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Observation of topological valley transport of
sound in sonic crystals
Jiuyang Lu1,2, Chunyin Qiu1*, Liping Ye1, Xiying Fan1, Manzhu Ke1, Fan Zhang3 and Zhengyou Liu1,4*

The concept of valley pseudospin, labelling quantum states
of energy extrema in momentum space, is attracting atten-
tion1–13 because of its potential as a new type of informa-
tion carrier. Compared with the non-topological bulk valley
transport, realized soon after predictions1–5, topological valley
transport in domain walls6–13 is extremely challenging owing to
the inter-valley scattering inevitably induced by atomic-scale
imperfections—but an electronic signature was recently ob-
served in bilayer graphene12,13. Here, we report the experimen-
tal observation of topological valley transport of sound in sonic
crystals. The macroscopic nature of sonic crystals permits a
flexible and accurate design of domain walls. In addition to a
direct visualization of the valley-selective edgemodes through
spatial scanning of the sound field, reflection immunity is
observed in sharply curved interfaces. The topologically pro-
tected interface transport of sound, strikingly different from
that in traditional soundwaveguides14,15,may serve as thebasis
for designing devices with unconventional functions.

The macroscopic controllability enables the sonic crystals
(SCs) to be tractable classical counterparts for exploring complex
quantum physics requiring atomic-scale manipulations. Two-
dimensional (2D) hexagonal crystals, such as graphene, bilayer
graphene, and transition-metal dichalcogenides, exhibit a pair of
degenerate states at the inequivalent K and K′ valleys in momentum
space. Inversion symmetry breaking generically gaps the degeneracy
and gives rise to a tantalizing valley Hall insulator1–13, in which
valley-chiral electrons counter-propagate at the boundary in the
absence of inter-valley scattering. To observe topological valley
transport in the acoustic system, an experimental knob is required
to trigger the valley Hall phase transition. Instead of breaking the
inversion symmetry, as in graphene systems7–13, here we introduce
a mirror-symmetry-breaking mechanism to induce the acoustic
analogue of the topological semimetal–insulator transition. To do
this, anisotropic scatterers, which have been employed to optimize
the performance of the SCs16,17, are used to close and reopen
the bandgaps18,19. Interestingly, by simply rotating the anisotropic
scatterers, we can control the frequency gap of the acoustic insu-
lators and the shape of the phase domain wall flexibly.

As depicted in Fig. 1a, the SC consists of a triangular-lattice array
(with lattice constant 4.3 cm) of rod-like scatterers placed in a 2D
air waveguide formed by two parallel plastic plates (Methods). Here
the top plate is removed for visualization. The rod has the shape
of a regular triangle (with side length 3.0 cm), and its orientation
degree of freedom, characterized by the rotation angle α, enables the
system to exhibit different symmetries. For α=mπ/3, withm being
an integer, the point group at K (andK′) is featured byC3v symmetry,

due to the perfect match of the mirrors of individual scatterers to
those of the triangular-lattice. Apart from the specific angles, the
mirrors aremismatched and the symmetry reduces toC3. Therefore,
a two-fold Dirac degeneracy is protected at K (and K′) for any SC
with α=mπ/3, whereas the degeneracy would be lifted for any
other rod orientation because of the broken mirror symmetry. This
is exemplified by the dispersions for the SCs with α=0◦ and −10◦

(Fig. 1b). To reveal the characteristics of the Dirac degeneracy,
Fig. 1c presents the field patterns for the two degenerate states
at K. Both states, labelled by ψ 0

p−
and ψ 0

q+
, display typical vortex

profiles centred at the two inequivalent triangular-lattice centres p
and q, where the sign ± indicates an anticlockwise or clockwise
energy flow. The vortex chirality can be viewed as a pseudospin
analogous to the A–B sublattice or the top–bottom layer pseudospin
in graphene systems6–8. The counterparts at valley K′, denoted by
ψ 0

p+
andψ 0

q−
, possess invariant vortex cores but opposite chirality, as

required by time-reversal symmetry. Below we focus on the physics
at valley K, while that at K′ can be derived directly from time-
reversal symmetry.

The acoustic valley Hall (AVH) phase transition has been con-
vincingly observed in our simulations and experiments. Figure 1d
provides a continuous evolution of the band-edge frequencies ωp−

and ωq+ versus the rotation angle α. Evidently, the frequency order
of the first two bands, locked to the opposite vortex pseudospins,
is inverted at α= 0◦, a signal of the AVH phase transition. This
is analogous to the semimetal–insulator transition induced by an
electric field in bilayer graphene7,8. We have measured the band-
edge frequencies for SCs with different α. The experimental data
in Fig. 1d (circles) confirm the gap closure and reopening as the
scatterer is rotated through α= 0◦. To further identify different
AVH insulators, the phase profiles of the K valley states are scanned
around the phase singular point p or q. As exemplified by the SCs
with α= ±10◦ (Fig. 1e), the overall slopes of the experimentally
measured phase distributions (circles) agree well with those ex-
tracted from the eigenfields (lines). Intriguingly, the vortex states
labelled by p− and q+ carry quantized angular momenta −1 and
+1, respectively, owing to the three-fold rotation symmetry of
the SC.

The AVH phase transition can be captured by an α-dependent
continuum Hamiltonian, δH = vDδkxσx + vDδkyσy + mv2

D
σz ,

derived from the k · p perturbation method and spanned by the
degenerate vortex pseudospins ψ 0

p−
and ψ 0

q+
(Methods). Here vD

is the Dirac velocity of the conic dispersion at α= 0◦, δk is the
momentum deviation from the K point, and σi are Pauli matrices
of the vortex pseudospins. Consistent with the above band inversion
picture (Fig. 1d), the sign of the effectivemassm= (ωq+ −ωp−)/2v
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Figure 1 | Mirror symmetry breaking and topological phase transition. a, The SC consisting of triangular polymethyl methacrylate rods positioned in a

triangular-lattice with lattice vectors a1 and a2. The rotation angle α indicates the orientation of the scatterer with respect to a1. Labels p and q indicate two

inequivalent triangular-lattice centres. b, Gapless and gapped bulk dispersions for the cases α=0◦ (black lines) and −10◦ (colour lines). c, Simulated

eigenfield profiles for the degenerated K states ψ0
p− and ψ0

q+ . The energy flows (arrows) manifest distinct vorticities surrounding the points p and q with

zero pressure amplitudes (colour). d, Phase diagram revealed by the order of band-edge frequencies (lines for simulations and circles for experiments)

locked with specific vortex features (insets). Different acoustic insulating phases are characterized by their signs of the effective mass

sgn(m)=sgn(ωq+ −ωp− ). e, Phase distributions simulated (lines) and measured (circles) anticlockwise along a circular trajectory (labelled by the

azimuthal angle ϑ) around the vortex cores of the K valley states for the SC with α=±10◦.

characterizes two different AVH insulators separated by the Dirac
semimetal phase with m = 0 in the phase diagram. Similarly to
the case of graphene, the massive Dirac Hamiltonian δH produces
a nontrivial Berry curvature �(δk)= (1/2)mvD(δk

2 +m2v2
D
)−3/2

(refs 2,8) in the first band, which can be integrated into a topological
charge CK = sgn(m)/2 (refs 6–11). Therefore, for a SC interface
separating distinct AVH insulators, the difference in the topological
charge across the interface is quantized (that is, |1CK|= 1), which
predicts a chiral edge mode propagating along the interface6–11. This
bulk-boundary correspondence has been confirmed by analytically
solving the boundary problem (Methods). For an interface oriented

along an arbitrary x ′ direction and located at y ′ = 0, the edge
state has the general form φ= (c1ψ

0
p−

+ c2ψ
0
q+
)eiδkx′ x

′−|mvDy
′|, with

a linear dispersion δω= vDδkx′ centred at the projected K valley
onto the x ′ direction. Owing to time-reversal symmetry, the K′

valley also hosts one chiral AVH edge mode, but travelling along
the opposite direction.

To confirm the above picture, we first simulate the dispersion
for the SC interface selected, for example, along the x direction.
Two different systems are studied comparatively: one is constructed
by the SCs with α = 10◦ and 50◦, and the other is constructed
by the SCs with α = −10◦ and 10◦ (referred to as domains I

370

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATURE PHYSICS | VOL 13 | APRIL 2017 | www.nature.com/naturephysics

http://dx.doi.org/10.1038/nphys3999
www.nature.com/naturephysics


NATURE PHYSICS DOI: 10.1038/NPHYS3999 LETTERS

3.5

4.0

4.5

Gap

3.5

4.0

4.5

Gap

0.0 0.5 1.0 1.5 2.0

3

4

5

kx (π/a)

kx (π/a)

−10 −5 0 5 10
0.0

0.5

1.0
Sim.
Exp.
Model

A
m

p
lit

u
d

e 
(a

.u
.)

y/a

3

4

5

Fr
eq

u
en

cy
 (

kH
z)

Fr
eq

u
en

cy
 (

kH
z)

Fr
eq

u
en

cy
 (

kH
z)

Fr
eq

u
en

cy
 (

kH
z)

a

c

b

d

Probe

Source

Reference
probe

A
m

p
lit

u
d

e

y/a

Fr
eq

ue
nc

y

Sample
X

Y

I

II

I

−
II,Iφ

−
II,Iφ

+
I,IIφ

+
I,IIφ

+
I,IIφ

−
I,IIφ

−
I,IIφ

+
II,Iφ

+
II,Iφ

+
II,Iφ

0.0 0.5 1.0 1.5 2.0

Figure 2 | Numerical and experimental validations of the topological AVH edge modes. a, Comparative dispersions for the SC interfaces separating two

topologically identical (α= 10◦ and 50◦, upper panel) and separating two topologically distinct (α=−10◦ and 10◦, lower panel) AVH insulating phases,

both simulated by a superlattice structure containing two different horizontal interfaces. For the mass-inverted system, each wall supports one

time-reversal pair of gapless valley-chiral edge modes (green lines), as predicted from the theoretical model (red lines). b, Experimental set-up. The

domains I and II represent the SCs with α=−10◦ and 10◦, respectively. c, Experimentally measured dispersions (bright colour) for the edge states φ+
I,II and

φ
+
II,I, compared with the numerical data (green lines). d, Numerical and experimental decaying profiles for the edge state φ+

II,I (4.06 kHz) away from the SC

interface, together with the model prediction. All data are normalized by the corresponding maximum values. The inset confirms experimentally the weak

frequency dependence of the exponential decay. Similar results are also observed for the edge state φ+
I,II.

and II below). These SCs are considered intentionally since they
share the same bandgap between 3.82 and 4.34 kHz (Fig. 1d). As
shown clearly in Fig. 2a, for the former system the edge spectrum
is completely gapped since the two SCs belong to the same AVH
phase; for the latter case, however, a pair of valley-chiral edge states
counter-propagates at each interface (green lines) because of the
mass inversion. The edge states φ±

I,II
and φ±

II,I
respectively label those

gapless modes hosted by the interfaces I–II and II–I displayed in
Fig. 2b, travelling along the ±x directions. The dispersions are
linear near the crossing points, as predicted by the continuummodel
(red lines).

The presence of the topological AVH edge states has been solidly
validated in experiments. As shown in Fig. 2b, a sandwich structure
made of the SCs with α= −10◦ (phase I) and 10◦ (phase II) is
used to study two different horizontal interfaces simultaneously.
The sound signal is launched from a deep-subwavelength-sized
tube placed inside the left entrance of the SC interface, and
probed by a movable microphone in the same channel. From the
pressure distributions scanned separately along the interfaces I–II
and II–I, we obtain the corresponding interface spectra through a
Fourier transform. As shown in Fig. 2c, where the dark and bright

colours indicate the Fourier amplitude of low and high values,
the experimental data (bright colour) capture well the numerical
dispersions (green lines) for the right-moving states φ+

I,II
and φ+

II,I
,

even in the frequency regimes beyond the bulk gap (since the bulk
mode is not well excited). The time-reversal counterparts, φ−

I,II
and

φ−
II,I
, have also been checked by sending sound signals from the

entrances on the right. Note that a key feature of the topological edge
state is the exponential decay of the field amplitude away from the
SC interface, for which the decay length is determined only by the
bulk parameter |mvD|. To confirm this, we scan the pressure field
along a straight line vertically traversing the interface II–I. As shown
in Fig. 2d, the experimental result agrees excellently with the model
prediction and full-wave simulation, which is indeed insensitive to
frequency (see inset).

As aforementioned, the topological AVH edge state stems in-
herently from the single-valley physics. There are two implications:
each chiral edge mode is projected from a specific valley and is also
a linear superposition of the two basis states. The inter-valley de-
coupling can thus lead to many fascinating transport phenomena—
for example, angularly selective excitation by external sound and
negligible backscattering in sharply curved SC interfaces.

NATURE PHYSICS | VOL 13 | APRIL 2017 | www.nature.com/naturephysics

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

371

http://dx.doi.org/10.1038/nphys3999
www.nature.com/naturephysics


LETTERS NATURE PHYSICS DOI: 10.1038/NPHYS3999

−8

−4

0

4

8
y/
a

−8 −4 0 4 8

−8

−4

0

4

8

x/a

y/
a

−90 −60 −30 0 30 60 90
0

1

Tr
an

s.

−60
−30 0

30
60 Fr

eq
ue

nc
y

Fr
eq

ue
nc

y

Sim.

Exp.
0

1

Tr
an

s.

0

1

Tr
an

s.

a b

c

III

III

−8 −4 0 4 8
−18

−12

−6

0

6

12

18

y/
a

y/
a

x/a

4.0 4.2
−18

−12

−6

0

6

12

18

4.0 4.2

Frequency
(kHz)

Frequency
(kHz)

d
Sim. Exp.

e

I

II

I

II-I I-II

 = −42°γ

 = 0°γ

Incident angle,  (°)γ

 (°)γ

−60
−30 0

30
60

 (°)γ

Figure 3 | Valley-selective excitation of the AVH edge mode. a, Field distributions (4.06 kHz) simulated for the sample with a vertical SC interface II–I,

excited by the Gaussian beams at the incidence angles γ =−42◦ and γ =0◦. b, Numerical (black line) and experimental (black circles) transmissions for

the interface II–I plotted as a function of γ , together with the data for the interface I–II (red line and circles). The transmission is normalized by the value of

the angular peak. c, Frequency-dependent angular spectra show the angular selectivity within the whole bulk gap. d, Amplitude distribution simulated by a

wide Gaussian beam (4.06 kHz) incident normally onto the sample with two distinct horizontal interfaces. e, Frequency-dependent pressure amplitudes

scanned in the output facet of the sample, demonstrating numerically and experimentally the broadband channel selectivity according to the parity of the

edge states.

To stimulate the valley-projected interface state by a spatial
Gaussian beam, an angular selection rule can be established ac-
cording to the conservation of themomentum parallel to the sample
boundary, k‖ = k0 sinγ . Here k‖ is a projection of K (or K′) on the
boundary, k0 is the wavevector in air space, and γ characterizes
the incidence direction of the sound beam. The angular selectivity
is exemplified in Fig. 3a by a vertical SC interface. As predicted,
the AVH edge mode (projected from the K valley) is well excited
at the incidence angle γ = sin−1(k‖/k0)≈−42◦ (upper panel), in
striking contrast to the deep suppression at γ = 0◦ (lower panel).
To validate this phenomenon, we have experimentally measured
the transmissions for a wide range of incidence angles. The angular
selectivity can be observed clearly in Fig. 3b (black circles), where
the optimized transmission occurs in the predicted incidence angle,
in good agreement with the simulation (black line). Similarly, an
optimal excitation emerges at γ = 42◦ if the positions of the two
AVH phases are switched (red line and circles), and the edge mode
is now contributed from theK′ valley. The broadening of the angular
peaks stems from the presence of the exponential decay of the
edge states. Remarkably, the angular selection rule is robust for
the entire bulk gap, as displayed consistently by the numerical
and experimental data in Fig. 3c. The horizontal SC interfaces
in Fig. 2b deserve special attention. As shown in Fig. 3d,e, for
an incident Gaussian beam wide enough to cover both interfaces
simultaneously, only the edge state in the lower channel is excited
despite the fact that the upper one is also allowed by the criterion of
momentum conservation. This can be understood from the parities
of the edge modes (Methods).

Below we demonstrate the negligibly weak backscattering of the
AVH edge mode propagating along sharply twisted SC interfaces.
Such curved interfaces emerge frequently in electronic systems12

and may cause inter-valley scattering to destroy the edge states10.
Figure 4a shows the sound transport in a zigzag bending channel.
As exemplified by the field pattern simulated at 4.06 kHz (inset),
the sound travels smoothly in the curved path despite suffering
two sharp corners (bent by 120◦). To give an exact description for
the bending corners, the reflection (as revealed by the interference

pattern in the inlet of the waveguide) originating from the
impedancemismatch between the sample and the free spacemust be
precluded. For this purpose, we have derived the transmission and
reflection through a one-dimensional scattering matrix approach
(Supplementary Information). Figure 4a shows a negligible reflec-
tion in the entire bulk gap. This behaviour has not been observed
previously in the sound waveguide designed by a SC14,15. Note that
the accuracy of the scattering matrix method depends sensitively
on the pressures detected (Supplementary Information). In practical
experiments, we have measured the pressure in the output channel
and compared it with the result for a sample containing a straight
channel of the same length. As shown in Fig. 4b, the transmitted
pressures for the two samples agreewell in the frequency range of the
bulk gap, in contrast to the remarkable difference beyond the gap.
This confirms theweak influence of the bending corners on thewave
transport of the interfacemodes.More complex configurations have
been further checked numerically (Supplementary Information),
even for those simultaneously sustaining the symmetric and anti-
symmetric edge modes. Again, the unusual phenomenon is closely
related to the valley-projected topological origin of the edge mode.
As deduced from the theoretical model, the forward-moving modes
are always projected from the same (K) valley, since the relative posi-
tions of the two AVH insulators remain invariant with the propaga-
tion of sound. In other words, the field profiles match well between
the edge states of adjacent channels, which contribute to the prefer-
ence of high transmission. (For a general defect located in the curved
or straight waveguide, the inter-valley coupling could become siz-
able, depending on the property of the defect.) Recently, the reflec-
tion immunity has also been observed for electromagnetic waves
travelling in a twisted interface separated by different photonic
topological insulators20,21. In those systems, the gaps are produced
by a magneto-electric coupling (dubbed bianisotropy) equivalent
to the electronic spin–orbital interaction, which is absent in our
sonic systems.

It is worth noting that the rotating-scatterer mechanism enables
easily tunable operation bandwidth and reconfigurable shape of
the SC interface. These merits, plus the intriguing valley transport
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Figure 4 | Reflection immunity of the AVH edge modes from sharp corners. a, Power transmission (black line) and reflection (red line) spectra calculated

for the two sharp turns in a zigzag path. Inset: field pattern simulated at 4.06 kHz. b, Transmitted pressure measured for the zigzag path (red circles),

compared with that for a straight channel sample (black circles). The good agreement in the bulk gap (shadow region) shows a small influence of the

bending corners to the interface transport.

properties, absent in the conventional SC-based waveguides14,15,
could be very useful in designing exceptional devices (for example,
for sound signal processing). Our finding may also pave the way
for exploring controllable topological phases and valley-dependent
phenomena in various classical systems, which have been proved to
be excellent macroscopic platforms in revealing topological prop-
erties22–35 proposed originally in electronic systems—for example,
quantum Hall insulators22–28, topological insulators20,21,29–32,35, and
topological semimetals33,34. Finally, the study provides a special in-
sight into realizing topological insulators that require internal de-
grees of freedom, which is particularly important for neutral scalar
sound that lacks an intrinsic polarization and is uncoupled from
external fields.

Methods
Methods, including statements of data availability and any
associated accession codes and references, are available in the
online version of this paper.
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Methods
Modelled Hamiltonian. It has been proved14 that, for the SC with α=0◦ the
perturbation Hamiltonian δk ·p, spanned by the degenerated states ψ 0

p−
and ψ 0

q+
,

yields conic dispersions centred at the hexagonal Brillouin zone corners due to the
protection of the C3v symmetry, where p is a vectorial operator determined by the
density distribution of the SC. As the scatterer is rotated, the mirror symmetry is
broken, and the deterministic degeneracy is thus removed. This produces a Dirac
mass term—namely, δij(ω

2
i
−ω2

D
), where ωi =ωp− or ωq+ is the α-dependent

band-edge frequency, and ωD is the Dirac frequency of the SC with α=0◦. Using
the detailed form of the pmatrix—that is, p11 =p22 =0 and
p21 =p∗

12
=2ωDvD(x̂+ iŷ)—we obtain a compact form of the perturbation

Hamiltonian δH (see text) that satisfies the eigen-problem δHψ=δωψ , where δω
is the frequency deviation from ωD. The preciseness of the modelled Hamiltonian
has been confirmed by duplicating the numerical dispersion near the Brillouin
zone corner.

Derivation of the AVH edge states. For simplicity, we consider a SC interface
oriented along the x direction, formed by two SCs withm<0 for y>0 andm>0
for y<0. Substituting a trial decay solution into the eigen-problem, an edge state
travelling along the +x direction can be derived φ+ = (ψ 0

p−
+ψ 0

q+
)eiδkx x−|mvDy|,

together with a gapless dispersion δω=vDδkx centred at the projection of K onto
the interface. Interestingly, because of the mirror symmetry between the two basis
states (Fig. 1c), the edge state is locally symmetric with respect to a specific
horizontal axis, apart from the exponential decay factor emvDy =e−|mvDy|. Note that
the property of the edge state is much different if the positions of the two AVH
insulators are switched, since the detailed geometrical structure of the SC interface
is inherently different from the original one. Now the edge state
φ+ = (ψ 0

p+
−ψ 0

q−
)e−iδkx x−|mvDy|, projected from the K′ valley, is locally

antisymmetric in each unit cell. This leads to the deep suppression of the edge
mode in the upper channel in Fig. 3d,e. Similarly, the valley-projected edge state
can be derived for a SC interface with any arbitrary orientation.

Simulations. All full-wave simulations are accurately carried out by a commercial
finite-element solver (COMSOL Multiphysics), where the triangular polymethyl
methacrylate rods used in real experiments are modelled as acoustically rigid,
considering the great impedance mismatch with respect to air. Note that, in
practical experiments, the rods (of height 1.2 cm) are closely sandwiched between

two acoustically rigid parallel plates. The whole structure can be safely modelled as
a 2D system, since the planar waveguide supports only the propagating mode
uniform in the z-direction for the wavelength under consideration. To capture the
weak reflection exactly from the two bent corners (Fig. 4), we must remove the
influence of the multi-reflections induced by the impedance mismatch between the
sample and free space. Thus, we collect the forward-moving and backward-moving
wave information in the input and output channels, according to the Bloch wave
connection between two spatially equivalent locations in each channel. From the
incoming and outgoing wave information for the corners, a simple
one-dimensional scattering model (Supplementary Information) can be established
as long as each phase domain is thick enough to prevent energy leakage.

Experimental measurements. In experiments, several hundreds of triangular
polymethyl methacrylate rods fabricated by laser cutting are arranged into desired
sample configurations. The sound signal is launched from a narrow tube (of
diameter ∼0.8 cm) and scanned by a movable microphone (of diameter ∼0.7 cm,
B&K Type 4187), together with an identical microphone fixed for phase reference.
The sound signal is analysed by a multi-analyser system (B&K Type 3560B), from
which both the phase and amplitude of the pressure field can be obtained. To
prepare a Gaussian beam, the sound emitted from the tube is reflected by a
carefully designed parabolic concave mirror, where the beam width is controlled by
the mirror’s size. In all measurements, absorbers are placed at the ends of the
sample to reduce the unwanted reflection generated by the impedance mismatch
between the sample and free space.

Geometric parameters of the experimental samples are listed below. The sample
(see Fig. 2b) used to measure the dispersion is formed by three parts with identical
areas, where the central one (domain II) corresponds to the SC with the rotation
angle α=10◦, and the lateral two (domain I) correspond to the SC with α=−10◦.
Each part consists of 16 × 16 rods—that is, 16 1ayers along the y direction and 16
rods for each layer along the x direction. The sample has a total size∼0.7× 1.8m2.
The sample used to confirm the angularly sensitive excitation of the edge modes
(Fig. 3b,c) is made of 16 layers and 22 rods for each, and the sample involved in
Fig. 3e is completely identical to that mentioned in Fig. 2b. In Fig. 4b, the sample
with a zigzag (or straight) path consists of 22 × 40 (or 22 × 46) rods.

Data availability. The data that support the plots within this paper and other
findings of this study are available from the corresponding author upon request.
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