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Abstract: We study interaction of a discrete vortex with a supporting pho-
tonic lattice and analyze how the combined action of the lattice periodicity
and the medium nonlinearity can modify the vortex structure. In particular,
we describe theoretically and observe in experiment, for the first time to our
knowledge, the nontrivial topological transformations of the discrete vortex
including the flipping of vortex charge and inversion of its orbital angular
momentum. We also demonstrate the stabilizing effect of the interaction
with the so-called “mixed” optically-induced photonic lattices on the vortex
propagation and topological structure.
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1. Introduction

One of the fundamental properties of light is attributed to its angular momentum [1] which
manifests itself in structural transformations of optical fields as well as in effective forces acting
on particles [2, 3] and atoms [4]. The optical orbital angular momentum is associated with a
beam vorticity or twisted flow of light around specific singular points or phase dislocations. In

#71365 - $15.00 USD Received 26 May 2006; revised 31 July 2006; accepted 1 August 2006

(C) 2006 OSA 4 September 2006 / Vol. 14,  No. 18 / OPTICS EXPRESS  8318



dielectric media with a rotational symmetry, e.g. homogeneous and isotropic, the orbital angular
momentum is a dynamical invariant (an integral of motion) of the system. Conservation of the
angular momentum plays an important role for the structural stability of the vortex beams [5],
including the diffracting Gauss-Laguerre optical modes of waveguides and the nondiffractive
modes such as Bessel beams and their generalizations.

In nonlinear media, optical vortices appear as self-trapped spatially localized optical beams,
or vortex solitons [6], and they suffer from azimuthal modulational instabilities [7, 8]. Sev-
eral different physical mechanisms have been suggested for suppression the azimuthal instabil-
ity [6]. Guiding the vortices in periodic structures such as photonic crystals or optical lattices
offer an exciting opportunity to stabilize optical vortices in nonlinear media in the form of stable
discrete vortex solitons [9, 10, 11], as recently demonstrated in experiment [12, 13]. However,
stable discrete vortex solitons carry an angular momentum in a structural environment which
does not support the conservation of the angular momentum because the medium periodicity
breaks the rotational symmetry. As a result, novel types of the vortex dynamics such as the
vortex charge flipping [14, 15] and vortex transmutations [16] should be observed.

In this paper, we study topological transformations of the discrete vortices propagating in
photonic lattices due to the combined action of the lattice periodicity and the medium nonlinear
response. We demonstrate, for the first time to our knowledge, both theoretically and experi-
mentally, that such transformations can lead to the inversion of the vortex topological charge
and the angular momentum while preserving its intensity structure. Furthermore, we suggest
and demonstrate in experiment a novel approach to control a change of the angular momentum
of the vortex beam by controlling elasticity of the lattice, and thus providing a possibility for a
novel type of optical switching between the vortex states with opposite circulations.

2. Topological transformation: basic concepts

To illustrate the basic concept of the vortex topological transformations, we consider three
important examples of the vortex propagation in nonlinear media. In Fig. 1(a) we show the
well-known scenario of the symmetry-breaking azimuthal instability of a vortex soliton in bulk
homogeneous media [7, 8]. The green iso-intensity surfaces indicate the half-maximum inten-
sity, while the red isosurfaces visualize the dynamics of the phase dislocation (vortex core)
in the transverse plane. After a metastable stationary propagation, the vortex ring breaks up
into two fundamental solitons, while the core experiences splitting, illustrating the so-called
unfolding of the phase dislocation [17]. In this case, the angular momentum is conserved, and
it does not change its value even after the vortex breakup, as shown in Fig. 1(d). Instead, two
soliton filaments carry the net orbital angular momentum mowing away from the ring along the
tangential trajectories [7].

Similar break-up dynamics of vortices can also be observed in the region of linear instability
of the vortex propagation in periodic potentials [11]. The presence of the periodic potential,
however, leads to the existence of stable vortex solitons in a square lattice when the intensity
and topological structure of the vortex remain unchanged. This is demonstrated in Fig. 1(b)
for an optically-induced photonic lattice created in an isotropic saturable medium [11]. The red
“string” at the beam origin shows a robust dislocation, while the angular momentum exhibits
small oscillations [see Fig. 1(d)] due to the soliton breathing. Following Ref. [14], we apply an
asymmetric (elliptic) perturbation to the discrete vortex soliton by reducing the relative ampli-
tude of a diagonal pair of the vortex sites by 10%, and in Fig. 1(c) observe periodic “bursts” of
the vortex core [see also a movie IsoUnfoldings.avi, 2.2MB, where the white contour lines in
the phase portrait correspond to the red surface in (c) indicating the shape and position of the
vortex core]. These bursts correspond to the periodic unfoldings of the phase dislocation and
vortex charge flipping, i.e. the vortex topological structure becomes broken.
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Fig. 1. Comparison between the structural and topological instabilities of optical vortices.
(a) Linearly unstable vortex soliton in a saturable bulk medium. (b) Generation of a stable
vortex soliton on a square photonic lattice. (c) Topological transformations of the asym-
metrically perturbed discrete vortex on the lattice [movie IsoUnfoldings.avi, 2.2MB]. The
isosurfaces are plotted at the half-peak intensity (green) and at a small value ∼ 10−2 (red).
The red “string” in (b) shows the position of the vortex core, while bursts in (a) and (c)
indicate the vortex unfoldings. (d) Dynamics of the angular momentum (normalized by the
power) for all three cases.

We note that inversion of the topological charge of the free-propagating singular beam was
predicted [18] and observed [19] for a single-charge “non-canonical” (i.e., elliptically de-
formed) vortex, as well as for higher-order singular beams focused by an astigmatic lens [20].
In these experiments, the intensity distribution of a vortex undergoes drastic deformation in the
focus, where the charge-flipping occurs. In sharp contrast, in periodic media the vortex intensity
distribution may practically remain the same. As it is seen in Fig. 1(c, green surfaces), the in-
tensity structure stays intact during transformation, the feature which was commonly believed
to guarantee the stability of phase topology as well [12, 13]. We conclude that in nonlinear
periodic media the vortex beams demonstrate remarkable features of topological transforma-
tions: while the energy of the beam remains localized by the lattice, its phase structure changes
substantially. This topological reaction results in a reverse of the vortex transverse energy flow,
which is associated with flipping of the sign of the vortex angular momentum, see Fig. 1(d).
Most probably, the topological transformations can be accurately described and explained by
the presence and development of oscillatory instability (internal) modes of the discrete vortex
solitons, similar to the breather solutions in discrete systems [21].

In analogy with the periodic lattices, the photonic structures with discrete rotational symme-
tries of a finite order received a special attention [22, 23]. Examples include the Bessel-type
lattices [24, 25] and photonic crystal fibers [26, 27]. It was shown that while such structures do
not allow for conservation of the angular momentum, they can be characterized by the so-called
“angular Bloch momentum”, conserved during the evolution of spatially localized modes [22].
At the same time, these structures introduce essential limitations to the symmetry of the sup-
ported localized modes, e.g., the topological index of a vortex m can not exceed the cut-off
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value |m| ≤ n/2 [23], determined by the symmetry order n of the photonic structure. The selec-
tion rules then apply not only to the existence, but also to the stability properties of the discrete
vortices [24]. The interplay between the symmetries of the angularly-modulated modes and
corresponding waveguiding nonlinear structures leads to possibilities of the so-called vortex
transmutations, where the initial individual vortex is mapped into another with a different topo-
logical charge [16].

However, the point-like mapping of a single vortex into another, such as the vortex transmuta-
tion and charge-flipping, are not the only topological transformations which should be expected
to occur in periodic lattices. Indeed, the generic property of optical vortices is their nucleation,
in which vortices with opposite topological charges can be born or annihilate in pairs [17]. In
the free-space propagation, a combination of a Gaussian beam and a multiple-charged opti-
cal vortex results in the spatial splitting of the single dislocation to a number of lowest order
vortices [28]; similar generation of the rows of single-charge vortices is reported for elliptically-
deformed high-charge vortex beam [20, 29]. Furthermore, the instabilities of high-charge dark
vortex solitons in defocusing nonlinear media [6] also suggest that, a “generic” [5] structure
which can arise during the topological transformation should involve configurations of several
single-charge vortices, rather than a point-like phase dislocation of a high order.

Indeed, as we demonstrate below for the square photonic lattice induced optically in an
anisotropic photorefractive medium, the evolution of a topologically unstable single-charge
vortex beam results in the generation of an additional pair of vortices. This is in contrast to
the above-described vortex charge flipping and vortex transmutations of a single phase dislo-
cation in perfectly symmetric periodic potentials. Such a drastic difference can be explained
by anisotropy of the nonlinear medium such as the anisotropy of an optical lattice induced
in a photorefractive crystal. We can conclude that the multi-vortex configuration is a generic
pattern towards which the topologically unstable vortices evolve, since the perturbations and
asymmetries of the lattice are unavoidable in real experiments.

3. Experimental results

3.1. Experimental setup

To test experimentally the development of topological transformations of vortices in periodic
structures, we used the experimental setup depicted in Fig. 2. We induced a two-dimensional
(2D) optical lattice in a biased Strontium Barium Niobate (SBN) photorefractive crystal [30, 31]
by spatially modulating a partially coherent optical beam (488nm) created by a rotating diffuser
(top channel in Fig. 2). Due to the strong electro-optic anisotropy in the biased SBN crystal, the
ordinary polarized lattice beams will propagate nearly stationary along the 10mm long crystal,
forming a fixed periodic potential (fixed lattice) for any extraordinary-polarized probe beam
(see inset in Fig. 2). In addition, 2D periodic potentials can be induced by the self-trapped
extraordinary polarized periodic wave [31, 32, 33]. In the latter case, the nonlinear lattice can
interact with the probe beams via cross-phase modulation [34, 35, 36]. As a result, the lattice
wave deforms locally, creating a bound state with the probe beam, and we refer to these types
of potentials as flexible lattices.

The 2D periodic pattern is oriented at 45◦ with respect to the c-axis of the crystal in order
to achieve an identical refractive-index modulation along the two principle axes of the lattice.
This choice of the lattice orientation allows to minimize the influence of anisotropy [32, 33].
However, the induced periodic refractive index modulation is essentially different from the
isotropic approximation. Strictly speaking, the refractive index lattice has only one axis of re-
flection symmetry (perpendicular to the c-axis of the crystal). Furthermore, the nonlocality and
saturation of photorefractive response significantly influence the resulting lattice profile. Thus,
it is important to take into account these complications when model our system theoretically.
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Fig. 2. Experimental setup: λ/2 - half-wave plate, PBS - polarising beam splitter, L - lenses,
D - rotating diffuser, AM - amplitude mask of square array, FF - Fourier filtering of the four
first diffraction orders, M - mirrors, BS - beam splitter, BSC - beam splitter cube, F - neutral
density filter, SBN - Strontium Barium Niobate photorefractive crystal, and CCD - camera.
Top left inset: schematic of the linear polarisation state of the lattice wave, forming its
flexible and fixed components.

As a probe beam, we use an extraordinary polarized single-charge vortex created by a
computer-generated hologram (vortex mask - bottom channel in Fig. 2). The generated vor-
tex is passed through a spatial filter in order to clean up its mode structure and substantially
focused onto the front face of the crystal by lens (f=175mm). Due to its extraordinary polari-
sation, the vortex beam will experience strong self-focusing due to the photorefractive nonlin-
earity while propagating in the periodic potential induced by the lattice. In order to monitor the
phase structure of the vortex transmitted through the lattice we interfered the vortex output with
an inclined broad reference beam (middle channel in Fig. 2) and obtained the corresponding
interferograms. The obtained interferograms allow to detect the position of the vortex phase
dislocation by the presence of a fork in the interference lines [see, e.g., Fig. 3(a, bottom)]. In
our experimental arrangement, an up-fork corresponds to a topological charge equal to +1.

We explored two different excitation conditions: (i) when the vortex beam is launched into
off-site and (ii) on-site locations in the lattice. For both cases, we study the vortex dynamics in
the fixed and flexible lattices by tuning the lattice polarization from ordinary to extraordinary
(inset of Fig. 2), including several intermediate cases, referred below as mixed lattices. We
summarize all experimental data by several representative examples: an off-site vortex on a
fixed lattice (Fig. 3); on-site vortex interacting with a mixed lattice (Fig. 4); and off-site vortex
on a flexible lattice.

3.2. Vortex charge flipping in fixed lattices

We begin with the case of an off-site vortex propagating on a fixed lattice induced when the
crystal is biased with a DC external electric field of 4kV/cm. The profile of the input vortex is
shown in Fig. 3(a, top) as superimposed on a lattice with a period of ∼ 36 μm. The input vortex
phase is shown in the bottom image, where the charge +1 of the vortex is identified by the
up-fork of the interference lines. At low powers the vortex beam is trapped by the lattice and
its intensity is located at the four spots placed on the lattice sites [see Fig. 3(b, top)] connected
by a spiral phase front similar to that of the original vortex [see Fig. 3(b, bottom)]. As the
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Fig. 3. Topological transformation of an off-site vortex in a fixed lattice (induced by an
ordinary polarized lattice wave). Upper row – intensity distribution; bottom row – phase
interferogram. (a) Input vortex in the lattice; (b) linear diffraction; (c) nonlinear output
with a transformed phase structure. (d) corresponding numerical simulations confirming the
nonlinear phase transformation [movie FixedOFF.avi, 6.2MB]. Arrows and circles indicate
the position of the vortex dislocations. The total charge of the beam in (c) is −1, i.e., it is
inverted with respect to the initial charge +1.

vortex intensity is increased to ∼ 10% of the lattice intensity, the anisotropic photorefractive
nonlinearity leads to the transformation of the vortex and creation of two additional vortices
with the charges opposite to the original charge and positioned inside the beam [see Fig. 3(c,
bottom)]. Although we also notice that additional dislocations appear on the tails of a vortex
beam outside its main four-lobe ring, we stress the fact that the direction of energy flow along
this ring is determined by the algebraic sum of charges of the inner dislocations. Using this
definition, we find that total topological charge of the beam is equal to −1, which is opposite to
the original vortex charge. We note that during this charge inversion the intensity distribution
of the vortex remains largely intact [see Fig. 3(b,c top)].

Numerical simulations carried out in the framework of the photorefractive model [37] con-
firm our experimental observations [see Fig. 3(d)], in particular, the appearance of two addi-
tional vortices with the charges opposite to the central one. This is drastically different to the
predictions made for model with isotropic nonlinearity [14, 15], namely the charge-flipping
through unfolding, such as that observed in Fig. 1(c). Comparing our numerical results for both
models, we conclude that anisotropy of the induced potential can be a key factor which leads
to vortex nucleation even for the lowest order vortex beam. This dynamics is visualized in the
movie FixedOFF.avi (6.2MB), where we also present the dynamics of the angular momentum
of the vortex beam. We notice that the total charge of the beam in Figs. 3(c,d) is inverted with
respect to its initial value; we observe the corresponding change of the sign of the angular
momentum (direction of the energy flow) in numerical simulations.

While the experimental results can only give us an indication for the presence of the nonzero
angular momentum of the beam by monitoring its total charge, the numerical simulation allows
for examining the exact dynamics of the beam angular momentum. Note the white lines in the
right panel of the movie (phase distribution), these are the contour plot on the low intensity
level (in addition to the full contour plot of intensity on the left panel), and they help an eye to
identify the dislocations positions inside the four-lobe ring.
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Fig. 4. Topological transformations of an on-site vortex in a mixed lattice with 3% nonlinear
component. Upper row – intensity distribution; bottom row – phase interferograms. (a)
Input vortex; (b) linear diffraction; (c) nonlinear output with a transformed phase structure;
(d) corresponding numerical simulations [movie Mixed3ON.avi (2MB), see the description
in the text]. Arrows and circles indicate the position of the vortex dislocations. Dotted oval
indicates two closely positioned vortices with the opposite charges. The total beam charge
in (c) is +1, i.e., it is preserved with respect to the initial charge +1.

The stability of discrete vortex solitons are significantly different for the vortices centered at
the lattice site (on-site) or between neighboring sites (off-site) [11]. Nevertheless, we observe
similar transformations of phase structure in both cases, see movie FixedON.avi (6.5MB) for
the vortex beam initially positioned on-site. In this case, the charge transformation occurs at
even longer propagation distances, since the four vortex spots are placed further apart and the
energy flow between them is greatly reduced. Similar to the previous case of the off-site vortex
beam, the angular momentum decays with the beam propagation. This scenario confirms well
the previous theoretical predictions made for an isotropic saturable model [14], namely the
initial stage of the vortex charge-flipping dynamics. We conclude that, despite the differences
between on- and off-site vortices, their topological transformation is a generic effect.

3.3. Control of the vortex angular momentum

An important question related to the observed topological transformations and angular momen-
tum inversion of vortices in periodic potentials is the possibility of controlling such process.
A solution to this problem can open up new opportunities for controlled switching between
soliton states with different values of the angular momentum. Here we demonstrate that the
topological transformations of vortices, as well as their angular momentum dynamics, can be
altered by controlling the so-called elasticity of the lattice. As we discussed above, by tilting the
lattice polarization we generate a lattice composed of two orthogonally-polarized components
(mixed lattice). By varying the angle of the linear polarization of the incident lattice field with
respect to the c-axis of the crystal (inset in Fig. 2) we can change the relative amplitudes of the
two components of the beam. Thus, we can control the degree of flexibility of the photonic lat-
tice, i.e., the amplitude of the extraordinary polarized wave (a flexible component) with respect
to the ordinary polarized wave (a fixed component). The principal difference with the previous
case of a fixed lattice is that the flexible component propagates in nonlinear regime and inter-
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Fig. 5. Topological transformation of the off-site vortex on a square flexible lattice. Tra-
jectories of vortices are shown vs. lattice depth (relaxation time t after blocking the lattice
beam at t = 0). The red lines (gray projections) correspond to vortex dislocation of charge
+1, while the blue lines (black projections) correspond to charge −1.

acts via cross-phase modulation with the signal beam [34], vortex in our case. The incoherent
coupling allows for an exchange of angular momenta between interacting components [38], i.e.
between vortex beam and flexible part of the lattice. This is the basic physical mechanism we
use to study a possibility for the controlled inversion of the angular momentum for both on-site
and off-site vortex beams.

A representative example of this process is shown in Fig. 4, where an on-site vortex interacts
with a mixed lattice with only 3% of nonlinear (extraordinary polarized) component, i.e., the
polarization direction is tilted by ∼ 10◦ with respect to the crystal c-axis. The crystal is biased
with a DC electric field of 2.8kV/cm. As follows from Fig. 4(c), the resulting structure contains
three (or more) single-charge vortices similar to the case discussed above. However, the total
topological charge at the output in Fig. 4(c) is +1 and, thus, in contrast to the case of the
vortex propagating in a fixed lattice, the topological transformation is not accompanied by the
vortex charge flipping. The performed numerical simulations confirm qualitatively the observed
dynamics of the vortex, as shown in Fig. 4(d). An important finding [see Fig. 4(d), and the movie
Mixed3ON.avi (2MB)] is that in this case the angular momentum of the vortex beam decays at
a different rate than that in the previous case of a fixed lattice. The frames of the movie now
contain the intensities of the flexible part of the lattice (left) and vortex (middle) waves, the
phase portrait of a vortex (right), and the dynamics of angular momenta of two components
(bottom), as well as their total angular momentum (black dashed line). The straightforward
conclusion from this example is that even a small nonlinear component of the lattice can result
in a dramatic change in the dynamics of the phase front of the vortex beam, thus providing an
effective tool for a control of its angular momentum.

The suppression of the angular momentum decay becomes stronger for the lattices with larger
flexible component, and the example for the off-site vortex beam is demonstrated in the movie
Mixed50OFF.avi (4.9MB), where the ratio of the intensities of fixed and flexible parts of the
lattice is unity. Indeed, our experimental studies showed that if we gradually change the angle
of the input polarization of a mixed lattice, we also gradually modify the dynamics of the
transformation.
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Fig. 6. Dynamics of the angular momentum for an off-site vortex interacting with a flexible
lattice (black), fixed lattice (blue), and mixed (50/50%) photonic lattice (red). The black
line is terminated when the flexible lattice loses its symmetry during interaction.

To get a deeper insight into the dynamics of the topological vortex transformations in flexible
lattices, we study experimentally the limiting case of “fully elastic” (e-polarized) lattice. In this
case the angular momentum can be transferred between the probe vortex beam and the lattice
more efficiently, however, the deformation of the lattice is also much more pronounced. We
monitor the phase structure of an off-site vortex as it changes with the decrease of the lattice
depth. Experimentally, this is realized by simply blocking the lattice and monitoring the output
transverse phase structure in time. Due to a slow nonlinear response of the photorefractive
crystal, the process of an adiabatic decrease of the lattice depth takes several seconds, and thus
facilitates the experimental observations. In this experiment the crystal is biased with an electric
field of 2.4kV/cm and the maximum intensity of the vortex is 20% of the lattice intensity.

From the obtained output phase interferogram, we measure the vortex trajectories in the
transverse output plane vs. the lattice depth (relaxation time) [see Fig. 5]. Such measurements
are somewhat analogous to the monitoring of the backward propagation dynamics inside the
crystal, since the nonlinear coefficient (depth of the lattice) can be used to scale the propagation
coordinate [32]. From Fig. 5 one can see that the dynamics includes two successive births of
vortex pairs and one vortex annihilation. As a result, the output structure carries a positive unit
total topological charge, similar to the input beam. Similar results have been obtained in numer-
ical simulations [movie FlexibleOFF.avi (4.9MB)], where the angular momentum returns to its
initial positive value at the output. The interaction of the on-site vortex beam with a flexible lat-
tice [shown in the movie FlexibleON.avi (10MB)], is much slower because the four vortex sites
are separated far apart. Nevertheless, the value of the beam angular momentum remains positive
at the output. We conclude that the flexibility of the lattice can influence significantly the vortex
dynamics and even suppress the vortex charge flipping, and thus it provides a mechanism of an
active control over the evolution of vortex beams in periodic photonic lattices.

4. Discussions

To describe quantitatively the process of the angular momentum control in periodic potentials,
we compare the dynamics of the angular momentum for the three different cases of the fixed,
flexible, and mixed photonic lattice. Figure 6 shows the evolution of the vortex angular momen-
tum vs. the propagation distance inside the crystal. As is seen in Fig. 6, the angular momentum
changes its sign in a fixed lattice. For flexible lattices, the vortex angular momentum remains
always positive, as the lattice deforms due to the interaction with the vortex [35]. In this case,
the vortex propagation distance is shorter due to an instability of the periodic lattice at larger
propagation distances. With a mixed lattice, the angular momentum can change between two
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limiting cases. In particular, the switching points between positive and negative values of an-
gular momentum can be easily moved even with a very small component of the flexible lattice.
This is exactly the case in our experiments since the angular momentum flipping occurs at ap-
proximately 10mm of the total propagation distance inside the crystal. In experiment, a small
portion of the flexible lattice can change the total charge from negative to positive. Near the
inversion point, the beam angular momentum is strongly reduced and, therefore, it should be
expected that the vortices will be situated further away from the beam center, similar to our
experiments. If no noise or anisotropy is present in the system, the point of the spin-flip would
correspond to the vortex unfolding into a line dislocation [14].

A simple physics of these processes [see Fig. 6] can be qualitatively understood by drawing
a mechanical analogue of the problem. The vortex is trying to twist its intensity distribution
inside the periodic potential due to its circular energy flow. In the potential induced by the
lattice, this process will result in multiple reflections of the energy flow from the potential,
causing the vortex to wobble from the left to the right and back and thus changing the sign of
its angular momentum. If the lattice, however, possesses elasticity, it will deform following the
twist induced by the vortex, and thus it may balance the vortex rotational force. In this process
some internal vibrations can be excited, however, the angular momentum of the vortex will
remain positive.

5. Concluding remarks

We have demonstrated, for the first time to our knowledge, topological transformations of vor-
tex beams in nonlinear periodic photonic lattices. Alongside with nonlinear self-action effects,
we have identified three major physical processes which govern the vortex topological trans-
formations. The first process is a reshaping of the vortex intensity into four sites, experiencing
twist, which is more pronounced for flexible lattices [35]. The second process is a topologi-
cal transformation of the vortex phase front, such as the charge flipping in isotropic lattices or
splitting of an initial phase dislocation into several vortices demonstrated above for anisotropic
photorefractive media. In the latter case, the net phase twist around the vortex ring is deter-
mined by the total topological charge. The third process is the evolution of the beam angular
momentum, in particular, a strong exchange of partial momenta between the vortex beam and
a flexible photonic lattice. These three processes are in mutual relation, e.g. a change of the
total vortex charge leads to a reverse energy flow along the vortex ring and thus to a change of
the vortex angular momentum. From the other hand, the exchange of the angular momentum
between the vortex and a flexible lattice, as well as the twist deformations, both influence the
vortex topological transformation.

In addition, we have suggested a novel way to control the energy flow in the vortex beam
by controlling its interaction with a flexible periodic photonic lattice, and thus providing an
effective tool for the angular momentum control. Such a control can be established by a rel-
atively simple technique by changing the polarization direction of the lattice wave relative to
the symmetry axis of a photorefractive crystal. The concept of mixed photonic lattices can be
thus applied to a more general class of physical problems for controlling the light propagation
in nonlinear photonic structures.
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