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Observation of topological transport quantization
by dissipation in fast Thouless pumps
Zlata Fedorova 1✉, Haixin Qiu 1✉, Stefan Linden 1✉ & Johann Kroha 1✉

Quantized dynamics is essential for natural processes and technological applications alike.

The work of Thouless on quantized particle transport in slowly varying potentials (Thouless

pumping) has played a key role in understanding that such quantization may be caused not

only by discrete eigenvalues of a quantum system, but also by invariants associated with the

nontrivial topology of the Hamiltonian parameter space. Since its discovery, quantized

Thouless pumping has been believed to be restricted to the limit of slow driving, a funda-

mental obstacle for experimental applications. Here, we introduce non-Hermitian Floquet

engineering as a new concept to overcome this problem. We predict that a topological band

structure and associated quantized transport can be restored at driving frequencies as large

as the system’s band gap. The underlying mechanism is suppression of non-adiabatic tran-

sitions by tailored, time-periodic dissipation. We confirm the theoretical predictions by

experiments on topological transport quantization in plasmonic waveguide arrays.
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T
he standard realization for Thouless pumping1,2 is the
time-periodic version of the Rice-Mele (RM) model3,
which describes a dimerized tight-binding chain whose

system parameters change cyclically along a closed loop in
Hamiltonian parameter space. In the adiabatic regime and for a
completely filled band, the net particle transfer per cycle is an
integer given alone by the Berry phase associated with the loop or
the Chern number of the band, i.e., a topological invariant robust
against topology-preserving deformations of the parametric loop.
Such nontrivial topology of the Hamiltonian parameter space or
band structure was recognized as the overarching concept behind
phenomena apparently as diverse as the integer quantum Hall
effect4, the quantum spin Hall effect5, topological insulators in
solid state6 and photonics7,8, quantum spin9 or charge pumping1,
Dirac or Weyl semimetals10, and the electric polarization of
crystalline solids11. Recently, topological or Thouless pumping
was experimentally demonstrated using ultracold atoms in
dynamically controlled optical lattices12,13 or using waveguide
arrays14.

In realistic systems, however, Thouless pumping generically
faces two difficulties. First, at nonzero driving frequencies, una-
voidable in experiments, the system becomes topologically trivial.
The reason is that the nonzero driving frequency defines a
Floquet-Bloch Brillouin zone (FBBZ) and the dimension of the
band structure is increased by one compared to the adiabatic case.
The coupling between forward-propagating and backward-
propagating states then opens a gap15–17, so that the Chern
number, or winding number around the FBBZ, of the effectively
two-dimensional band becomes trivial, and the particle transport
deviates from perfect quantization. Second, realistic experimental
systems are to some extent open and subject to dissipation, so
that the quantum mechanical time evolution of single-particle
states deviates from unitarity, which may prevent the closing of
the cycle in Hamiltonian parameter space. This motivates the
interest in non-Hermitian (NH) Hamiltonians. Non-Hermiticity
can have profound influence on the system dynamics. In addition
to ubiquitous exponential decay, it may cause such peculiar
phenomena as dissipation-induced localization in the Caldeira-
Legget model18, unidirectional robust transport19, asymmetric
transmission or reflection20,21, or NH topological edge states
associated with exceptional points22–24. Non-Hermiticity has
been utilized to probe topological quantities25,26. Another fasci-
nating example is the so-called non-Hermitian shortcut to adia-
baticity27–29, which describes faster evolution of a wavefunction
in an NH system than in its Hermitian counterpart.

Here, we introduce time-periodic modulation of dissipation as
a new concept to restore topological transport quantization in fast
Thouless pumps. Although in many-body systems dissipation
would be induced by interactions or particle loss, the plasmon

polariton dynamics in our experiments is mathematically iden-
tical to that of a linear, dissipative, periodically driven Schrö-
dinger equation. To analyze systems of this kind theoretically, we
utilize the Floquet theory for non-Hermitian, time-periodic sys-
tems. Using this formalism, we demonstrate for a driven RM
model that time-periodic dissipation can give rise to a band
structure in the two-dimensional FBBZ with a nontrivial Chern
number. Hence, the mean displacement of a wave packet per
cycle is quantized even when the driving frequency is fast, i.e., far
from adiabaticity. In a real-space picture, this topologically
quantized transport comes about, because the time-periodic loss
selectively suppresses the hybridization of a right(left)-moving
mode with the counterpropagating one. The theoretical predic-
tions are confirmed by experiments on arrays of coupled
dielectric-loaded surface plasmon-polariton waveguides
(DLSPPW)30. DLSPPWs are uniquely suited model systems for
realizing topological transport with dissipation: The propagation
of surface plasmon polaritons mathematically realizes the single-
particle Schrödinger equation on a one-dimensional tight-binding
lattice30,31, where the waveguide axis resembles time, and the
system parameters, including losses, can easily be modulated
along the waveguide axis. Moreover, complete band filling is
achieved via Fourier transform to k-space by pumping a single
site (waveguide) of the tight-binding lattice. This is essential for
probing the band topology which otherwise is possible only in
fermionic systems at low temperature.

Results
Model. We consider a periodically driven RM model17,32 with
additional onsite, periodic dissipation (see Fig. 1),
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where j runs over all unit cells, ĤRMðtÞ is the Hamiltonian of the

periodically driven, nondissipative RM model and Γ̂ðtÞ describes

the losses. â
y
j and b̂

y

j (âj and b̂j) are creation (annihilation)

operators in unit cell j on sublattice A and B, respectively. The
inter-/intra-cell hopping amplitudes, J1/2(t) and the onsite
potentials on the two sublattices, ua(t) and ub(t), are all real-
valued, periodic functions of time with frequency Ω= 2π/T
according to
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Fig. 1 Non-Hermitian driven Rice-Mele model. a Schematic of the periodically driven, NH RM lattice for four equidistant times during a pumping cycle.

Lossy sites are depicted by red color, large (small) hopping amplitudes J1,2 by short (long) distances between sites. b Pumping cycle in the parameter space

(J1− J2, ua− ub, γa− γb).
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uaðtÞ ¼ �u0 cos ðΩt þ φÞ; ubðtÞ ¼ uaðt � T=2Þ;

J1ðtÞ ¼ J0e
�λð1�sinΩtÞ; J2ðtÞ ¼ J1ðt � T=2Þ;

with u0, J0, λ > 0, and φ= 0 (unless otherwise specified). The
choice of the hopping amplitudes is motivated by the exponential
dependence of the wave-function overlaps on the spacing λð1�
sinΩtÞ between neighboring sites, as in our experiment below. In
our NH modification of the RM model, the time-periodic decay
rates γa(t) ≥ 0 and γb(t) ≥ 0 are nonzero once the onsite potential
exceeds the mean value [ua(t)+ ub(t)]/2= 0. This resembles, for
instance, a realistic situation where particles in a trapping
potential are lost from the trap once the trapping potential is not
sufficiently deep. Thus, we choose

γaðtÞ ¼ �γ0 ΘðuaðtÞÞ cos ðΩt þ φÞ; γbðtÞ ¼ γaðt � T=2Þ;

where Θ(x) is the Heaviside step function.

Non-Hermitian Floquet analysis. In the following calculations
we use the non-Hermitian Floquet formalism described in the
“Methods” section below. We assume u0= J0= 1, λ= 1.75 and all
energies are given in units of J0.

In view of the experimental setup discussed below, we also
consider the time evolution of states ΨAðtÞj i and ΨBðtÞj i which
have been initialized (“injected”) at time t= 0 with nonzero
amplitude only at a single site of the A or B sublattice,
respectively. For the parametric cycle configuration shown in
Fig. 1b the chosen initial time moment leads to an asymmetric
amplitude distribution of the counter-propagating Floquet states
with respect to the two sublattices. As seen in Fig. 2, such initial
conditions populate, by Fourier expansion, almost homoge-
neously an entire right-moving or left-moving band. Thus, it is a
way to create the topologically important complete band filling,
which would otherwise be possible only in fermionic systems. In
the Hermitian case (γ0= 0), we see from Fig. 2a that the
counterpropagating bands hybridize, accompanied by avoided
crossings and gaps with width G opening at the Floquet Brillouin
zone boundaries, so that the bands become topologically trivial.
As a result, the charge pumped per period deviates from the
quantized value. This marks the generic breakdown of quantized
Thouless pumping at any finite pumping frequncy Ω, as also
noted in15,17. Note that computing the gap size G, as visible in
Fig. 2a, involves diagonalization of the entire Floquet Hamilto-
nian matrix. In leading order perturbation theory, G would be
given by the Fourier amplitude of the periodic drive, i.e., for the
first FBBZ by J0, which strongly differs from the exact value.

We now consider the NH RM model driven with γ0= 0.4J0
(see Fig. 2b–e). Adding losses leads to several profound effects.
First, the quasienergies become complex, whereby the right-
moving and left-moving bands acquire considerably different
dampings shown in Fig. 2e and seen as different broadenings of
the spectral band occupation in Fig. 2b, c. Second, the two inputs
are no longer equivalent in respect to the relative populations of
the two bands. In particular, for the input A we almost exclusively
excite right-moving states, while for the input B in addition to the
lossy left-moving states, we partially populate right moving-states.
Third, and most importantly, the gap G closes and, hence, the
bands wind around the entire 2D FBBZ as illustrated in Fig. 2d.
In the “Methods” section it is shown that this restores the
quantized transport (see Eq. (17)). Note, that these effects only
occur once γ0 is larger than some threshold value. In order to
study this threshold behaviour we numerically evaluated the gap
size G at various driving frequencies and loss amplitudes (see
Fig. 2f). In the Hermitian case (γ0= 0) the gap size has a complex
oscillatory behaviour33 as a function of the driving frequency.

Our analysis shows that a larger gap size requires stronger
damping in order to close it. For instance, at the previously
analyzed driving frequency Ω= 1.1J0 the loss amplitude γ0 should
be larger than 0.3J0 to close the gap.

Next, we investigate the position of the center of mass (CoM)
of the wave-packet, hxiðtÞ ¼ ΨðtÞh jx ΨðtÞj i= ΨðtÞjΨðtÞh i, after up
to 5 completed driving cycles at various losses and fixed driving
frequency Ω= 1.1J0 for different initial conditions input A or B
(see Fig. 3a, b). In the adiabatic case the mean displacement is
almost +1 (−1) unit cell per cycle for delta-like excitations on
sublattice A (B). Small deviations from unity result from slight
inhomogeneity of the band population. At the driving
frequency Ω= 1.1J0 the displacement per cycle is considerably
smaller in the Hermitian case (γ= 0) indicating deviation from
the quantized transport. With increasing losses this deviation
becomes smaller and smaller for input A and for γ ≥ 0.3 the
displacement can not be distinguished from the adiabatic case.
Surprisingly, for the input B we observe that the CoM position
switches direction with time. This is a signature of the chirality
of the Floquet bands and is due to the fact that the propagation
of even poorly populated low-loss states in positive x-direction
starts to dominate after the first few periods, while the states
propagating in negative x-direction are quickly damped due to
the phase relation of the periodic losses with respect to the
hopping amplitude.

Experiments. In order to test our theoretical predictions we
performed experiments based on DLSPPWs. The experimental
realization of the model described by Eqs. (1) and (2) are based
on the mathematical equivalence between the time-dependent
Schrödinger equation in tight-binding approximation and the
paraxial Helmholtz equation which describes propagation of light
in coupled waveguide arrays30,31. Figure 4 shows a scheme of a
DLSPPW array (a) as well as a scanning electron micrograph, (b)
and an AFM scan, (c) of a typical sample. The sample fabrication
process and the typical geometrical parameters of the arrays are
described in the “Methods” section. The waveguide array repre-
sents a dimerized 1D lattice, where each unit cell contains two
waveguides, A and B. Here, the propagation direction z plays the
role of time. Periodic modulation of the effective hopping
amplitudes is reached by sinusoidally varying the spacing between
the adjacent waveguides d1,2(z) while the on-site potential var-
iation is realized by changing the waveguides’ cross-sections
(heights ha,b(z) and widths wa,b(z)). In addition, the variation of
the waveguides’ cross-section affects the instantaneous losses γa,
b(z). When the cross-section decreases, the confinement of the
guided mode weakens. As a result, the modes can couple to free-
propagating surface plasmon polaritons (SPPs) and scatter out
from the array. We employ this effect to introduce time-
dependent losses γa,b(z).

We first consider a pumping cycle that encloses the critical
point. For this purpose we choose the geometrical parameters of
the DLSPPW array such that u0= 1.1J0 and Ω= 1.45J0. By
comparing the real-space intensity distribution to numerical
calculations we estimate the loss amplitude to be γ0= 0.8J0. The
real-space SPP intensity distribution I(x, z) recorded by
leakage radiation microscopy (see “Methods” section) for single
site excitation at site A is shown in Fig. 5a. According to the
aforementioned quantum optical analogy this corresponds to
the probability density I(x, t)= ∣Ψ(x, t)∣2. We observe for all z a
strongly localized wave packet, whose CoM is transported in
positive x-direction in a quantized manner, i.e., by one unit cell
per driving period (see dotted lines), even though the driving
frequency Ω is larger than the modulation amplitudes of all
relevant parameters.
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The corresponding momentum resolved spectrum I(kx, kz) is
obtained by Fourier-space leakage radiation microscopy34 and is
shown in Fig. 5b. This intensity distribution is analogous to the
spectral energy density presented in Fig. 2. We note that this
technique provides the full decomposition in momentum
components in the higher Brillouin zones30. The main feature
of the spectrum is a continuous band with average slope a0/T. The
absence of gaps in the band indicates that the band winds around
the 2D FBBZ {−Ω/2 ≤ kz <Ω/2;−π/a0 ≤ kx < π/a0}. This is a
hallmark of a quantized pumping and confirms our theoretical
predictions (see Fig. 2b).

As a reference measurement, we consider the parametric cycle,
where all parameters are changing with the same amplitudes as in
the previous case but the phase is chosen as φ= π/2. Under these
conditions the Hamiltonian is symmetric under space and time
inversion. In Fig. 5c we present the real-space SPP intensity
distribution for this parametric cycle. In contrast to the previous
case the wave packet is spreading and we do not observe CoM
transport in x-direction. The corresponding momentum resolved
spectrum shows a complicated band structure with multiple band
gaps (see Fig. 5d). Obviously, none of the bands winds around the
2D FBBZ.

Directional transport of light in periodically curved waveguides
can be in principle also achieved by using a simple combination
of directional couplers with constant effective mode index, i.e.,
constant waveguide cross-section35,36. However, due to periodic
exchange of power between two coupled waveguides this effect
has a resonant character and the period of modulation plays in
this case a crucial role. In order to demonstrate that the
directional transport in our system has a different origin, we
repeat the experiment shown in Fig. 5a for three different driving
frequencies Ω (0.7J0, 1.1J0, 1.45J0). Moreover we prepare two sets

of samples, one with modulation of the waveguide cross-section
as before (u0= 1.1J0, γ0= 0.8J0) and the second with constant
cross-section (u0= 0, γ0= 0). The measured real space intensity
distributions are depicted in Fig. 6a. We extract from this data the
CoM position after up to 4 complete periods as displayed in
Fig. 6b. In the case with cross-section modulation (red markers)
the CoM is shifted by one unit cell per period T at all chosen
driving frequencies. We note that the somewhat lower than unit
slope of the CoM plots in Figs. 6b, 7b during the first pumping
cycle is an artefact which arises from non-ideal excitation
conditions, such as weak excitation of the neighbouring
waveguides. The deviations at large distance are statistical and
result from increasing measurement errors due to camera
noise and decaying signal intensity. In Fourier space changing
the modulation frequency influences primarily the width of the
Floquet BZ: the lower is the frequency, the smaller is the distance
between the neighbouring bands and the smaller is the tilt of
these bands which reflects the wavepacket group velocity in
absolute values (see Supplementary Fig. 1).

Without cross-section modulation (blue markers in Fig. 6b) the
CoM displacement per period at these frequencies is much
smaller than in the quantized case and depends on the driving
frequency. These measurements confirm that the observed
directional transport in our system is not a resonant directional
coupler effect.

Up to now we only considered experiments with excitation at
sub-lattice A (low loss input). The numerical calculations predict
that the transport in the opposite direction for single site
excitation at sub-lattice B is strongly suppressed by the time-
periodic losses. To test this, we perform additional experiments to
study how the transport properties depend on the initial
conditions for different strengths of cross-section modulation.
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In doing so we tune the amplitude of the on-site potential u0 and
simultaneously the loss amplitude γ0. Fig. 7a shows the real space
intensity distributions for the excitation at the waveguides A (left
column) and B (right column) for three different cross-section
modulations and the driving frequency Ω= 1.45J0. The CoM
displacement derived from this data is depicted in Fig. 7(b)
(waveguide A: circles, waveguide B: triangles). In case of small
modulation strength (u0= 0.3J0, γ0= 0.1J0, red markers) SPPs
excited at site A and B are transported in +x and −x directions,
respectively. However, for both inputs the mean displacement of
the CoM is less than 1 unit cell per period. For the modulation
strength (u0= 1.1J0, γ0= 0.8J0, blue markers) input A shows
quantized displacement of the CoM while the sign of the mean
displacement for input B switches from + to −. This effect
becomes even stronger at higher modulation strength u0=
1.5J0, γ0= 1.1J0 (green)—as predicted by theory (compare with
Fig. 3a–b). In Fourier space increasing the modulation strength
results in a strong band broadening caused by a growing damping

rate. This effect is more pronounced for the input B (see
Supplementary Fig. 2).

Discussion
In this work, we introduced the concept of time-periodic dis-
sipation in Floquet topological systems. The theoretical analysis
required the generalization of Floquet theory to quantum
mechanics with non-Hermitian, time periodic Hamiltonians.
Such quantum systems can be simulated experimentally in
dielectric-loaded surface-plasmon polariton waveguide
(DLSPPW) arrays. Specifically, we considered a non-Hermitian
extension of the periodically driven Rice-Mele model. While fast
driving of dissipationless systems always destructs the quantiza-
tion of Thouless pumping, we predicted theoretically that time-
periodic and space-periodic dissipation can lead to the restoration
of quantized transport for nonadiabatic driving conditions. This
finding results from the fact that periodic loss can modify the
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Floquet-Bloch band structure in such a way that the band gaps
present in the non-lossy Floquet-driven system close. In this way,
a chiral Floquet band is established that winds around the two-
dimensional Floquet-Bloch Brillouin zone, and which thus carries
quantized transport given by the Chern number. We emphasize
that this is not merely due to a dissipation-induced band
smearing, but a true renormalization of the real part of the energy
eigenvalues, induced by the nonlinearity of the eigenvalue equa-
tion. In a real-space picture, the phenomenon of gap closing can
be understood as selective suppression of one of the counter-
propagating states. In order to examine the theoretical predic-
tions, we used evanescently coupled plasmonic waveguide arrays
to implement the model. Combining real-space and Fourier-space
imaging, we demonstrated fast, quantized transport in the
waveguide arrays. In real space, the center of mass of the excited
surface-plasmon polariton wave packet was shifted by one unit
cell per driving cycle. In Fourier space quantized pumping is seen
as a chiral Floquet band that winds around the quasienergy
Brillouin zone. Additional experiments showed that, first, unlike
in a simple combination of directional couplers, the SPP transport
in our system is independent on the driving frequency. Second,
the transport in the opposite direction is strongly suppressed. Our
experimental results agree well with the theoretical predictions
based on Floquet theory.

Our findings may open a new line of research using dissipative
Floquet engineering to control periodically driven quantum sys-
tems. Specifically, it will be interesting to see whether in a con-
serving system time-periodic imaginary parts in an effective
single-particle equation of motion can be induced not only by
losses but rather by interactions, and if they can be controlled so

as to establish topologically nontrivial, effective band structures.
The present plasmonic waveguide setup constitutes a model for
man-body systems with particle loss to an external bath. The
latter are often described by the Lindblad formalism, if the bath is
Markovian. The topological structure of a periodically driven
system, however, becomes visible in Floquet space only. In a
many-body description, this would call for a combination of the
Floquet and the Lindblad techniques, which is a combination is a
fundamental, unresolved problem37. Note added in proof: After
submission of the final manuscript, a study on a very similar
subject appeared38.

Methods
Non-Hermitian Floquet theory. In momentum space the Hamiltonian of the
driven Rice-Mele model with periodic dissipation reads,

ĤkðtÞ ¼ ðJ1 þ J2Þ cos
ka0
2

σx þ ðJ1 � J2Þ sin
ka0
2

σy

þðua � iγaÞð1þ σzÞ=2þ ðub � iγbÞð1� σzÞ=2;
ð3Þ

where the coefficients have the above time dependence, σx, σy, σz are the Pauli
matrices acting in (A, B) sublattice space, and k and a0 denote momentum and the
lattice constant, respectively.

We now develop the Floquet formalism for non-Hermitian, periodic

Hamiltonians. Due to time periodicity, the eigenstates of Ĥk obey the Floquet
theorem39–41,

ΨkαðtÞj i ¼ e�iεkα t ϕkαðtÞ
�� �

; ð4Þ

where a Greek index α ∈ {1, 2} denotes the band quantum number originating

from the two sublattices, and ϕkαðtÞ
�� �

¼ ϕkαðt þ TÞ
�� �

are time-periodic states

which, by construction, obey the Floquet equation

HkðtÞ ϕkαðtÞ
�� �

¼ εkα ϕkαðtÞ
�� �

; ð5Þ

with ĤkðtÞ :¼ ½ĤkðtÞ � i∂t �. The non-Hermiticity is accounted for by complex
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Fig. 6 Influence of driving frequency on the transport. a Real-space SPP intensity distributions for different driving frequencies and single-site excitation at

waveguide A. The left and right column correspond to arrays with cross-section modulation (u0= 1.1J0, γ0= 0.8) and without cross-section modulation

(u0= 0, γ0= 0), respectively. b The CoM position of the SPP intensity in dependence on propagation distance z calculated from the experimental results

shown in a. Note that the z-axis here is normalized to the period T. Red markers correspond to arrays with cross-section modulation and blue markers

correspond to no modulation. The black dashed line shows the anticipated adiabatic behaviour.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17510-z ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:3758 | https://doi.org/10.1038/s41467-020-17510-z | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


quasienergies εkα. Note that for nonlinear or interacting, dissipative systems the
Floquet theorem would generally not hold due to non-periodic, decaying density

terms in the Hamiltonian. Expanding the ϕkαðtÞ
�� �

in the basis of time-periodic

functions, ϕkαðtÞ
�� �

¼
P

ne
�inΩt junk;αi (Floquet representation), Eq. (5) takes the

form of a discrete matrix Floquet–Schrödinger equation,
X

l;γ

ðHkÞ
nl
βγ ulmk;γα ¼ εkα unmk;βα ; ð6Þ

where ðHkÞ
nl
βγ ¼ ½ðHkÞ

nl
βγ � nΩ δnlδβγ� is the time-independent Floquet

Hamiltonian and ðHkÞ
nl
βγ the representation of ĤkðtÞ in the basis of time-periodic

functions, fe�inΩt jn 2 Zg. Equation (6) determines the eigenvalues εkα and the
eigenvector components unmk;βα 2 C for the above Floquet expansion. Since there are

as many eigenvectors as the dimension of the Floquet Hamiltonian, these
components not only carry a RM sublattice index β and a Floquet expansion index
n, but also a band index α and a Floquet index m to label the different eigenvectors.
Thus, ðunmk;βαÞ is the matrix comprised of column eigenvectors of Eq. (6). Note that

Eq. (6) cannot be diagonalized separately in the sublattice space (βα) and in the
Floquet space (nm) because of the entanglement of both spaces.

In quantum mechanics, expectation values of an observable Â are calculated as

overlap matrix elements like Ψh jÂ Ψj i, which defines the standard scalar product in

Hilbert space. However, the eigenstates of a NH Hamiltonian Ĥk are generally not

simultaneously eigenstates of Ĥ
y

k
28,42. As a consequence, they do not constitute an

orthonormal basis with respect to the standard scalar product of quantum
mechanics. This hampers the expansion of a quantum state ΨðtÞj i, prepared with a
given initial condition Ψðt ¼ 0Þj i as in the experiments, in terms of Hamiltonian
eigenstates. For the sake of orthonormal basis expansions, a scalar product in

Hilbert space can be defined by constructing the dual (bra) states heΨkαj
corresponding to the ket states Ψkαj i in the following way. When umkα

�� �
is an

eigenstate of Eq. (6), it is clear that there exists an, in general different, adjoint state

eumk;α
���

E
such that

Hy
k eumk;α
���

E
¼ ε�kα eumk;α

���
E
: ð7Þ

The dual state is then obtained as eumk;α
D ��� ¼ eumk;α

���
Ey

, defining the scalar product as

eumk;αjunk0 ;β
D E

. Using Eq. (6) and the Hermitian conjugate of Eq. (7), it is easy to show

that the Floquet states fulfill the biorthonormality (and corresponding
completeness) relation (for non-degenerate εkα ≠ εk0β)

eumkαjunk0β
D E

¼
X

l;γ

ðeuml
k;αγÞ

�
ulnk0 ;γβ ¼ δkk0δαβδ

mn : ð8Þ

The retarded Green’s function to the NH Hamiltonian Hk is then the causal part of
the time evolution operator in Floquet representation,

Gnm
k;βαðt � t0Þ ¼ �iΘðt � t0Þ eunkβ

D ���e�iHkðt�t0Þ umkα
�� �

; ð9Þ

which yields the spectral representation

Gnm
k;βαðEÞ ¼

X

l;γ

ðeunlk;βγÞ
�
ulmk;γα

E � εγ � lΩþ i0
: ð10Þ

Note that the lossy dynamics (Im εkα ≤ 0) ensures the convergence of the Fourier
integral.

An arbitrary state ΨðtÞj i can now be expanded in the basis of Floquet states as

ΨðtÞj i ¼
X

k;α;n

Cn
kαe

�iðεkαþnΩÞt unk;α

���
E
; Cn

kα ¼ eunk;αjΨð0Þ
D E

; ð11Þ

where the time-independent expansion coefficients Cn
kα are calculated at the initial

time t= 0 using the biorthonormality relation (Eq. (8)) and, thus, incorportate the
initial conditions on ΨðtÞj i.

Using the expansion (Eq. (11)), physical expectation values for time-evolving
states can now be calculated in a straight-forward way and decay exponentially in
time due to the lossy dynamics of the system. For instance, the density of a driven-
dissipative Floquet state reads,

ΨkαðtÞjΨkαðtÞh i ¼ e�Γkα t ; ð12Þ

with the decay rate Γkα ¼ �2Imεkα > 0. In our DLSPPW experiments below it is
possible to directly measure the momentum-resolved and energy-resolved
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population density, i.e., intensity of the Fourier transform ΨkðEÞj i, which reads,

IðE; kÞ ¼ ΨkðEÞjΨkðEÞh i

¼
X

n;m;αβ

X

l;γ

Cl �
kβC

l
kα ðu

nl
kβγÞ

�
ulmk;γα

ðE � ε�kβ � lΩ� i0ÞðE � εkα � lΩþ i0Þ
:

ð13Þ

It is seen that, in general, this expression involves the mixing of the RM bands
(α, β), leading to a broad spectral distribution in the FBBZ. A distribution of this
type is shown in Fig. 2c. It is also possible to effectively populate only one RM band
α by populating at the initial time T= 0 one single site of the initially nonlossy
sublattice, see Fig. 2a and b. In this case, the α− β cross terms vanish, and Eq. (13)
simplifies to

IαðE; kÞ ¼ Ψn
kαðEÞjΨ

n
kαðEÞ

� �

¼
X

n;m;l;γ

Cl �
kαC

l
kα

ðunlkαγÞ
�
ulmk;γα

jE � εkα � lΩj2
:

ð14Þ

This is similar, albeit not identical, to the spectral density obtained from the
imaginary part of the Green’s function in Eq. (9). Thus, measurements of the
population density I(E, k) of a wave function initialized at t= 0 provide detailed
information about the stationary spectral function.

Dissipative transport quantization. For an adiabatic Thouless pump the number
of particles transported by one lattice constant per cycle is given by the Berry phase,
i.e., the Berry flux penetrating a closed loop in Hamiltonian parameter space.
Therefore, it is quantized and time plays no role1. For fast driving, considering the
states localized on single sites as approximate eigenstates for small hopping
amplitude, the driving-induced hopping to neighbouring sites can be viewed as
Landau-Zener tunnelling in real space29. However, the topological nature of the
process is better analyzed by working in momentum and frequency space. Namely,
any nonzero driving frequency Ω turns the problem into an effectively two-
dimensional (2D) one due to the periodicity in space and time. In this case, the
Hermitian RM model possesses two counterpropagating chiral Floquet bands in
the 2D FBBZ {−Ω/2 ≤ ε <Ω/2; −π/a0 ≤ k < π/a0}15,43, as depicted in Fig. 2a.
Quantized transport in a Floquet band is controlled by the winding or Chern
number of the band around the FBBZ17. Here we investigate transport quantization

in a general, fast pumped, dissipative situation. The velocity operator reads v̂ ¼

Re dĤk=dk (ℏ= 1)17, i.e., for each k-state ΨkαðtÞj i, its eigenvalue is the group
velocity dRe εkα=dk. Thus, the spatial displacement of the particle number during
one pumping cycle carried by a single Floquet state ΨkαðtÞj i with a loss rate Γkα is
given by

Z T

0

dt
ΨkαðtÞh jv̂ ΨkαðtÞj i

ΨkαðtÞjΨkαðtÞh i
¼

dRe εkα
dk

T: ð15Þ

Note that the velocity expectation value is normalized by the exponentially
decaying probability density, Eq. (12), such that in Eq. (15) the exponential decay
factor expð�ΓkαtÞ drops out. The shift per cycle carried by a band α with popu-
lation density Iα(E, k) (c.f. Eq. (13)) is obtained by integrating over the FBBZ, that
is, over the energy E and all k states, and reads,

Lα ¼

Z

FBBZ

dE

Ω

Z π=a0

�π=a0

dk

2π=a0
IαðE; kÞ

dRe εkα
dk

T: ð16Þ

For a homogenously filled band, ∫dE Iα(E, k)/Ω= 1, this reduces to

Lα
a0

¼

Z π=a0

�π=a0

dk

2π

dRe εkα
dk

T ¼ Z : ð17Þ

For a periodically driven system, the dispersion Re εkα is not only a periodic
function of k, but its values are also periodic with period Ω. That is, εkα is a
mapping from the 1D circle onto the 1D circle, Re εα : S1 ! S1 , and wraps around
the 2D torus of the FBBZ as shown in Fig. 2d. Equation (17) is the definition of the
winding number around the circle. It is seen that it assumes nonzero, integer values
if the dispersion continuously covers the entire FBBZ in the frequency direction,
i.e., if it is gapless,

R
dkdRe εkα=dk ¼ ZΩ ¼ Z 2π

T
, since επ=a0 ;α ¼ ε�π=a0 ;α

. This

proves the second equality in Eq. (17) for a gapless dispersion and indicates
transport quantization.

Samples. The DLSPPW arrays are fabricated by negative-tone gray-scale electron
beam lithography (EBL)30,44. The waveguides consist of poly(methyl methacrylate)
(PMMA) ridges deposited on top of a 60 nm thick gold film evaporated on a glass
substrate. The mean center-to center distance between the ridges is 1.7 μm and the
maximum deflection from the center is 0.5μm. The resulting variation of coupling

constants is J1ðzÞ ¼ J0e
�λð1�sinΩzÞ, J2(z); =J1(z− T/2) with J0= 0.144 μm−1 and

λ= 1.75.
The cross-section of each waveguide is controlled by the applied electron dose

during the lithographic process. By varying the electron dose along the z-axis we
modulate the waveguides’ cross-sections and hence the propagation constants as

βaðzÞ �
�β� u0 cosðΩz þ φÞ � iγaðzÞ, βb(z)= βa(z− T/2), where �β ¼

6:62þ i0:015 μm�1 corresponds to the mean height 100 nm and the mean width
250 nm of a waveguide and γaðtÞ � �γ0ΘðuaðzÞÞ cosðΩz þ φÞ is the periodic loss
rate induced by coupling to free SPPs. The choice of such geometrical parameters is
motivated by the fact that strong losses due to coupling to continuum of free
propagating SPPs occur when the height and the width of a waveguide are smaller

than the corresponding mean values, i.e., βjðzÞ<
�β. Other sources of losses can be

assumed to be independent of z because their variation is negligibly small in
comparison to this effect.

Leakage radiation microscopy. SPPs are excited by focusing a TM-polarized laser
beam with free space wavelength λ0= 980 nm (NA of the focusing objective is 0.4)
onto the grating coupler deposited on top of the central waveguide (either sub-
lattice A or B). The propagation of SPPs in an array is monitored by real-space and
Fourier-space leakage radiation microscopy45,46. For this purpose, we use an oil
immersion objective (×63 magnification, NA= 1.4) to collect the leakage radia-
tion. Real space intensity distributions are recorded by imaging the sample plane
onto a CMOS camera. The corresponding Fourier images are obtained by imaging
the back-focal plane of the objective onto the camera. The directly transmitted laser
beam is blocked by Fourier filtering. We note that we work in the single-mode
waveguide regime for all cross sections used in the experiments at the design
wavelength.

Data availability
The data that support the findings of this study are available from the corresponding

author upon reasonable request. All these data are directly shown in the corresponding

figures without further processing.
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