𝐴 𝐵𝐵
𝜔𝜔 𝐷𝐷� = �

�cos 𝜃𝜃 −
𝑗𝑗
2

sin𝜃𝜃� 𝑗𝑗 �sin𝜃𝜃 +
𝑗𝑗
2

cos 𝜃𝜃 −
𝑗𝑗
2
�

𝑗𝑗 �sin 𝜃𝜃 +
𝑗𝑗
2

cos𝜃𝜃 +
𝑗𝑗
2
� �cos 𝜃𝜃 −

𝑗𝑗
2

sin 𝜃𝜃�
�. (S1) 

 
Here, 𝜃𝜃 = 𝑘𝑘𝑜𝑜𝑑𝑑 is the total propagation phase through the unloaded transmission-line section. 
Applying Bloch boundary condition yields the dispersion relation for an infinitely long chain of 
this unit cell as 
 

 cos(𝛽𝛽𝑑𝑑) = cos 𝜃𝜃 −
𝑗𝑗
2

sin𝜃𝜃. (S2) 

 
Furthermore, the Bloch wave impedance of the periodic structure is given by 
 

 𝑍𝑍𝐵𝐵 = ±
𝐵𝐵𝑍𝑍𝑜𝑜

√𝐴𝐴2 − 1
. (S3) 

 
In Fig. S2, we plot the normalized dispersion relation and the Bloch wave impedance of our 

TLM, for 𝜃𝜃 = 72∘ and 𝑗𝑗 = 2.753. where 𝜔𝜔𝑜𝑜 = 2𝜋𝜋 × 100 MHz is the designated maximum 
operating frequency. In this case, the loaded TLM to exhibit a Bloch impedance is exactly 𝑍𝑍𝑜𝑜/2 
at 𝜔𝜔 = 𝜔𝜔𝑜𝑜/2 = 2𝜋𝜋 × 50 MHz, and retains approximately the same value for lower frequencies. 

 
Having determined the ideal frequency translation ratio 𝑓𝑓2/𝑓𝑓1, as well as the wave impedances 

before (𝑍𝑍1) and after (𝑍𝑍2) switching, one can calculate the theoretical temporal reflection and 
refraction coefficient of the TLM. For generality, we present a set of parametric studies that were 
conducted to identify the best design parameters for the TLM, which can be scaled to accommodate 
different specifications (i.e., different temporal reflection magnitude and frequency translation 
ratios). 

 
At the design stage, two key parameters need to be determined: the length of the unit cell, 

which is directly proportional to the phase accumulation; and the appropriate shunt load 𝑗𝑗. Both 
parameters will have significant impact on various aspects of the time-interface. Crucially, 
together, they determine the band gaps of our TLM. Since we wish to operate in a regime in which 
the TLM is almost translationally homogeneous and dispersionless, we must pay special attention 
to avoid the first band gap. To this end, we perform parametric studies on 𝑅𝑅 and 𝑓𝑓2/𝑓𝑓1 by sweeping 
𝜃𝜃 and 𝑗𝑗 (which is equivalent to sweeping the cutoff frequency of the first band gap, 𝜔𝜔𝑐𝑐); the results 
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for 𝑅𝑅 and 𝑓𝑓2/𝑓𝑓1 are plotted in Fig. S3A and Fig. S3B respectively. In Fig. S3A, we use a red line 
to denote the combinations of (𝜃𝜃,𝜔𝜔𝑐𝑐) that gives the maximum temporal reflection magnitude.  
 
 
S2. Practical Implementation 

The practical circuit layout is shown in Fig. S4 and the choices of all circuit components are 
listed in Table S1. A schematic of our experimental set up for time domain measurements is shown 
in Fig. S5. The input signal is launched from an arbitrary waveform generator (Keysight M8195A) 
into a symmetric T-connector. Identical copies of the input (both with 3.5 dB attenuation) are fed 
to Port 1 of the transmission line as well as channel 1 of an oscilloscope (Tektronix DPO4104), 
which records 𝑉𝑉1(𝑡𝑡). Port 2 of the transmission line is connected to channel 2 of the oscilloscope, 
which records 𝑉𝑉2(𝑡𝑡). Both oscilloscope channels have an input impedance of 50 Ω, and record in 
the averaged mode with 512 samples. 
 
 
S3. Compensation of the T-connectors and Impedance Mismatch 

We measured the signal via an oscilloscope at the Port 1 at 𝑥𝑥 = 0, denoted as 𝑉𝑉𝑜𝑜1(𝑡𝑡), which 
is a linear superposition of input and time-reflected signals. Considering the effect of the T-
connector that connects the source (denoted by subscript “𝑠𝑠”), transmission-line (subscript “𝑡𝑡”), 
and the oscilloscope (subscript “𝑜𝑜”), we can estimate 𝑉𝑉𝑜𝑜1(𝑡𝑡) for the case of closing switches as 

 

 𝑉𝑉𝑜𝑜1(𝑡𝑡) ≈ ℱ−1 �𝑆𝑆𝑜𝑜𝑜𝑜(𝜔𝜔)
ℱ[𝑉𝑉𝑖𝑖𝑖𝑖𝑐𝑐(0, 𝑡𝑡)]
𝑆𝑆𝑡𝑡𝑜𝑜(𝜔𝜔) + 𝑆𝑆𝑜𝑜𝑡𝑡(𝜔𝜔)(1 + Γ)ℱ�𝑉𝑉𝑟𝑟𝑒𝑒𝑒𝑒(0, 𝑡𝑡)��, (S4) 

 
where ℱ denotes the Fourier transform. Then S-parameters measurement of the T-connector gives 
𝑆𝑆𝑜𝑜𝑜𝑜 ≈ 𝑆𝑆𝑡𝑡𝑜𝑜 ≈ 𝑆𝑆𝑜𝑜𝑡𝑡 ≈ 0.665 from 10~100 MHz. Γ is the spatial reflection coefficient considering 
the impedance mismatch between the switched TLM and the T-connector, which reads, 

 Γ =
𝑍𝑍0 − 𝑍𝑍𝑇𝑇𝑇𝑇
𝑍𝑍0 + 𝑍𝑍𝑇𝑇𝑇𝑇

, (S5) 

where 𝑍𝑍𝑇𝑇𝑇𝑇 = 𝑍𝑍1(≈ 50 Ω = 𝑍𝑍0) with all switches open, while 𝑍𝑍𝑇𝑇𝑇𝑇 = 𝑍𝑍2 if all switches are closed. 
The effective impedance of the TLM can be retrieved from its measured S-parameters. Similar 
analysis can be done for other quantities, e.g., that are needed in the main text. 
 
S4. Retrieval of the Time-Reflection and Time-Refraction Coefficients 

The reflection coefficient at a time-interface at 𝑡𝑡 = 𝑡𝑡𝑜𝑜 is defined as 
 

 𝑅𝑅(𝑘𝑘) =
𝑉𝑉�𝑟𝑟𝑒𝑒𝑒𝑒(𝑘𝑘, 𝑡𝑡𝑜𝑜+)
𝑉𝑉�𝑖𝑖𝑖𝑖𝑐𝑐(𝑘𝑘, 𝑡𝑡𝑜𝑜−)

=
∫ 𝑉𝑉𝑟𝑟𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑡𝑡𝑜𝑜+)𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝑥𝑥+∞
−∞

∫ 𝑉𝑉𝑖𝑖𝑖𝑖𝑐𝑐(𝑥𝑥, 𝑡𝑡𝑜𝑜−)𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗𝑑𝑑𝑥𝑥+∞
−∞

, (S6) 

 
where 𝑘𝑘 is the real part of the wavenumber conserved across the time-interface. 𝑉𝑉�𝑖𝑖𝑖𝑖𝑐𝑐,𝑟𝑟𝑒𝑒𝑒𝑒(𝑘𝑘, 𝑡𝑡) refer 
to the incident and reflected signals in the momentum space, while 𝑉𝑉𝑖𝑖𝑖𝑖𝑐𝑐,𝑟𝑟𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑡𝑡) are the voltages 
expressed in the real space. We assume that the dispersion and the loss of the transmission line are 
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small enough: 𝜔𝜔 ≈ 𝑣𝑣𝑘𝑘 and then 𝑉𝑉𝑖𝑖𝑖𝑖𝑐𝑐(𝑥𝑥, 𝑡𝑡) ≈ 𝑉𝑉𝑖𝑖𝑖𝑖𝑐𝑐 �0, 𝑡𝑡 − 𝑗𝑗
𝑣𝑣1
� 𝑒𝑒−𝛼𝛼1𝑗𝑗, 𝑉𝑉𝑟𝑟𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑡𝑡) ≈ 𝑉𝑉𝑟𝑟𝑒𝑒𝑒𝑒 �0, 𝑡𝑡 +

𝑗𝑗
𝑣𝑣2
� 𝑒𝑒𝛼𝛼2𝑗𝑗. The loss rates 𝛼𝛼1 and 𝛼𝛼2 can be retrieved by measuring the S-parameters of the unloaded 

and loaded transmission lines, respectively. By taking Fourier transform of the incident and 
reflected signals recorded at the input port, one can calculate the reflection coefficient measured 
at the input port for a given wavenumber 𝑘𝑘 and corresponding frequencies 𝜔𝜔1,2: 
 

𝑅𝑅�(𝑘𝑘) =
ℱ�𝑉𝑉𝑟𝑟𝑒𝑒𝑒𝑒(0, 𝑡𝑡)��

𝜔𝜔2

ℱ[𝑉𝑉𝑖𝑖𝑖𝑖𝑐𝑐(0, 𝑡𝑡)]|𝜔𝜔1

≈
𝑒𝑒−𝑗𝑗𝑗𝑗𝑗𝑗 ∫ 𝑉𝑉𝑟𝑟𝑒𝑒𝑒𝑒 �0, 𝑡𝑡 + 𝑥𝑥

𝑣𝑣2
� 𝑒𝑒−𝑗𝑗𝜔𝜔2𝑡𝑡𝑑𝑑𝑡𝑡+∞

−∞

𝑒𝑒𝑗𝑗𝑗𝑗𝑗𝑗 ∫ 𝑉𝑉𝑖𝑖𝑖𝑖𝑐𝑐 �0, 𝑡𝑡 − 𝑥𝑥
𝑣𝑣1
� 𝑒𝑒−𝑗𝑗𝜔𝜔1𝑡𝑡𝑑𝑑𝑡𝑡+∞

−∞

≈ 𝑒𝑒−𝑗𝑗2𝑗𝑗𝑗𝑗𝑒𝑒−(𝛼𝛼1+𝛼𝛼2)𝑗𝑗 ∫ 𝑉𝑉𝑟𝑟𝑒𝑒𝑒𝑒(𝑥𝑥, 𝑡𝑡)𝑒𝑒−𝑗𝑗𝜔𝜔2𝑡𝑡𝑑𝑑𝑡𝑡+∞
−∞

∫ 𝑉𝑉𝑖𝑖𝑖𝑖𝑐𝑐(𝑥𝑥, 𝑡𝑡)𝑒𝑒−𝑗𝑗𝜔𝜔1𝑡𝑡𝑑𝑑𝑡𝑡+∞
−∞

. 

(S7) 

 
To obtain the exact temporal reflection coefficient, we need to compensate both the phase 

and loss during the round trip that a wave travels. Without loss of generality, we assume 𝑡𝑡𝑜𝑜 = 0. 
Then, by changing the integration variable 𝑡𝑡 = −𝑥𝑥𝑟𝑟/𝑣𝑣1 for the denominator and 𝑡𝑡 = −𝑥𝑥𝑟𝑟/𝑣𝑣2 for 
the numerator in Eq. (S7), we obtain the relation between the corrected reflection coefficient and 
that measured at the input port: 

 

 𝑅𝑅(𝑘𝑘) ≈
𝜔𝜔2

𝜔𝜔1
𝑅𝑅�(𝑘𝑘)𝑒𝑒𝑗𝑗2𝑗𝑗𝑗𝑗𝑟𝑟𝑒𝑒(𝛼𝛼1+𝛼𝛼2)𝑗𝑗𝑟𝑟 , (S8) 

 
Here, 𝑥𝑥𝑟𝑟 entails the physical distance that a wave travels from the input port until it gets reflected 
by the time-interface, which can be retrieved via 𝑥𝑥𝑟𝑟 ≈ − 1

2
𝜕𝜕𝑗𝑗[arg�𝑅𝑅��]. 

 
Therefore, the procedure for retrieving the time-reflection coefficients for a given 

wavenumber 𝑘𝑘 can be summarized as follows: 
a) Measure the S-parameters and the dispersion diagrams of unloaded and loaded 

transmission lines. 
b) Read the corresponding frequencies 𝜔𝜔1,2; Retrieve the loss rate 𝛼𝛼1,2 from the S-parameters. 
c) Calculate the reflection coefficient at the input port 𝑅𝑅�(𝑘𝑘) using Eq. (S7). 
d) Compensate the loss and accumulated phase using Eq. (S8). 
Similar procedure also applies to retrieving the time-refraction coefficient, where the relation 

between the time-refraction coefficient 𝑇𝑇�(𝑘𝑘) referring to the two ports and the actual temporal 
refraction coefficient 𝑇𝑇(𝑘𝑘) reads: 

 

 𝑇𝑇(𝑘𝑘) ≈
𝜔𝜔2

𝜔𝜔1
𝑇𝑇�(𝑘𝑘, 𝑥𝑥)𝑒𝑒𝑗𝑗𝑗𝑗𝑇𝑇𝑒𝑒(𝛼𝛼1𝑗𝑗𝑟𝑟+𝛼𝛼2𝑗𝑗𝑡𝑡), (S9) 

 
where 𝐿𝐿 = 𝑥𝑥𝑟𝑟 + 𝑥𝑥𝑡𝑡 is approximately the total length of our transmission-line, and 𝑥𝑥𝑡𝑡 denotes the 
retrieved distance that the wave travels after the time-interface until it exits the transmission-line. 
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S5. Derivation of the Temporal Scattering Coefficients 
Consider a homogeneous transmission-line (TL) whose distributed capacitance can be 

changed instantaneously at 𝑡𝑡 = 0, by closing or opening a switch connected to a shunt capacitor 
𝜔𝜔𝑝𝑝, as shown in Fig. S7. The values of the capacitance are chosen such that the effective distributed 
capacitance of the TL stays at 𝜔𝜔1 for 𝑡𝑡 < 0 while it jumps to 𝜔𝜔2 for 𝑡𝑡 > 0. Applying a Laplace 
transform ℒ{𝑣𝑣(𝑡𝑡)} = ∫ 𝑣𝑣(𝑡𝑡)𝑒𝑒−𝑜𝑜𝑡𝑡𝑑𝑑𝑡𝑡+∞

0 = 𝑉𝑉(𝑠𝑠) on both voltage 𝑣𝑣(𝑧𝑧, 𝑡𝑡) and current 𝑖𝑖(𝑣𝑣, 𝑡𝑡), one can 
write the wave equation for 𝑡𝑡 > 0 as: 

 

 (𝜕𝜕𝑧𝑧2 − 𝑠𝑠2𝐿𝐿1𝜔𝜔2)𝑉𝑉 = −𝐿𝐿1𝜔𝜔1(𝑠𝑠 + 𝑗𝑗𝜔𝜔1)𝑣𝑣(𝑧𝑧, 0−). (S10) 

 
Assuming a harmonic variation 𝑒𝑒−𝑗𝑗𝑗𝑗𝑧𝑧 of the fields in space, we can solve for the voltage in s-
domain. For connecting a parallel capacitor as shown in Fig. S7A, 
 

 𝑉𝑉(𝑧𝑧, 𝑠𝑠) =
𝜔𝜔1
𝜔𝜔2
𝑠𝑠 + 𝑗𝑗𝜔𝜔1

𝑠𝑠2 + 𝜔𝜔22
𝑣𝑣(𝑧𝑧, 0−), (S11) 

 
while for the case of opening the switch as shown in Fig. S7B, 
 

𝑉𝑉(𝑧𝑧, 𝑠𝑠) =
𝑠𝑠 + 𝑗𝑗 𝜔𝜔1𝜔𝜔2

𝜔𝜔1

𝑠𝑠2 + 𝜔𝜔22
𝑣𝑣(𝑧𝑧, 0−). (S12) 

 
In both cases, 𝜔𝜔2 is not only the eigenfrequency of the TL after switching, but also relates to the 
poles of the fields in s-domain. It reads: 
 

 𝜔𝜔2 = 𝜔𝜔1�𝜔𝜔1/𝜔𝜔2 = 𝜔𝜔1𝑍𝑍2/𝑍𝑍1, (S13) 

which predicts the theoretical frequency translation ratio. 
 

More interestingly, by applying the initial-value theorem, Eqs. (S11) and (S12) will entail 
different temporal boundary conditions: when closing the switch (Fig. S7A) the voltage is 
discontinuous and the charge stored in capacitors is conserved: 

 

 𝜔𝜔2𝑣𝑣(𝑧𝑧, 0+) = 𝜔𝜔1𝑣𝑣(𝑧𝑧, 0−), (S14) 

 
while in the case where the switch is opened (Fig. S7B), the voltage remains continuous, yet the 
charges are not because 𝜔𝜔𝑝𝑝 is suddenly disconnected from the TL system: 
 

 𝑣𝑣(𝑧𝑧, 0+) = 𝑣𝑣(𝑧𝑧, 0−). (S15) 

 
Numerical examples of these two cases are demonstrated in Fig. S7C and D: when connecting 

𝜔𝜔𝑝𝑝 such that 𝜔𝜔2 = 4𝜔𝜔1, the voltage on the TL is discontinuous at 𝑡𝑡 = 0, while the total charge in 
the system is conserved, though part of the charge stored in 𝜔𝜔1 is transferred to 𝜔𝜔𝑝𝑝 instantaneously. 
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The frequency is halved as expected. By contrast, when disconnecting 𝜔𝜔𝑝𝑝 from the TL such that 
𝜔𝜔2 = 𝜔𝜔1/4. The voltage is continuous across the time-interface, while the total charge decreases 
as we exclude 𝜔𝜔𝑝𝑝 from the system. The frequency doubles as expected in this case. 

 
Having derived these boundary conditions, we can readily find the temporal reflection and 

transmission coefficients for switching on a parallel capacitor: 
 

 

𝑇𝑇𝑜𝑜𝑖𝑖 =
1
2
�
𝜔𝜔1
𝜔𝜔2

+ �
𝜔𝜔1
𝜔𝜔2
� =

𝑍𝑍𝑜𝑜𝑖𝑖�𝑍𝑍𝑜𝑜𝑖𝑖 + 𝑍𝑍𝑜𝑜𝑒𝑒𝑒𝑒�
2𝑍𝑍𝑜𝑜𝑒𝑒𝑒𝑒2 , 

𝑅𝑅𝑜𝑜𝑖𝑖 =
1
2
�
𝜔𝜔1
𝜔𝜔2
− �

𝜔𝜔1
𝜔𝜔2
� =

𝑍𝑍𝑜𝑜𝑖𝑖�𝑍𝑍𝑜𝑜𝑖𝑖 − 𝑍𝑍𝑜𝑜𝑒𝑒𝑒𝑒�
2𝑍𝑍𝑜𝑜𝑒𝑒𝑒𝑒2 ; 

(S16) 

 
and for switching off a parallel capacitor: 
 

 

𝑇𝑇𝑜𝑜𝑒𝑒𝑒𝑒 =
1
2
�1 + �

𝜔𝜔1
𝜔𝜔2
� =

𝑍𝑍𝑜𝑜𝑖𝑖 + 𝑍𝑍𝑜𝑜𝑒𝑒𝑒𝑒
2𝑍𝑍𝑜𝑜𝑖𝑖

, 

𝑅𝑅𝑜𝑜𝑒𝑒𝑒𝑒 =
1
2
�1 −�

𝜔𝜔1
𝜔𝜔2
� =

𝑍𝑍𝑜𝑜𝑖𝑖 − 𝑍𝑍𝑜𝑜𝑒𝑒𝑒𝑒
2𝑍𝑍𝑜𝑜𝑖𝑖

. 

(S17) 

 
In our experiments with temporal slabs, we observed two time-reflected signals, and both are out 
of phase with respect to the incident signal. This can only be explained via Eqs. (S16) and (S17): 
in fact, in our setup the effective impedance is decreased when the loaded capacitors are switched 
on, i.e., 𝑍𝑍𝑜𝑜𝑖𝑖 < 𝑍𝑍𝑜𝑜𝑒𝑒𝑒𝑒, and vice versa. Both temporal reflection coefficients 𝑅𝑅𝑜𝑜𝑖𝑖,𝑜𝑜𝑒𝑒𝑒𝑒 will be negative, 
hence, both time-reflected waves (𝑅𝑅𝑜𝑜𝑖𝑖𝑇𝑇𝑜𝑜𝑒𝑒𝑒𝑒 and 𝑇𝑇𝑜𝑜𝑖𝑖𝑅𝑅𝑜𝑜𝑒𝑒𝑒𝑒) will be out of phase to the incidence, 
while the two time-refracted waves (𝑇𝑇𝑜𝑜𝑖𝑖𝑇𝑇𝑜𝑜𝑒𝑒𝑒𝑒 and 𝑅𝑅𝑜𝑜𝑖𝑖𝑅𝑅𝑜𝑜𝑒𝑒𝑒𝑒) will be in phase. 
 
S6. Measurement of Frequency Conversion with Wave Packets 

While determining the broadband frequency translation properties of our TLM, we inject 
wave packets with different center frequencies, and observe the converted center frequency of the 
output. Fig. S6 shows a sample of the time-domain measurement used to quantify the frequency 
conversion of our time-interface when the wave impedance is abruptly reduced via the closing of 
the switches. The top left plot of Fig. S6 shows the incident (black) and the reflected (red) signals. 
Note that the effects of the T-connectors and impedance mismatch have not been compensated as 
they are not crucial for this study. The bottom plot shows the transmitted (blue) signal. Visually, 
it is clear that the frequencies of the time-scattered waves are lower than that of the incident wave, 
as the period appears to be longer. We perform Fourier transform on all three signal components. 
As revealed by the spectra on the right, the original signal has a center frequency of 60 MHz, while 
the time-reflected and the time-transmitted signals have center frequencies of approximately 35 
MHz, corresponding to a down conversion ratio of about 0.55. 
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S7. Temporal Slab Acting on a Wave Packet 
An ideal temporal slab, formed with two sequential time-interfaces must be unbounded in 

space. We cannot emulate such a system effectively with our fabricated TLM unless the injected 
wave packets have very narrow durations (i.e. wide bandwidth). Otherwise, the time-reflections 
and refractions cannot be completely contained inside the TLM as the temporal slab is being 
actuated. 
 
 In order to study the effect of a temporal slab on a true narrow-band wave packet, we 
numerically simulate a circuit constructed with three cascaded copies of our TLM. For some 
arbitrary value of “ON” duration (𝜏𝜏 =15ns), we sweep the center frequency (𝑓𝑓1) of the injected 
pulse (17.5MHz spectral FWHM), and observe the total time reflection (which consists of two 
interfering wave packets) in both the time domain and the frequency domain. The results for 𝑓𝑓1 ∈
[30,35, 38,41,46] MHz are plotted in Fig. S8. In the left column, we plot the input voltage wave 
form. The total time reflection induced by the temporal slab for each case is plotted in the middle 
column. Here, the interference between the two TR pulses are clearly visible. A Fourier transform 
of the reflected output yields the frequency spectra in the right column. Here, a reflection null 
persists at approximately 38MHz. The frequency of this null, inversely proportional to the slab 
durationS4, is consistent with the experimentally measured value in Fig. 3d of the main text.  
 
 The study done in this section also hints at the scalability of our printed circuit board TLM 
platform: connecting multiple modular samples opens up the opportunity to implement more 
complex forms of time metamaterials. 
 
S8. Spatial Homogeneity of the Time-Interface 

In our experiment, the control signal for the switches were carried by a pair of transmission 
lines with very short but nonetheless finite electrical length. Hence, strictly speaking, the switches 
are not perfectly synchronized. This may introduce some degree of spatial inhomogeneity and 
serve to detune the wave momentum. However, the control TL is much shorter than the main TL 
(by more than 40 times). This means that in the perspectives of a pulse propagating on the main 
TL, the change in the distributed capacitance appears effectively homogeneous. To further enhance 
the spatial homogeneity, we feed the control signal from the center of the sample, instead of the 
end. This serves to reduce the total transit time of the control signal across the entire sample by 
another factor of two, compared to the transit time of the signal on the main TL. 

 
To prove the above assertion, we perform circuit simulations with different degrees of switch 

desynchronization; the results are shown in Fig. S9. Here, we inject an asymmetric signal in the 
same form as that used in Fig. 2e of the main text. The grey curves depict the voltages at port 1 
and 2 of the TLM if we turn on all of the switches in a perfectly synchronized fashion. In other 
words, there is no time delay between the activation of adjacent switches. The dashed red curve 
corresponds to the simulated results when the electrical lengths between adjacent switches (𝐿𝐿𝑐𝑐) 
match our experiment exactly (<1cm). It can be seen that the red curves overlap the ideal grey 
curves almost exactly, showing that our experimental platform can realize an effectively 
homogeneous time-interface that can almost conserve momentum for sufficiently low frequencies. 
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S9. Characterization of the Circuit Switching Speed  
As pointed out by the main text as well as previous works in the literatureS5,S6, in order to 

induce strong temporal reflections, the time-interface must be sufficiently fast. Ideally, the duration 
of the interface should be much shorter than the period of the highest frequency wave component 
under consideration. In our transmission line metamaterial, the duration of the time-interface is 
primarily dictated by the rise and fall times of the switches. Hence, we experimentally characterize 
the switching speed of our circuit, and numerically investigate its implications on our implemented 
time-interface. 

 
To characterize the circuit switching speed, we fabricate a single unit cell of the TLM. We 

feed a 100MHz sinusoidal signal into the input port, and examine the envelope of the transmitted 
waveform. Changing the state of the switch with a control signal will result in a transition in the 
output envelope, whose rise/fall time can be used to quantify the “sharpness” of our time-interface. 
In this work, we define the interface duration as the time it takes for the output envelope to make 
a 10%-to-90% or a 90%-to-10% transition. In our measurement, the interface duration is measured 
to be approximately 3ns, which agrees with the specifications supplied by the manufacturer of the 
switches. 

 
We also utilize different forms of control signal such as a square wave or a triangular wave. 

As seen from the measured output envelope in Fig. S10 (black curves), the slew rate of the control 
signal has no appreciable influence on the duration of the time-interface. As long as 𝑉𝑉𝑜𝑜𝑠𝑠 can pass 
the required activation threshold, the switches will have the same transient response. This is an 
important property since in a realistic operating scenario, the slew rate of the control signal will be 
limited by the input reactance of the switches. For example, Fig. S11 depicts the actual form of the 
control signal (𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇) used in obtaining Fig. 2e of the main text. 

 
The slow rise and fall times of the switch input voltage also makes it difficult to precisely 

define the duration of a temporal slab. Hence, in the main text, we use 𝜏𝜏 to refer to the “ON”-state 
duration of the control signal supplied by the function generator, which is a well-defined 
rectangular pulse train. 

 
S10. Effect of Finite Switching Time 
 In this section, we numerically investigate the influence of finite circuit switching time on 
the scattering properties of our time-interfaces. First, we compare the time reflections generated 
by an ideal time-interface (instantaneous switching) and a realistic interface with 3ns 10%-to-90% 
switch rise time (which corresponds to our experiment). We first inject an asymmetric pulse into 
the circuit, and probe the time-reflected and time-refracted waveforms at the input and output ports 
in the time domain. The results are plotted in Fig. S12a. Here, the black curve corresponds to the 
simulated voltages when the switches have almost instantaneous rise times, while the red curves 
correspond to the voltages when the rise time is 3ns. It can be seen that the TR and TT waves are 
almost the same for both cases, which suggests that our platform behaves almost the same as a true 
time-interface for the frequency components contained in the asymmetric pulse. 
 

In Fig. S12b, we plot the peak amplitude of the time reflection as a function of the rise 
time, normalized against the peak value when 𝜏𝜏𝑟𝑟𝑖𝑖𝑜𝑜𝑒𝑒 ≈ 0. It can be seen that the 3ns 10%-to-90% 
rise time produced a time reflection with amplitude that is approximately 90% of the ideal output. 
The match would be even better when operating at lower frequencies. 
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S11. Measurement of Inverted Temporal Slab 
 In this section, we report measurements of inverted temporal slabs formed by an “ON-
OFF-ON” switching sequence, with different “OFF”-durations 𝜏𝜏. This provides the 
complementary control experiment for the “OFF-ON-OFF” temporal slabs discussed in the main 
text (Fig. 3c, 3d and 3e). It should be reiterated that 𝜏𝜏 corresponds to the “OFF” duration of the 
control signal (an ideal rectangular pulse train). It does not equal to the actual duration of the 
realized temporal slab, due to the input reactance of the switches. However, as discussed in the 
section “Characterization of the Circuit Switching Speed”, this does not degrade the sharpness of 
the “facets” of our temporal slab. 
 

In the experiment, we launch broadband pulses into the TLM, and observe the TR output 
produced by the inverted temporal slab. The time domain measurements for three different values 
of 𝜏𝜏 are plotted in Fig. S13a. In each case, two TR pulses with inverted polarity compared to the 
input can be observed. In contrast with the “OFF-ON-OFF” temporal slab examined in the main 
text, which produced two TR pulses with almost equal magnitudes, here we see that the second 
pulse is much more attenuated than the first. The amplitude difference is exacerbated as 𝜏𝜏 is 
increased. This can be explained by the loss of the TLM in its “ON” state. As we increase 𝜏𝜏, the 
second pulse will have travelled further in the TLM before the ending of the temporal slab. 
Therefore, it must traverse a longer distance inside the lossy TL before returning to port 1, meaning 
it will experience more attenuation. 

 
We carry out the same Fourier analysis as is done in the main text, to obtain the total reflection 
spectrum of each inverted temporal slab (Fig. S13b). As expected, we observe reflection minima 
for certain frequencies. The location of the dips can be tuned by adjusting 𝜏𝜏. Due to the strong 
dissipative loss in the “ON”-state of the TLM, we see that the reflections never reach exactly zero. 
This is reminiscent of the properties a lossy Fabry-Perot etalon. 
 

 
S12. Video Leakage of the Switches 

Video leakage refers to the generation of spurious signals at the RF ports of an integrated 
circuit switch, typically caused by the switch driver when a large voltage spike (such as that caused 
by our control signal) occurs at the logic input. Such signals can travel through our transmission 
line and contaminate the voltage measurements at the input and output ports, especially when it 
overlaps with our signal pulses and/or their temporal reflections, as seen by the upper plot in Fig. 
S14. 

 
Although video leakage is unavoidable during measurement, we can remove its effect 

through post processing. We use a logic control signal with higher frequency than the signal pulse 
train. This will produce multiple identical copies of the video leakage signal, with period 𝑇𝑇. Some 
copies will inevitably overlap with the signal pulses (which have period 𝑇𝑇𝑜𝑜). However, most of the 
copies of the video leakage will appear in between the signal pulses. Since the leakage is almost 
identical during each switching cycle, we can simply subtract the measured waveforms by its copy, 
shifted by 𝑇𝑇. This will remove all video leakage, while leaving intact the desired signal. 
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Fig. S1. 
Equivalent T-network for one unit cell of our TLM when the switches are closed. Here, 𝑑𝑑 is the 
physical length of the unit cell (0.2080m) and 𝑗𝑗𝑗𝑗 = 𝑗𝑗2.753 is the normalized load susceptance at 
100 MHz. 
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Fig. S2. 
Normalized dispersion relation and Bloch impedance of our transmission line, assuming an unit-
cell electrical length of 𝜃𝜃 = 𝑘𝑘𝑑𝑑 = 72∘, and an normalized load susceptance of 𝑗𝑗 = 2.753, both 
evaluated at 100 MHz. The blue lines and the red lines correspond to the unloaded and the loaded 
lines respectively. 
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Fig. S3. 
Parametric study for the identification of the optimal unit-cell electrical length 𝜃𝜃 and cutoff 
frequency of the first band gap 𝜔𝜔𝑐𝑐, which is related to the load susceptance 𝑗𝑗. (A) A map for the 
temporal reflection coefficient and (B) a map for the frequency translation ratio. The red line in 
panel A corresponds to the combination of (𝜃𝜃,𝜔𝜔𝑐𝑐) that yields the largest reflection coefficient. 
The white boxes with dotted border in both panels denote regions in which the load susceptance 
become inductive (i.e., negative). 
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Fig. S4. 
Circuit layout for the fabricated transmission line. (A) Layout for the unit cell. The descriptions of 
the components can be found in Table S1. (B) Schematic for the complete TLM, showing how the 
unit cells are connected.  
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Fig. S5. 
Simplified schematic of the experimental set up for time domain measurements. Power supply 
for the switches and a separate function generator for switch control are not shown.  
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Fig. S6. 
A sample of the measurement used to characterize the frequency conversion of our time-interface 
when the wave impedance reduced. The left column shows the incident (black), time-reflected 
(red) and time-refracted (blue) signals. The right column shows their corresponding Fourier 
transform. A frequency down conversion by about 0.55 is clearly visible through the peak of the 
frequency spectra. 
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Fig. S7. 
Circuit model of time-switched transmission-line (TL), with the (A) loading, and (B) removal of 
a parallel capacitor. 𝜔𝜔1(𝜔𝜔2) denotes the value of effective distributed capacitance of the TL before 
(after) closing or opening the switch. Panel C demonstrates the time variation of voltages and 
charges on each capacitor, as well as their total values sensed by the TL, corresponding to a 
numerical example of Panel A with 𝜔𝜔2 = 4𝜔𝜔1. Panel D shows the same quantities for a numerical 
example of Panel B with 𝜔𝜔2 = 𝜔𝜔1/4. 
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Fig. S8. 
Circuit simulations for a temporal slab with a fixed “ON” time (𝜏𝜏 =15ns). The injected pulses are 
in the form of Gaussian wave packets with different carrier frequencies and 17.5MHz spectral 
FWHM. The simulated circuit consists of 3 cascaded copies of our TLM sample. The left column 
depicts the time domain waveform of the input pulse, while the middle column shows the total 
time-reflected output. The right column shows the frequency spectra of the output. All of the 
spectra exhibit reflection nulls at approximately 38MHz, which agrees with measured results in 
Fig. 3d of the main text.  
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Fig. S9. 
Circuit simulations demonstrating the effect of switch desynchronization. The black curve 
corresponds to the simulated voltages at ports 1 and 2 assuming perfect synchronization. The red 
curve (“Practical”), which matches the ideal one almost exactly, depicts the simulation of our 
measurement set up. This shows that despite the finite time delay between adjacent unit cells, our 
set up can emulate a homogeneous time-interface with very high fidelity.  
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Fig. S10. 
Experimental characterization of the circuit switching speed using different types of control signal. 
Here, a 100MHz sinusoidal signal is transmitted through a single unit cell sample of the TLM, and 
the envelope of the output waveform is recorded (black curve). We activate the switch inside the 
unit cell using different types of control signals 𝑉𝑉𝑜𝑜𝑠𝑠, with drastically different slopes. It can be seen 
that both a rectangular control signal (top) and a triangular control signal (bottom) produced 
identical output envelopes, demonstrating that the rise time of 𝑉𝑉𝑜𝑜𝑠𝑠 has very little influence on the 
switching speed of the circuit.  
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Fig. S11. 
A sample measurement of the control signal used to induce the time-interface. The slew rate of the 
signal is very low, due to the input reactance of the switches. However as shown in Fig. S10 that, 
simply crossing the activation threshold of the switch (2.3V according to the datasheet) is sufficient 
to induce a sharp time-interface. This particular control signal was used to induce the time-
interface examined in Fig 2e of the main text. 
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Fig. S12. 
Circuit simulation of the TLM with different 10%-to-90% rise time for the switches. (a) Time 
domain voltage measured at the input port. The input is a Gaussian wave packet with 50MHz 
center frequency and 40MHz spectral FWHM. The blue curve represents the simulation results 
when the circuit has the same rise time (3ns) as our selected RF switches; it is seen to closely 
match the black curve, which corresponds to the case when the rise time is near zero. As we further 
increase the rise time to 8ns (green) and 12ns (yellow), the amplitude of the time reflection become 
significantly weaker. (b) Peak amplitude (normalized against the ideal case) of the time reflected 
wave packet as a function of the switch rise time. The amplitude corresponding to the case of 3ns 
rise time was approximately 90% of the ideal amplitude. 
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Fig. S13. 
Measurement of temporal interference induced by the inverted temporal slab. (a) Time domain 
waveform recorded at port 1 for various values of “OFF” duration 𝜏𝜏. As 𝜏𝜏 is increased, so does the 
separation between the two TR pulses. The second TR pulse is heavily attenuated for larger values 
of 𝜏𝜏, since it experiences increased attenuation. (b) Reflection spectra of inverted temporal slab in 
the wavenumber (bottom axis) and frequency (top axis) domain. We see distinct reflection minima 
whose locations are tunable via adjustment of 𝜏𝜏. 
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Fig. S14. 
Compensation of video leakage from the switches. Top plot shows the uncompensated waveform 
measured at the input port of the TL, with multiple spurious spikes caused by the rising and falling 
edges of our control signal. The bottom plot shows the compensated waveform, obtained through 
subtracting the top plot by a shifted copy of itself. The compensated waveform has much more 
clearly observable input and TR pulses. A spurious inverted copy of the main signal remains, but 
can be discarded during analysis. 

 
 

 
 

  

Uncompensated

Compensated

Video Leakage

t [µs]
-1

0

-0.2

-0.4

0.2

0.4

-0.5 0

V 1
(t)

-V
1(

t -T
) [

V
]

0

-0.2

-0.4

0.2

0.4

V 1
(t)

 [V
]

0.5 1.0 1.5



 

37 
 

Table S1. 
List of components used to fabricate our transmission line, referred to the schematic shown in 
Fig. S4. 
 

Component Description Value Component Number 
𝜔𝜔𝐷𝐷𝐷𝐷 DC blocking capacitor 3.900 nF C0402C392K5RACAUTO 
𝜔𝜔1,2 RF shorting capacitor 10 pF 06031A100GAT2A 
𝑅𝑅1,2 Resistor 11.5 Ohm RK73H1JTTD11R5F 
𝑅𝑅3 Resistor 100 Ohm RK73H1JTTD1000F 
𝑍𝑍1,2 Zener Diode  𝑉𝑉𝑧𝑧 = 5.3 𝑉𝑉 MMSZ4690T1G 

RF Switch   M3SW-2-50DRA+  
𝑅𝑅𝑙𝑙𝑜𝑜𝑙𝑙𝑙𝑙,2 TL load (OFF-State) 1 MOhm RCS12061M00JNEA 
𝜔𝜔𝑙𝑙𝑜𝑜𝑙𝑙𝑙𝑙,1 TL load (ON-State) 82 pF C0402C823K9RACTU 
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