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Abstract

The secular dynamics of a non-relativistic charged particle in an electromagnetic wave can be 

described by the ponderomotive potential. Although ponderomotive electron-laser interactions at 

relativistic velocities are important for emerging technologies from laser-based particle 

accelerators to laser-enhanced electron microscopy, the effects of special relativity on the 

interaction have only been studied theoretically. Here, we use a transmission electron microscope 

to measure the position-dependent phase shift imparted to a relativistic electron wave function 

when it traverses a standing laser wave. The kinetic energy of the electrons is varied between 80 

keV and 300 keV, and the laser standing wave has a continuous-wave intensity of 175 GW/cm2. In 

contrast to the non-relativistic case, we demonstrate that the phase shift depends on both the 

electron velocity and the wave polarization, confirming the predictions of a quasiclassical theory 

of the interaction. Remarkably, if the electron’s speed is greater than 1/ 2 of the speed of light, the 

phase shift at the electric field nodes of the wave can exceed that at the antinodes. In this case 

there exists a polarization such that the phase shifts at the nodes and antinodes are equal, and the 

electron does not experience Kapitza-Dirac diffraction. Our results thus provide new capabilities 

for coherent electron beam manipulation.

The motion of a non-relativistic charged particle in an electromagnetic (EM) wave can be 

described on time scales longer than the wave period by the ponderomotive potential [1], an 

effective potential proportional to the time-averaged square of the electric field and 

independent of the EM wave polarization or particle velocity. The ponderomotive potential 

plays an important role in a variety of phenomena including the Kapitza-Dirac effect [2, 3], 

high-harmonic generation [4], laser-driven particle acceleration [5], free electron laser 

seeding [6], electron pulse train generation [7, 8], and laser-controlled electron 

interferometry [9–11].

A significant theoretical effort has been dedicated to generalizing the ponderomotive 

potential for particles with relativistic initial velocities [12–17]. In this case, the interaction 

depends on both the particle velocity and EM wave polarization. While non-relativistic 
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particles are always pushed away from the high electric field amplitude regions of the wave, 

relativistic particles can be deflected towards them, in an effect called relativistic reversal 

[14]. This effect enables polarization-based control of the coherent manipulation of 

relativistic electron beams using laser light, with applications including rapidly-switchable 

electron beamsplitters, Kapitza-Dirac diffraction-free phase shifters, and ponderomotive 

free-electron laser wigglers [12, 18].

Here, we experimentally study the interaction of a relativistic electron with a standing laser 

wave. We first formulate a quasiclassical theory of the interaction which allows us to 

calculate the phase shift imparted to an electron wavepacket as it traverses the laser wave, 

from which modifications to the ponderomotive potential can be derived. Then, using the 

relativistic electron beam of a transmission electron microscope (TEM) and the standing 

laser wave of a Fabry-Pérot optical cavity, we image the phase shift imparted to the electron 

beam and observe velocity- and polarization-dependent relativistic effects including 

relativistic reversal.

To calculate the phase shift imparted to a relativistic charged particle by an EM wave of 

arbitrary spatial and temporal configuration, we use the quasiclassical approximation, which 

assumes that the shortest wavelength present in the EM wave λL is much larger than the 

electron wavelength λe. This condition is satisfied in most experimentally relevant 

situations. The phase shift is then given by the action along the classical trajectory divided 

by the reduced Planck constant ħ. We perform this calculation up to second order in the 

electric field strength, which in the quantum picture corresponds to stimulated Compton 

scattering (SCS) [2, 19]. This approximation is valid over a wide range of EM wave 

intensities, from an onset where SCS overcomes spontaneous Compton scattering [2], up to 

the “relativistic” wave intensity [20, 21] where the particle is accelerated to a relativistic 

velocity within a single cycle of the wave.

Since the action is a Lorentz scalar, it is convenient to perform the calculations in the 

reference frame co-moving with the initial (unperturbed) velocity of the electron, v0 = cβz, 

where the motion remains non-relativistic at all times. β is the electron’s speed in units of 

the speed of light c. Variables in the co-moving frame are denoted by an apostrophe. The 

phase shift can then be written as

ϕ =
1
ℏ∫ dt′

1
2

mv′2 t′ − eA′ r′ t′ , t′ ⋅ v′ t′ 1

where m is the electron mass, e is the elementary charge, and A′ (r′ (t′) , t′) is the vector 

potential (in the Coulomb gauge) evaluated at the electron’s position r′ (t′). We evaluate this 

expression perturbatively to the leading (second) order in the field strength parameter e |A′| /
mc. The first order contribution to the phase shift vanishes due to energy-momentum 

conservation. In the co-moving frame, the electron is initially at rest at position r′0. The 

electric field of the EM wave accelerates it to a velocity v′1 t′  which, to first order in e |A′| /

mc, is given by v′1 t′ = eA′ r′0, t′ /m. Using this expression in Eq. (1), the phase can then be 

expressed (to second order in e |A′| /mc) in terms of only A′:
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ϕ = −
1
ℏ∫ dt′

e2

2m
A′2 r′0, t′ 2

To express the phase shift in terms of the laboratory frame Coulomb gauge vector potential, 

we perform a Lorentz transformation and then restore the Coulomb gauge by a gauge 

transformation (see supplementary materials). The resulting expression is

ϕ = −
1
ℏ∫ dt

e2

2mγ
A r0(t), t − ∇G r0(t), t 2−β2 Az r0(t), t − ∇zG r0(t), t 2

3

where r0 (t) is the unperturbed electron trajectory in the laboratory frame, γ = 1 − β2)− 1/2, 

and

G(x, t) = cβ∫
−∞

t
dT Az x−cβ t − T z, T 4

is the gauge function, and x = (x, y, z). Using the slowly-varying envelope approximation, 

which assumes that the amplitude of the EM wave varies slowly along the electron trajectory 

relative to its oscillation period, we can time-average the integrand of Eq. (3) over one cycle 

of the field, leaving an effective potential. To zeroth order in β, this potential is simply the 

ponderomotive potential Up(x) = e2

2m A2(x, t) , where the angle brackets denote a time-

average over one oscillation period of the field. We note, however, that Eq. (3) remains valid 

in general for the SCS phase shift, even if the electromagnetic field does not have a slowly-

varying envelope in time and space.

When the electron is relativistic, the β-dependent terms in Eq. (3) cannot be neglected. In 

particular, the ∇G terms become relevant if the amplitude of the EM wave varies 

substantially over distances comparable to its wavelength, such as in a standing wave. In the 

case of a monochromatic standing wave with its wavevector parallel to the x-axis and 

polarization specified by angle θ and ellipticity parameter ϵ, the Coulomb gauge vector 

potential can be written as

A(x, t) = A0 y, z cos 2πx/λL × cos θ cos ωt z + sin θ cos ωt − ϵ y] 5

where A0 (y, z) is the wave’s amplitude envelope and ω = 2πc/λL is its angular frequency. If 

the slowly-varying envelope approximation is satisfied, time-averaging the integrand of Eq. 

(3) results in the relativistic effective potential

Ur(x) =
e2A0

2(y, z)
4mγ

1
2

1 + ρ(θ, β)cos 4πx/λL 6

where

ρ(θ, β) = 1 − 2β2cos2(θ) 7
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describes the relative depth of the standing wave structure of the potential. An electron beam 

passing through such an EM wave will acquire a spatial phase modulation

ϕ x, y = − ϕ0 y
1
2

1 + ρ(θ, β)cos 4πx/λL 8

ϕ0(y) ≡
1
ℏ∫ dz

e2A0
2(y, z)

4mcβγ
9

where ϕ0 (0) ρ (θ, β) is the depth of the phase modulation along the wave axis.

Equation (6) and Eq. (7) show that the relativistic interaction is strongly dependent on both 

the electron speed β and EM wave polarization angle θ, though not on the ellipticity 

parameter ϵ. Importantly, if β ≥ 1/ 2, there exists a polarization angle θr, referred to as the 

relativistic reversal angle [14], such that ρ (θr, β) = 0. At this angle, the standing wave 

structure of the phase shift disappears entirely, and therefore no Kapitza-Dirac diffraction 

occurs.

The relativistic interaction also modifies the laser-induced group delay of the electron wave 

function. The group delay, equivalent to the retardation of a classical particle and defined as 

τ = ℏ dϕ
dK , can be calculated from the energy dependence of the electron phase shift:

τ(x, y) =
ℏ

mc2

ϕ0(y)

β2γ

1
2

1 + ϱ(θ, β)cos 4πx/λL 10

ϱ(θ, β) ≡ 1 + 2β2 1 − 2β2 cos2(θ) 11

In particular, at θ = θr, when the standing-wave structure in the potential of Eq. (6) vanishes, 

the standing wave structure is still present in the spatial profile of the group delay. 

Furthermore, when 0 < β < 1/ 2, the group delay is negative for portions of the standing 

wave around the electric field nodes. This negative group delay corresponds to an attractive 

potential, in contrast to the non-relativistic ponderomotive potential which is always 

repulsive.

A schematic of the experiment is shown in Fig. 1(a). The electron beam of a TEM (Thermo 

Fisher Scientific Titan) passes through a standing laser wave, where the axis of the standing 

wave x is perpendicular to the propagation direction of the electron beam z. The interaction 

imprints a spatial phase modulation on the electron wave function, as described by (Eq. 8). 

The electron beam then propagates away from the interaction region before it is imaged 

using a direct electron detection camera (Gatan K2) [22]. The electron beam is brought to a 

focus before it crosses the standing laser wave such that a point-projection image, known as 

a “Ronchigram,” is formed on the camera [23, 24]. As illustrated in Fig. 1(b), paraxial 

propagation of the electron beam from the interaction region to the camera partially converts 

the phase modulation of the electron wave function to amplitude modulation, allowing the 
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phase modulation to be imaged. The electron’s kinetic energy K = (γ − 1) mc2 can be 

adjusted between 80 keV and 300 keV by changing the TEM’s accelerating voltage.

The standing laser wave is formed inside of a Fabry-Pérot optical cavity which serves to 

amplify and focus a continuous-wave laser beam with a wavelength of λL = 1064 nm [9–

11]. The fundamental mode of the cavity has a Gaussian profile such that at its waist where 

it intersects the electron beam, Eq. (9) gives

ϕ0(y) = e
−2

y2

w0
2 8

π3
α
βγ

PλL
2

mc3w0

12

where w0 is the 1/e2 radius of the mode, α is the fine-structure constant, and P is the optical 

power circulating in the cavity. Since a relativistic electron spends little time interacting with 

the EM wave, the laser intensity must be high in order for the electron wave function to 

accumulate appreciable phase. We achieve phase shifts on the order of 1 rad with a 

circulating power of 44 kW focused to a w0 = 8 μm focus, corresponding to a peak standing 

wave intensity of 175 GW/cm2. To our knowledge, this is the highest continuous-wave laser 

intensity ever achieved.

A half-wave plate placed at the input of the optical cavity is used to control the linear 

polarization angle of the light entering the cavity. A portion of the light transmitted through 

the cavity is sent to a polarimeter which measures the optical power in the two orthogonal 

polarization components relative to the polarimeter axis. The polarimeter employs polarizing 

beamsplitter cubes to separate the orthogonal polarization components, and calibrated 

photodiodes to measure the optical power of each component (see supplementary materials). 

The absolute value and sign of the polarization angle θ are determined from the polarimeter 

reading and orientation of the half-wave plate, respectively. The polarization at the 

polarimeter is assumed to be the same as that inside the cavity, as the cavity was measured to 

not appreciably change the polarization between its input and output (see supplementary 

materials).

Ronchigrams were collected at electron beam energies of K = 80, 150, 215, 230, 245, 260, 

275, 290, and 300 keV. At each electron energy the rotation angle of the half-wave plate was 

incremented between 10 s electron camera exposures. The half-wave plate was rotated 

through 90° in one direction and then rotated back to the original position, thereby rotating 

the polarization angle from θ ≈ −90° to θ ≈ +90° and back again. Rotation of the 

polarization angle through a full 180° allowed for the determination of any misalignment 

between the polarimeter axis and the electron beam axis (angle ξ shown in Fig. 1(a)).

Figure 1(c) shows a typical unprocessed Ronchigram. Both the standing wave structure and 

the transverse Gaussian profile of the cavity mode are clearly evident. Each Ronchigram was 

fit in Fourier space using the phase modulation depth of the standing wave as a fit parameter 

(see supplementary materials). To correct for small variations in the laser wave parameters 

during the experiment, the phase modulation depth was normalized by the optical power at 

the polarimeter (proportional to the circulating power P) and the mode waist w0, which were 

both measured at the time the Ronchigram was taken. The mode waist was determined from 

Axelrod et al. Page 5

Phys Rev Lett. Author manuscript; available in PMC 2020 July 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a measurement of the cavity’s transverse mode frequency spacing (see supplementary 

materials). The fractional change in λL during a typical experiment was measured to be 

small enough (~ 10−6) that it was assumed to be constant for the purpose of normalization.

Each set of normalized modulation depth versus polarization angle data was fit to Eq. (7), 

with an angle-independent normalization constant, a polarization angle axis o set, and the 

electron speed β as fit parameters. The electron speed was used as a fit parameter because 

the nominal electron energies K are only accurate to approximately ±1% (per the TEM 

manufacturer’s specifications). The polarization angle axis o set accounts for the polarimeter 

misalignment angle ξ, as well as any linear polarization rotation induced by optics between 

the cavity output and polarimeter (see supplementary materials).

This data is presented in Fig. 2(a); for clarity, only the K = 80, 150, 215, and 300 keV data 

sets are shown. The remaining data sets are shown in the supplementary materials. The 

relative phase modulation depth exhibits a dependence on the polarization angle θ that is 

well-modeled by (Eq. 7); the root-mean-squared difference between the fit and data across 

all data sets is 7.1 × 10−3. To show the relative phase modulation depth’s β-dependence, the 

fit values at θ = 0 are plotted as a function of the nominal values of β2 for all data sets in 

Fig. 2(b), where they are compared with the linear dependence expected from (Eq. 7). 

Again, there is a good correspondence between the measured values and theoretical model.

Imaging of the spatial phase modulation profile allows the relativistic reversal effect to be 

directly observed in the Ronchigrams. As the polarization angle is rotated through the 

relativistic reversal angle, the standing wave structure in the Ronchigram diminishes in 

amplitude until it disappears entirely and then re-emerges with the opposite sign. This is 

demonstrated in Fig. 2(c), using Ronchigrams from the K = 300 keV data set shown in Fig. 

2(a). A temporally linear drift in the fringe position of 0.4 nm/s due to thermal expansion of 

the cavity support structure has been removed from the displayed data (see supplementary 

materials). The change in fringe position around θr was used to infer the sign of the relative 

phase modulation depth for the K ≥ 215 keV data sets in Fig. 2(a) and Fig. 2(b).

Our results show that SCS of relativistic particles exhibits a strong dependence on the 

electron velocity and the EM wave polarization, and that this dependence is well-described 

by a quasiclassical theory of the interaction. The most striking feature of the polarization 

dependence is that the standing wave structure of the phase shift reverses its sign at a 

particular polarization angle when β ≥ 1/ 2. Therefore, this experiment can also be 

understood as an observation of the relativistic reversal of the amplitude of Kapitza-Dirac 

diffraction [2, 3].

The dependence of the relativistic effective potential on the polarization of the EM wave 

provides an avenue for dynamical optical control of relativistic electron beams. When the 

standing wave structure of the phase modulation is eliminated, the electron wave function 

does not diffract from the EM wave. Therefore, varying the polarization of the standing 

wave could be used to make a rapidly-switchable electron beamsplitter, or implement 

electron pulse slicing [25]. The same effect could be used to temporally phase modulate an 

electron beam focused through a single antinode of the standing wave. Additionally, when 
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the standing EM wave is used as a phase plate for phase contrast electron microscopy, 

operation at the relativistic reversal angle eliminates the presence of “ghost” images due to 

diffraction (see supplementary materials) [10, 11]. Polarization-based control of the 

relativistic effective potential thus adds a much-needed capability to the presently sparse 

toolkit for coherent electron beam manipulation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
a) Schematic. An electron beam intersects a standing laser wave (electric field shown in 

magenta, magnetic field shown in cyan) formed between the two mirrors (blue cylinders) of 

a Fabry-Pérot optical cavity. The dimensions of the cavity are not shown to scale. The 

polarization axis of the standing wave (magenta arrows) makes an angle θ with the electron 

beam axis. The polarimeter is tilted by an angle ξ relative to the electron beam axis. b) 
Phase modulation detection scheme. The electron beam crosses the standing laser wave 

after passing through a focus. The interaction with the standing wave imprints a spatial 

phase modulation on the electron beam which is converted to intensity modulation as the 

electron beam propagates to the image plane. c) Ronchigram of the standing laser wave. 
The direct electron detection camera records the number of electrons landing on each of its 

pixels. In the image plane, the standing wave structure of the phase modulation manifests as 

a series of bright and dark fringes.
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Figure 2. 
a) Relative phase modulation depth as a function of polarization angle. Measurements 

of the relative phase modulation depth (dots) are plotted along with fitted theory curves 

(lines) as a function of the laser wave polarization angle θ for several values of the nominal 

electron energy K (equivalently, electron speed β). The fitted theory (solid lines) is described 

by Eq. (7). b) Relative phase modulation depth as a function of electron speed. Fit values 

for the relative phase modulation depth at θ = 0 are shown as a function of β2 for each of the 

nine electron energies examined (black dots). The theoretical dependence on β2 predicted by 

Eq. (7) is shown in red. c) Relativistic reversal. Ronchigram standing wave fringes are 

shown as a function of polarization angle θ and position along the laser beam axis x for the 

K = 300 keV data set used in panel (a). The bright (red) and dark (blue) fringes reverse 

positions around the relativistic reversal angle θr (horizontal black line). The vertical lines 

are a guide-to-eye.
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