Observation of Tree-Level B Decays with $s \bar{s}$ Production from Gluon Radiation

B. Aubert, ${ }^{1}$ M. Bona, ${ }^{1}$ D. Boutigny, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ V. Poireau, ${ }^{1}$ X. Prudent, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ J. Garra Tico, ${ }^{2}$ E. Grauges, ${ }^{2}$ L. Lopez, ${ }^{3}$ A. Palano, ${ }^{3}$ G. Eigen, ${ }^{4}$ B. Stugu, ${ }^{4}$ L. Sun, ${ }^{4}$ G. S. Abrams, ${ }^{5}$ M. Battaglia, ${ }^{5}$ D. N. Brown, ${ }^{5}$ J. Button-Shafer, ${ }^{5}$ R. N. Cahn, ${ }^{5}$ Y. Groysman, ${ }^{5}$ R. G. Jacobsen, ${ }^{5}$ J. A. Kadyk, ${ }^{5}$ L. T. Kerth, ${ }^{5}$ Yu. G. Kolomensky, ${ }^{5}$ G. Kukartsev, ${ }^{5}$ D. Lopes Pegna, ${ }^{5}$ G. Lynch, ${ }^{5}$ L. M. Mir, ${ }^{5}$ T. J. Orimoto, ${ }^{5}$ M. T. Ronan, ${ }^{5, *}$ K. Tackmann, ${ }^{5}$ W. A. Wenzel,,${ }^{5}$ P. del Amo Sanchez, ${ }^{6}$ C. M. Hawkes, ${ }^{6}$ A. T. Watson, ${ }^{6}$ T. Held, ${ }^{7}$ H. Koch, ${ }^{7}$ B. Lewandowski, ${ }^{7}$ M. Pelizaeus, ${ }^{7}$ T. Schroeder, ${ }^{7}$ M. Steinke, ${ }^{7}$ D. Walker, ${ }^{8}$ D. J. Asgeirsson, ${ }^{9}$ T. Cuhadar-Donszelmann, ${ }^{9}$ B. G. Fulsom, ${ }^{9}$ C. Hearty, ${ }^{9}$ T. S. Mattison, ${ }^{9}$ J. A. McKenna, ${ }^{9}$ A. Khan, ${ }^{10}$ M. Saleem,,${ }^{10}$ L. Teodorescu, ${ }^{10}$ V.E. Blinov, ${ }^{11}$ A.D. Bukin, ${ }^{11}$ V. P. Druzhinin, ${ }^{11}$ V. B. Golubev, ${ }^{11}$ A. P. Onuchin, ${ }^{11}$ S. I. Serednyakov, ${ }^{11}$ Yu. I. Skovpen, ${ }^{11}$ E. P. Solodov, ${ }^{11}$ K. Yu. Todyshev, ${ }^{11}$ M. Bondioli, ${ }^{12}$ S. Curry, ${ }^{12}$ I. Eschrich, ${ }^{12}$ D. Kirkby, ${ }^{12}$ A. J. Lankford, ${ }^{12}$ P. Lund, ${ }^{12}$ M. Mandelkern, ${ }^{12}$ E. C. Martin, ${ }^{12}$ D. P. Stoker, ${ }^{12}$ S. Abachi,,13 C. Buchanan, ${ }^{13}$ S. D. Foulkes, ${ }^{14}$ J. W. Gary, ${ }^{14}$ F. Liu, ${ }^{14}$ O. Long, ${ }^{14}$ B. C. Shen, ${ }^{14}$ L. Zhang, ${ }^{14}$ H.P. Paar, ${ }^{15}$ S. Rahatlou, ${ }^{15}$ V. Sharma, ${ }^{15}$ J. W. Berryhill, ${ }^{16}$ C. Campagnari, ${ }^{16}$ A. Cunha, ${ }^{16}$ B. Dahmes, ${ }^{16}$
T. M. Hong,,16 D. Kovalskyi, ${ }^{16}$ J.D. Richman, ${ }^{16}$ T. W. Beck, ${ }^{17}$ A. M. Eisner, ${ }^{17}$ C. J. Flacco, ${ }^{17}$ C. A. Heusch, ${ }^{17}$ J. Kroseberg, ${ }^{17}$ W. S. Lockman, ${ }^{17}$ T. Schalk, ${ }^{17}$ B. A. Schumm, ${ }^{17}$ A. Seiden, ${ }^{17}$ D. C. Williams, ${ }^{17}$ M. G. Wilson, ${ }^{17}$ L. O. Winstrom, ${ }^{17}$ E. Chen, ${ }^{18}$ C. H. Cheng, ${ }^{18}$ F. Fang, ${ }^{18}$ D. G. Hitlin, ${ }^{18}$ I. Narsky, ${ }^{18}$ T. Piatenko, ${ }^{18}$ F. C. Porter, ${ }^{18}$ R. Andreassen, ${ }^{19}$ G. Mancinelli, ${ }^{19}$ B. T. Meadows, ${ }^{19}$ K. Mishra, ${ }^{19}$ M. D. Sokoloff, ${ }^{19}$ F. Blanc,,${ }^{20}$ P. C. Bloom, ${ }^{20}$ S. Chen, ${ }^{20}$ W. T. Ford, ${ }^{20}$ J. F. Hirschauer, ${ }^{20}$ A. Kreisel,,20 M. Nagel, ${ }^{20}$ U. Nauenberg, ${ }^{20}$ A. Olivas, ${ }^{20}$ J. G. Smith,,${ }^{20}$ K. A. Ulmer, ${ }^{20}$
S.R. Wagner, ${ }^{20}$ J. Zhang, ${ }^{20}$ A. M. Gabareen, ${ }^{21}$ A. Soffer, ${ }^{21}$ W.H. Toki, ${ }^{21}$ R. J. Wilson, ${ }^{21}$ F. Winklmeier, ${ }^{21}$ Q. Zeng, ${ }^{21}$ D. D. Altenburg, ${ }^{22}$ E. Feltresi, ${ }^{22}$ A. Hauke, ${ }^{22}$ H. Jasper, ${ }^{22}$ J. Merkel, ${ }^{22}$ A. Petzold, ${ }^{22}$ B. Spaan, ${ }^{22}$ K. Wacker, ${ }^{22}$ T. Brandt, ${ }^{23}$ V. Klose, ${ }^{23}$ M. J. Kobel, ${ }^{23}$ H. M. Lacker, ${ }^{23}$ W.F. Mader, ${ }^{23}$ R. Nogowski, ${ }^{23}$ J. Schubert, ${ }^{23}$ K. R. Schubert, ${ }^{23}$ R. Schwierz, ${ }^{23}$ J.E. Sundermann, ${ }^{23}$ A. Volk, ${ }^{23}$ D. Bernard, ${ }^{24}$ G. R. Bonneaud, ${ }^{24}$ E. Latour, ${ }^{24}$ V. Lombardo, ${ }^{24}$ Ch. Thiebaux, ${ }^{24}$ M. Verderi, ${ }^{24}$ P. J. Clark,,${ }^{25}$ W. Gradl,,${ }^{25}$ F. Muheim, ${ }^{25}$ S. Playfer, ${ }^{25}$ A. I. Robertson, ${ }^{25}$ Y. Xie, ${ }^{25}$ M. Andreotti, ${ }^{26}$ D. Bettoni, ${ }^{26}$ C. Bozzi, ${ }^{26}$ R. Calabrese, ${ }^{26}$ A. Cecchi, ${ }^{26}$ G. Cibinetto, ${ }^{26}$ P. Franchini, ${ }^{26}$ E. Luppi, ${ }^{26}$ M. Negrini, ${ }^{26}$ A. Petrella, ${ }^{26}$ L. Piemontese,,26 E. Prencipe, ${ }^{26}$ V. Santoro, ${ }^{26}$ F. Anulli, ${ }^{27}$ R. Baldini-Ferroli, ${ }^{27}$ A. Calcaterra, ${ }^{27}$ R. de Sangro, ${ }^{27}$ G. Finocchiaro, ${ }^{27}$ S. Pacetti, ${ }^{27}$ P. Patteri, ${ }^{27}$ I. M. Peruzzi,,${ }^{27, \dagger}$ M. Piccolo, ${ }^{27}$ M. Rama, ${ }^{27}$ A. Zallo, ${ }^{27}$ A. Buzzo, ${ }^{28}$ R. Contri, ${ }^{28}$ M. Lo Vetere, ${ }^{28}$ M. M. Macri, ${ }^{28}$ M. R. Monge, ${ }^{28}$ S. Passaggio, ${ }^{28}$ C. Patrignani, ${ }^{28}$ E. Robutti, ${ }^{28}$ A. Santroni, ${ }^{28}$ S. Tosi,,28 K. S. Chaisanguanthum,,29 M. Morii, ${ }^{29}$ J. Wu, ${ }^{29}$ R.S. Dubitzky, ${ }^{30}$ J. Marks, ${ }^{30}$ S. Schenk, ${ }^{30}$ U. Uwer, ${ }^{30}$ D. J. Bard, ${ }^{31}$ P.D. Dauncey, ${ }^{31}$ R.L. Flack, ${ }^{31}$ J. A. Nash, ${ }^{31}$ M. B. Nikolich, ${ }^{31}$ W. Panduro Vazquez, ${ }^{31}$ M. Tibbetts, ${ }^{31}$ P. K. Behera, ${ }^{32}$ X. Chai, ${ }^{32}$ M. J. Charles, ${ }^{32}$ U. Mallik, ${ }^{32}$ N. T. Meyer, ${ }^{32}$ V. Ziegler, ${ }^{32}$ J. Cochran, ${ }^{33}$ H. B. Crawley, ${ }^{33}$ L. Dong, ${ }^{33}$ V. Eyges, ${ }^{33}$ W.T. Meyer, ${ }^{33}$ S. Prell, ${ }^{33}$ E. I. Rosenberg, ${ }^{33}$ A.E. Rubin, ${ }^{33}$ A. V. Gritsan, ${ }^{34}$ Z. J. Guo, ${ }^{34}$ C. K. Lae, ${ }^{34}$ A. G. Denig, ${ }^{35}$ M. Fritsch,,${ }^{35}$ G. Schott, ${ }^{35}$ N. Arnaud, ${ }^{36}$ J. Béquilleux, ${ }^{36}$ M. Davier, ${ }^{36}$ G. Grosdidier, ${ }^{36}$ A. Höcker, ${ }^{36}$ V. Lepeltier, ${ }^{36}$ F. Le Diberder, ${ }^{36}$ A. M. Lutz, ${ }^{36}$ S. Pruvot, ${ }^{36}$ S. Rodier, ${ }^{36}$ P. Roudeau, ${ }^{36}$ M. H. Schune, ${ }^{36}$ J. Serrano, ${ }^{36}$ V. Sordini, ${ }^{36}$ A. Stocchi, ${ }^{36}$ W. F. Wang, ${ }^{36}$ G. Wormser, ${ }^{36}$ D. J. Lange, ${ }^{37}$ D. M. Wright, ${ }^{37}$ I. Bingham, ${ }^{38}$ C. A. Chavez, ${ }^{38}$ I. J. Forster, ${ }^{38}$ J.R. Fry, ${ }^{38}$ E. Gabathuler, ${ }^{38}$ R. Gamet,,${ }^{38}$ D. E. Hutchcroft, ${ }^{38}$ D. J. Payne, ${ }^{38}$ K. C. Schofield,,${ }^{38}$ C. Touramanis, ${ }^{38}$ A. J. Bevan, ${ }^{39}$ K. A. George, ${ }^{39}$ F. Di Lodovico, ${ }^{39}$ W. Menges, ${ }^{39}$ R. Sacco, ${ }^{39}$ G. Cowan, ${ }^{40}$ H. U. Flaecher, ${ }^{40}$ D. A. Hopkins, ${ }^{40}$ S. Paramesvaran, ${ }^{40}$ F. Salvatore, ${ }^{40}$ A. C. Wren, ${ }^{40}$ D. N. Brown, ${ }^{41}$ C. L. Davis, ${ }^{41}$ J. Allison, ${ }^{42}$ N. R. Barlow, ${ }^{42}$ R. J. Barlow, ${ }^{42}$ Y. M. Chia, ${ }^{42}$ C. L. Edgar, ${ }^{42}$ G.D. Lafferty, ${ }^{42}$ T. J. West, ${ }^{42}$ J.I. Yi, ${ }^{42}$ J. Anderson, ${ }^{43}$ C. Chen, ${ }^{43}$ A. Jawahery, ${ }^{43}$ D. A. Roberts, ${ }^{43}$ G. Simi, ${ }^{43}$ J. M. Tuggle,,43 G. Blaylock, ${ }^{44}$ C. Dallapiccola, ${ }^{44}$ S. S. Hertzbach, ${ }^{44}$ X. Li, ${ }^{44}$ T. B. Moore, ${ }^{44}$ E. Salvati, ${ }^{44}$ S. Saremi, ${ }^{44}$ R. Cowan, ${ }^{45}$ D. Dujmic, ${ }^{45}$ P. H. Fisher, ${ }^{45}$ K. Koeneke, ${ }^{45}$ G. Sciolla, ${ }^{45}$ S. J. Sekula, ${ }^{45}$ M. Spitznagel, ${ }^{45}$ F. Taylor, ${ }^{45}$ R. K. Yamamoto, ${ }^{45}$ M. Zhao, ${ }^{45}$ Y. Zheng, ${ }^{45}$ S. E. Mclachlin,,${ }^{46}$ P. M. Patel,${ }^{46}$ S. H. Robertson, ${ }^{46}$ A. Lazzaro, ${ }^{47}$ F. Palombo, ${ }^{47}$ J. M. Bauer, ${ }^{48}$ L. Cremaldi, ${ }^{48}$ V. Eschenburg, ${ }^{48}$ R. Godang, ${ }^{48}$ R. Kroeger, ${ }^{48}$ D. A. Sanders, ${ }^{48}$ D. J. Summers, ${ }^{48}$ H. W. Zhao, ${ }^{48}$ S. Brunet, ${ }^{49}$ D. Côté, ${ }^{49}$ M. Simard, ${ }^{49}$ P. Taras, ${ }^{49}$ F. B. Viaud, ${ }^{49}$ H. Nicholson, ${ }^{50}$ G. De Nardo, ${ }^{51}$ F. Fabozzi, ${ }^{51,{ }^{1,7}}$ L. Lista, ${ }^{51}$ D. Monorchio, ${ }^{51}$ C. Sciacca,,${ }^{51}$ M. A. Baak, ${ }^{52}$ G. Raven, ${ }^{52}$ H. L. Snoek, ${ }^{52}$ C. P. Jessop, ${ }^{53}$ J. M. LoSecco, ${ }^{53}$ G. Benelli, ${ }^{54}$ L. A. Corwin, ${ }^{54}$ K. Honscheid, ${ }^{54}$ H. Kagan, ${ }^{54}$ R. Kass, ${ }^{54}$ J. P. Morris, ${ }^{54}$ A. M. Rahimi, ${ }^{54}$ J. J. Regensburger, ${ }^{54}$ Q. K. Wong, ${ }^{54}$ N. L. Blount, ${ }^{55}$ J. Brau, ${ }^{55}$ R. Frey, ${ }^{55}$ O. Igonkina, ${ }^{55}$ J. A. Kolb, ${ }^{55}$ M. Lu, ${ }^{55}$ R. Rahmat, ${ }^{55}$ N. B. Sinev, ${ }^{55}$ D. Strom, ${ }^{55}$ J. Strube, ${ }^{55}$ E. Torrence, ${ }^{55}$ N. Gagliardi, ${ }^{56}$ A. Gaz,,${ }^{56}$ M. Margoni, ${ }^{56}$ M. Morandin,,${ }^{56}$ A. Pompili, ${ }^{56}$ M. Posocco, ${ }^{56}$ M. Rotondo, ${ }^{56}$ F. Simonetto, ${ }^{56}$ R. Stroili, ${ }^{56}$ C. Voci, ${ }^{56}$ E. Ben-Haim, ${ }^{57}$ H. Briand,,${ }^{57}$ G. Calderini, ${ }^{57}$ J. Chauveau, ${ }^{57}$ P. David,,${ }^{57}$ L. Del Buono, ${ }^{57}$ Ch. de la Vaissière, ${ }^{57}$ O. Hamon, ${ }^{57}$ Ph. Leruste, ${ }^{57}$ J. Malclès,,${ }^{57}$ J. Ocariz, ${ }^{57}$ A. Perez,,${ }^{57}$ L. Gladney, ${ }^{58}$ M. Biasini, ${ }^{59}$ R. Covarelli, ${ }^{59}$ E. Manoni, ${ }^{59}$ C. Angelini, ${ }^{60}$
G. Batignani, ${ }^{60}$ S. Bettarini, ${ }^{60}$ M. Carpinelli, ${ }^{60}$ R. Cenci, ${ }^{60}$ A. Cervelli, ${ }^{60}$ F. Forti, ${ }^{60}$ M. A. Giorgi, ${ }^{60}$ A. Lusiani, ${ }^{60}$ G. Marchiori, ${ }^{60}$ M. A. Mazur, ${ }^{60}$ M. Morganti, ${ }^{60}$ N. Neri, ${ }^{60}$ E. Paoloni, ${ }^{60}$ G. Rizzo, ${ }^{60}$ J. J. Walsh, ${ }^{60}$ M. Haire, ${ }^{61}$ J. Biesiada, ${ }^{62}$ P. Elmer, ${ }^{62}$ Y. P. Lau, ${ }^{62}$ C. Lu, ${ }^{62}$ J. Olsen, ${ }^{62}$ A. J.S. Smith, ${ }^{62}$ A. V. Telnov, ${ }^{62}$ E. Baracchini, ${ }^{63}$ F. Bellini, ${ }^{63}$ G. Cavoto, ${ }^{63}$ A. D'Orazio, ${ }^{63}$ D. del Re, ${ }^{63}$ E. Di Marco, ${ }^{63}$ R. Faccini, ${ }^{63}$ F. Ferrarotto, ${ }^{63}$ F. Ferroni, ${ }^{63}$ M. Gaspero, ${ }^{63}$ P. D. Jackson, ${ }^{63}$ L. Li Gioi, ${ }^{63}$ M. A. Mazzoni, ${ }^{63}$ S. Morganti, ${ }^{63}$ G. Piredda, ${ }^{63}$ F. Polci, ${ }^{63}$ F. Renga, ${ }^{63}$ C. Voena, ${ }^{63}$ M. Ebert, ${ }^{64}$ T. Hartmann, ${ }^{64}$ H. Schröder, ${ }^{64}$ R. Waldi, ${ }^{64}$ T. Adye, ${ }^{65}$ G. Castelli, ${ }^{65}$ B. Franek, ${ }^{65}$ E. O. Olaiya, ${ }^{65}$ S. Ricciardi, ${ }^{65}$ W. Roethel, ${ }^{65}$
F. F. Wilson, ${ }^{65}$ R. Aleksan, ${ }^{66}$ S. Emery, ${ }^{66}$ M. Escalier, ${ }^{66}$ A. Gaidot, ${ }^{66}$ S. F. Ganzhur, ${ }^{66}$ G. Hamel de Monchenault, ${ }^{66}$ W. Kozanecki, ${ }^{66}$ G. Vasseur, ${ }^{66}$ Ch. Yèche, ${ }^{66}$ M. Zito, ${ }^{66}$ X. R. Chen, ${ }^{67}$ H. Liu, ${ }^{67}$ W. Park, ${ }^{67}$ M. V. Purohit, ${ }^{67}$ J. R. Wilson, ${ }^{67}$
M. T. Allen, ${ }^{68}$ D. Aston, ${ }^{68}$ R. Bartoldus, ${ }^{68}$ P. Bechtle, ${ }^{68}$ N. Berger, ${ }^{68}$ R. Claus, ${ }^{68}$ J. P. Coleman, ${ }^{68}$ M. R. Convery, ${ }^{68}$ J. C. Dingfelder, ${ }^{68}$ J. Dorfan, ${ }^{68}$ G. P. Dubois-Felsmann, ${ }^{68}$ W. Dunwoodie, ${ }^{68}$ R. C. Field, ${ }^{68}$ T. Glanzman, ${ }^{68}$ S. J. Gowdy, ${ }^{68}$ M. T. Graham, ${ }^{68}$ P. Grenier, ${ }^{68}$ C. Hast, ${ }^{68}$ T. Hryn'ova, ${ }^{68}$ W. R. Innes,,${ }^{68}$ J. Kaminski, ${ }^{68}$ M. H. Kelsey, ${ }^{68}$ H. Kim, ${ }^{68}$ P. Kim, ${ }^{68}$ M. L. Kocian,,68 D. W. G. S. Leith, ${ }^{68}$ S. Li, ${ }^{68}$ S. Luitz, ${ }^{68}$ V. Luth, ${ }^{68}$ H. L. Lynch, ${ }^{68}$ D. B. MacFarlane, ${ }^{68}$ H. Marsiske, ${ }^{68}$ R. Messner, ${ }^{68}$ D. R. Muller, ${ }^{68}$ C. P. O'Grady, ${ }^{68}$ I. Ofte, ${ }^{68}$ A. Perazzo, ${ }^{68}$ M. Perl, ${ }^{68}$ T. Pulliam, ${ }^{68}$ B. N. Ratcliff, ${ }^{68}$ A. Roodman, ${ }^{68}$ A. A. Salnikov, ${ }^{68}$ R. H. Schindler, ${ }^{68}$ J. Schwiening, ${ }^{68}$ A. Snyder, ${ }^{68}$ J. Stelzer, ${ }^{68}$ D. Su, ${ }^{68}$ M. K. Sullivan, ${ }^{68}$ K. Suzuki, ${ }^{68}$ S. K. Swain, ${ }^{68}$ J. M. Thompson, ${ }^{68}$ J. Va'vra, ${ }^{68}$ N. van Bakel, ${ }^{68}$ A. P. Wagner, ${ }^{68}$ M. Weaver, ${ }^{68}$ W. J. Wisniewski, ${ }^{68}$ M. Wittgen, ${ }^{68}$ D. H. Wright, ${ }^{68}$ A. K. Yarritu, ${ }^{68}$ K. Yi, ${ }^{68}$ C. C. Young, ${ }^{68}$ P. R. Burchat, ${ }^{69}$ A. J. Edwards, ${ }^{69}$ S. A. Majewski, ${ }^{69}$ B. A. Petersen, ${ }^{69}$ L. Wilden, ${ }^{69}$ S. Ahmed, ${ }^{70}$ M. S. Alam, ${ }^{70}$ R. Bula, ${ }^{70}$ J. A. Ernst, ${ }^{70}$ V. Jain, ${ }^{70}$ B. Pan, ${ }^{70}$ M. A. Saeed, ${ }^{70}$ F. R. Wappler, ${ }^{70}$ S. B. Zain, ${ }^{70}$ W. Bugg, ${ }^{71}$ M. Krishnamurthy, ${ }^{71}$ S. M. Spanier, ${ }^{71}$ R. Eckmann, ${ }^{72}$ J. L. Ritchie, ${ }^{72}$ A. M. Ruland, ${ }^{72}$ C. J. Schilling, ${ }^{72}$ R.F. Schwitters, ${ }^{72}$ J. M. Izen, ${ }^{73}$ X. C. Lou, ${ }^{73}$ S. Ye, ${ }^{73}$ F. Bianchi, ${ }^{75}$ F. Gallo, ${ }^{74}$ D. Gamba, ${ }^{74}$ M. Pelliccioni ${ }^{74}$ M. Bomben, ${ }^{75}$ L. Bosisio, ${ }^{75}$ C. Cartaro, ${ }^{75}$ F. Cossutti, ${ }^{75}$ G. Della Ricca, ${ }^{75}$ L. Lanceri, ${ }^{75}$ L. Vitale, ${ }^{75}$ V. Azzolini, ${ }^{76}$ N. Lopez-March, ${ }^{76}$ F. Martinez-Vidal, ${ }^{76,8}$ D. A. Milanes, ${ }^{76}$ A. Oyanguren, ${ }^{76}$ J. Albert, ${ }^{77}$ Sw. Banerjee, ${ }^{77}$ B. Bhuyan, ${ }^{77}$ K. Hamano, ${ }^{77}$ R. Kowalewski, ${ }^{77}$ I. M. Nugent, ${ }^{77}$ J. M. Roney, ${ }^{77}$ R. J. Sobie, ${ }^{77}$ J. J. Back, ${ }^{78}$ P. F. Harrison, ${ }^{78}$ J. Ilic, ${ }^{78}$ T. E. Latham, ${ }^{78}$ G. B. Mohanty, ${ }^{78}$ M. Pappagallo, ${ }^{78, \|}$ H. R. Band, ${ }^{79}$ X. Chen, ${ }^{79}$ S. Dasu, ${ }^{79}$ K. T. Flood, ${ }^{79}$ J. J. Hollar, ${ }^{79}$ P. E. Kutter, ${ }^{79}$ Y. Pan, ${ }^{79}$ M. Pierini, ${ }^{79}$ R. Prepost, ${ }^{79}$ S. L. Wu, ${ }^{79}$ and H. Neal ${ }^{80}$

(The BABAR Collaboration)

${ }^{1}$ Laboratoire de Physique des Particules, IN2P3/CNRS et Université de Savoie, F-74941 Annecy-Le-Vieux, France
${ }^{2}$ Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
${ }^{3}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
${ }^{4}$ University of Bergen, Institute of Physics, N-5007 Bergen, Norway
${ }^{5}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
${ }^{6}$ University of Birmingham, Birmingham B15 2TT, United Kingdom
${ }^{7}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
${ }^{8}$ University of Bristol, Bristol BS8 1TL, United Kingdom
${ }^{9}$ University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
${ }^{10}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
${ }^{11}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
${ }^{12}$ University of California at Irvine, Irvine, California 92697, USA
${ }^{13}$ University of California at Los Angeles, Los Angeles, California 90024, USA
${ }^{14}$ University of California at Riverside, Riverside, California 92521, USA
${ }^{15}$ University of California at San Diego, La Jolla, California 92093, USA
${ }^{16}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
${ }^{17}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
${ }^{18}$ California Institute of Technology, Pasadena, California 91125, USA
${ }^{19}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
${ }^{20}$ University of Colorado, Boulder, Colorado 80309, USA
${ }^{21}$ Colorado State University, Fort Collins, Colorado 80523, USA
${ }^{22}$ Universität Dortmund, Institut für Physik, D-44221 Dortmund, Germany
${ }^{23}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
${ }^{24}$ Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, F-91128 Palaiseau, France
${ }^{25}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
${ }^{26}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
${ }^{27}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
${ }^{28}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
${ }^{29}$ Harvard University, Cambridge, Massachusetts 02138, USA

${ }^{30}$ Universität Heidelberg, Physikalisches Institut, Philosophenweg 12, D-69120 Heidelberg, Germany
${ }^{31}$ Imperial College London, London SW7 2AZ, United Kingdom
${ }^{32}$ University of Iowa, Iowa City, Iowa 52242, USA
${ }^{33}$ Iowa State University, Ames, Iowa 50011-3160, USA
${ }^{34}$ Johns Hopkins University, Baltimore, Maryland 21218, USA
${ }^{35}$ Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
${ }^{36}$ Laboratoire de l'Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d'Orsay, BP 34, F-91898 Orsay Cedex, France
${ }^{37}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
${ }^{38}$ University of Liverpool, Liverpool L69 7ZE, United Kingdom
${ }^{39}$ Queen Mary, University of London, London E1 4NS, United Kingdom
${ }^{40}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
${ }^{41}$ University of Louisville, Louisville, Kentucky 40292, USA
${ }^{42}$ University of Manchester, Manchester M13 9PL, United Kingdom
${ }^{43}$ University of Maryland, College Park, Maryland 20742, USA
${ }^{44}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
${ }^{45}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
${ }^{46}$ McGill University, Montréal, Québec, Canada H3A $2 T 8$
${ }^{47}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
${ }^{48}$ University of Mississippi, University, Mississippi 38677, USA
${ }^{49}$ Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C $3 J 7$
${ }^{50}$ Mount Holyoke College, South Hadley, Massachusetts 01075, USA
${ }^{51}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126 Napoli, Italy
${ }^{52}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
${ }^{53}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
${ }^{54}$ Ohio State University, Columbus, Ohio 43210, USA
${ }^{55}$ University of Oregon, Eugene, Oregon 97403, USA
${ }^{56}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
${ }^{57}$ Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France
${ }^{58}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
${ }^{59}$ Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
${ }^{60}$ Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
${ }^{61}$ Prairie View A\&M University, Prairie View, Texas 77446, USA
${ }^{62}$ Princeton University, Princeton, New Jersey 08544, USA
${ }^{63}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
${ }^{64}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{65}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, United Kingdom
${ }^{66}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
${ }^{67}$ University of South Carolina, Columbia, South Carolina 29208, USA
${ }^{68}$ Stanford Linear Accelerator Center, Stanford, California 94309, USA
${ }^{69}$ Stanford University, Stanford, California 94305-4060, USA
${ }^{70}$ State University of New York, Albany, New York 12222, USA
${ }^{71}$ University of Tennessee, Knoxville, Tennessee 37996, USA
${ }^{72}$ University of Texas at Austin, Austin, Texas 78712, USA
${ }^{73}$ University of Texas at Dallas, Richardson, Texas 75083, USA
${ }^{74}$ Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
${ }^{75}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
${ }^{76}$ IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
${ }^{77}$ University of Victoria, Victoria, British Columbia, Canada V8W 3P6
${ }^{78}$ Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
${ }^{79}$ University of Wisconsin, Madison, Wisconsin 53706, USA
${ }^{80}$ Yale University, New Haven, Connecticut 06511, USA
(Received 6 July 2007; published 2 May 2008)

We report on our search for decays proceeding via a tree-level $b \rightarrow c$ quark transition in which a gluon radiates into an $s \bar{s}$ pair. We present observations of the decays $B^{-} \rightarrow D_{s}^{(*)+} K^{-} \pi^{-}$and $\bar{B}^{0} \rightarrow D_{s}^{+} K_{S}^{0} \pi^{-}$ and evidence for $B^{-} \rightarrow D_{s}^{+} K^{-} K^{-}$and set upper limits on the branching fractions for $\bar{B}^{0} \rightarrow D_{s}^{*+} K_{S}^{0} \pi^{-}$ and $B^{-} \rightarrow D_{s}^{*+} K^{-} K^{-}$using $383 \times 10^{6} Y(4 S) \rightarrow B \bar{B}$ events collected by the BABAR detector at SLAC. We present evidence that the invariant mass distributions of $D_{s}^{(*)+} K^{-}$pairs from $B^{-} \rightarrow D_{s}^{(*)+} K^{-} \pi^{-}$
decays are inconsistent with the phase-space model, suggesting the presence of charm resonances lying below the $D_{s}^{(*)+} K^{-}$threshold.

DOI: 10.1103/PhysRevLett.100.171803
PACS numbers: $13.25 . \mathrm{Hw}, 11.30 . \mathrm{Er}, 12.15 . \mathrm{Hh}$

Evidence for inclusive flavor correlated production of D_{s}^{+}in B^{-}decays was reported recently [1] with a branching fraction of $\mathcal{B}\left(B^{-} \rightarrow D_{s}^{+} X\right)=(1.2 \pm 0.4) \%$ [2]. These decays, along with $B^{-} \rightarrow D_{s}^{*+} X$, are mediated by a $b \rightarrow c$ quark transition and the production of an $s \bar{s}$ pair from the vacuum via radiative gluon pair production resulting in at least three final state particles. Examples for three-body B^{-}decays with a $D_{s}^{(*)+}$ in the final state are $B^{-} \rightarrow$ $D_{s}^{(*)+} K^{-} \pi^{-}$. The dominant Feynman diagram for these decays is shown in Fig. 1. The corresponding \bar{B}^{0} decays are $\bar{B}^{0} \rightarrow D_{s}^{(*)+} \bar{K}^{0} \pi^{-}$. By replacing the π^{-}in Fig. 1 with a K^{-}, we get the Cabibbo-suppressed decays $B^{-} \rightarrow$ $D_{s}^{(*)+} K^{-} K^{-}$.
Besides the dominant diagram, $B^{-} \rightarrow D_{s}^{(*)+} K^{-} \pi^{-}$can occur via the color-suppressed diagram where the constituent \vec{u} 's of the K^{-}and π^{-}are switched. Although a colorsuppressed contribution does not exist for $\bar{B}^{0} \rightarrow$ $D_{s}^{(*)+} \bar{K}^{0} \pi^{-}$, a subdominant contribution from a W-exchange diagram with $s \bar{s}$ and $d \bar{d}$ popping may exist instead. Either of these contributions could cause a deviation from the naive expectation of two for the ratio $\mathcal{B}\left(B^{-} \rightarrow D_{s}^{(*)+} K^{-} \pi^{-}\right) / \mathcal{B}\left(\bar{B}^{0} \rightarrow D_{s}^{(*)+} K_{S}^{0} \pi^{-}\right)$.

The $D_{s}^{(*)} K$ can come from intermediate charm resonances instead of directly from the B. It has been proposed that these resonances can play a significant role in $B^{-} \rightarrow$ $D_{s}^{+} K^{-} \pi^{-}$decays [3] despite their masses lying below the $m\left(D_{s} K\right)$ production threshold [4]. In this case, it may be possible to measure the parameters of the resonances such as their masses and widths, complementary to the analysis using $B \rightarrow \bar{D} \pi \pi$ decays [4].

No exclusive decays proceeding via radiative gluon $s \bar{s}$ pair production at the tree level have hitherto been observed. Upper limits on $\mathcal{B}\left(B^{-} \rightarrow D_{s}^{(*)+} K^{-} \pi^{-}\right)$and $\mathcal{B}\left(\bar{B}^{0} \rightarrow D_{s}^{(*)+} K_{S}^{0} \pi^{-}\right)$have been placed by ARGUS [5]. In this Letter we report first observations of the decay modes $B^{-} \rightarrow D_{s}^{(*)+} K^{-} \pi^{-}$and $\bar{B}^{0} \rightarrow D_{s}^{+} K_{S}^{0} \pi^{-}$, evidence for $B^{-} \rightarrow D_{s}^{+} K^{-} K^{-}$, and limits on $\mathcal{B}\left(\bar{B}^{0} \rightarrow D_{s}^{*+} K_{S}^{0} \pi^{-}\right)$

FIG. 1. Feynman diagram for $B^{-} \rightarrow D_{s}^{(*)+} K^{-} \pi^{-}$.
and $\mathcal{B}\left(B^{-} \rightarrow D_{s}^{*+} K^{-} K^{-}\right)$. We also present $D_{s}^{(*)+} K^{-}$invariant mass distributions from $B^{-} \rightarrow D_{s}^{(*)+} K^{-} \pi^{-}$decays and compare them to the spectra obtained from a phasespace model.

The analysis uses approximately $383 \times 10^{6} \mathrm{Y}(4 S) \rightarrow$ $B \bar{B}$ events created by the PEP-II $e^{+} e^{-}$collider and collected by the BABAR detector. The BABAR detector is described elsewhere [6].

Optimal selection criteria and probability density functions of selection variables are determined by an analysis based on Monte Carlo (MC) simulation of both signal and background events. We use geant4 [7] software to simulate interactions of particles traversing the BABAR detector, taking into account the varying detector conditions and beam backgrounds. We verify with MC simulation that resolutions and background levels correctly describe the data.

Candidate D_{s}^{+}mesons are reconstructed in the modes $D_{s}^{+} \rightarrow \phi \pi^{+}, \bar{K}^{* 0} K^{+}$, and $K_{S}^{0} K^{+}$, with $\phi \rightarrow K^{+} K^{-}$, $\bar{K}^{* 0} \rightarrow K^{-} \pi^{+}$, and $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$. The K_{S}^{0} candidates are reconstructed from two oppositely charged tracks coming from a common vertex displaced from the $e^{+} e^{-}$interaction point. We require the significance of this displacement (the measured K_{S}^{0} flight distance divided by its estimated error) to exceed 2. All other tracks are required to originate less than 1.5 cm away from the $e^{+} e^{-}$interaction point in the transverse plane and less than 10 cm along the beam axis. Charged kaon candidates must satisfy identification criteria that are typically around 92% efficient [8], depending on momentum and polar angle, and have a pion misidentification rate at the 5% level. The $\phi \rightarrow K^{+} K^{-}, \bar{K}^{* 0} \rightarrow$ $K^{-} \pi^{+}$, and $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$candidates are required to have invariant masses within $\pm 15, \pm 50$, and $\pm 10 \mathrm{MeV} / c^{2}$ of their nominal masses, respectively [9].

The full polarization of the $\bar{K}^{* 0}$ and ϕ mesons from the D_{s}^{+}decays is exploited to reject backgrounds through the use of the helicity angle θ_{H}, defined as the angle between the K^{-}momentum vector and the direction of flight of the D_{s}^{+}in the $\bar{K}^{* 0}$ or ϕ rest frame. The $\bar{K}^{* 0}$ and ϕ candidates are required to have $\left|\cos \theta_{H}\right|>0.5$.

The D_{s}^{*+} candidates are reconstructed in the mode $D_{s}^{*+} \rightarrow D_{s}^{+} \gamma$. Photons from D_{s}^{*+} candidates are accepted if their energy is greater than 100 MeV . They are rejected if, when combined with any other photon having an energy greater than 150 MeV , they belong to a photon pair whose invariant mass lies within $\pm 10 \mathrm{MeV} / c^{2}$ of the π^{0} mass. The D_{s}^{+}candidates are required to have invariant masses in the interval $\pm 10 \mathrm{MeV} / c^{2}$ of the nominal D_{s}^{+}mass while the invariant masses of D_{s}^{*+} candidates lie in the range from $m\left(D_{s}^{*+}\right)-15 \mathrm{MeV} / c^{2}$ to $m\left(D_{s}^{*+}\right)+10 \mathrm{MeV} / c^{2}$.

All D_{s}^{+}candidates are subjected to a mass-constrained fit after selection. The invariant mass of the D_{s}^{*+} is calculated after the mass constraint on the daughter D_{s}^{+}has been applied. Subsequently, all D_{s}^{*+} candidates are subjected to mass-constrained fits. To eliminate $\bar{B}^{0} \rightarrow D_{s}^{(*)+} D^{-}$, $D^{-} \rightarrow K_{S}^{0} \pi^{-}$events from the $\bar{B}^{0} \rightarrow D_{s}^{(*)+} K_{S}^{0} \pi^{-}$samples, the $K_{S}^{0} \pi^{-}$invariant mass must be outside a $40 \mathrm{MeV} / c^{2}$ window around the D^{-}mass.

Finally, the B meson candidates are formed using the reconstructed combinations of $D_{s}^{+} K^{-} \pi^{-}, D_{s}^{*+} K^{-} \pi^{-}$, $D_{s}^{+} K_{S}^{0} \pi^{-}, D_{s}^{*+} K_{S}^{0} \pi^{-}, D_{s}^{+} K^{-} K^{-}$, and $D_{s}^{*+} K^{-} K^{-}$.

Background from continuum $q \bar{q}$ production (where $q=$ u, d, s, c) is suppressed based on the event topology. The event shape variables, R_{2} (the ratio of the second to zeroth Fox-Wolfram moments [10]) and L_{2} / L_{0} (the ratio of the second and zeroth angular moments of the energy flow about the B thrust axis [11]), are combined in a Fisher discriminant (\mathcal{F}) to exploit the difference between the shapes of $e^{+} e^{-} \rightarrow B \bar{B}$ and $e^{+} e^{-} \rightarrow q \bar{q}$ events. A selection is applied to \mathcal{F} such that 80% of continuum background is rejected while maintaining 80% signal efficiency.

The signals are extracted using the energy-substituted mass $m_{\mathrm{ES}} \equiv \sqrt{E_{b}^{* 2}-\left(\sum_{i} \mathbf{p}_{i}^{*}\right)^{2}}$ and the energy difference $\Delta E \equiv \sum_{i} \sqrt{m_{i}^{2}+\mathbf{p}_{i}^{* 2}}-E_{b}^{*}$, where E_{b}^{*} is the beam energy in the laboratory frame, \mathbf{p}_{i}^{*} is the momentum of the daughter particle i of the B meson candidate also in the laboratory frame, and m_{i} is the mass hypothesis for particle i. For signal events, $m_{\text {ES }}$ peaks at the B meson mass with a resolution of about $2.6 \mathrm{MeV} / c^{2}$ and ΔE peaks near zero with a resolution of 13 MeV . The B candidates are required to have $|\Delta E|<25 \mathrm{MeV}$ and $m_{\mathrm{ES}}>5.2 \mathrm{GeV} / c^{2}$. After all selection criteria are applied, we find the fraction of events containing more than one B candidate to be between 3% and 11% depending on the decay mode. In these instances, the B candidate with ΔE closest to zero is chosen. Estimated B reconstruction efficiencies are shown in Table I.

Background events that pass these selection criteria are represented by approximately equal amounts of $q \bar{q}$ continuum and $B \bar{B}$ events. We parametrize their $m_{E S}$ distributions by a threshold function [12]:

$$
f\left(m_{\mathrm{ES}}\right) \sim m_{\mathrm{ES}} \sqrt{1-x^{2}} \exp \left[-\xi\left(1-x^{2}\right)\right]
$$

where $x=2 m_{\mathrm{ES}} / \sqrt{s}, \sqrt{s}$ is the total energy of the beams in their center of mass frame, and ξ is a fit parameter.

A study using simulated B decays reveals significant numbers of background events peaking in the regions of $5.272<m_{\mathrm{ES}}<5.288 \mathrm{GeV} / c^{2}$ and $|\Delta E|<25 \mathrm{MeV}$ similar to the reconstructed signal candidates. This peaking background is due to charmless and charmonium B decays with the same sets of final state particles as signal. The peaking contribution is evaluated using data by reconstructing $D_{s}^{(*)+} K^{-} \pi^{-}, D_{s}^{(*)+} K_{S}^{0} \pi^{-}$, and $D_{s}^{(*)+} K^{-} K^{-}$combinations, where " D_{s}^{+}" candidates are selected from $25-40 \mathrm{MeV} / c^{2}$ sidebands around the D_{s}^{+}nominal mass. In this procedure, we use the same selection requirements as for the signal except that " D_{s}^{+}" candidates are not mass constrained. Studies reveal that constraining the D_{s}^{+}mass does not significantly affect the resolutions of m_{ES} and ΔE distributions and that events in the D_{s}^{+}mass sidebands are good representations of the background under the D_{s}^{+} peak. Table I shows the fit yields of peaking background contributions under the $m_{\text {ES }}$ peaks for each mode.

A matrix is constructed to study the cross feed between the signal modes. Its elements describe the contributions of each mode according to the levels seen in MC samples. No off-diagonal element of the cross-feed matrix exceeds 2%; this near-diagonal structure indicates effective suppression of the cross-feed contributions by application of the selection criteria.

Figure 2 shows the m_{ES} spectra of the reconstructed B candidates. For each mode, we perform an extended unbinned maximum likelihood fit to the m_{ES} distributions using candidates from all D_{s}^{+}decay modes combined. The distributions are then fit with the sum of two functions:

TABLE I. Summary of results for the total detection efficiencies ε excluding subsequent branching fractions of $D_{s}^{(*)}$ decay modes $\left(D_{s}^{*+} \rightarrow D_{s}^{+} \gamma, D_{s}^{+} \rightarrow \phi \pi^{+}, \bar{K}^{* 0} K^{+}, K_{S}^{0} K^{+}\right.$), expected peaking background $n_{\text {peaking }}$ with statistical uncertainties from fits of the m_{ES} distributions obtained using D_{s}^{+}mass sidebands, final signal $n_{\text {sig }}$ and background $n_{\text {bkg }}$ yields with statistical uncertainties from m_{ES} fits adjusted for estimated peaking backgrounds and cross-feed contributions, branching fractions \mathcal{B} with statistical and systematic uncertainties, significances $s(\sigma)$ calculated by comparing the likelihood maximum of the nominal fit to that of the fit with the signal yield fixed to the difference between the raw and corrected signal yields, and upper limits on $\mathcal{B}\left(\bar{B}^{0} \rightarrow D_{s}^{*+} K_{S}^{0} \pi^{-}\right)$and $\mathcal{B}\left(B^{-} \rightarrow\right.$ $D_{s}^{*+} K^{-} K^{-}$). Background yields n_{bkg} are selected in the region $5.27-5.29 \mathrm{GeV} / c^{2}$.

Mode	$\varepsilon_{\phi \pi}$	$\varepsilon_{\bar{K}^{*} K}$	$\varepsilon_{K_{s}^{0}} K$	$n_{\text {peaking }}$	$n_{\text {sig }}$	$n_{\text {bkg }}$	$\mathcal{B} \times 10^{-4}$	$s(\sigma)$	Upper limits (90\% C.L.)
$B^{-} \rightarrow D_{s}^{+} K^{-} \pi^{-}$	11.1%	6.8%	9.6%	41 ± 9	430 ± 29	182 ± 6	$2.02 \pm 0.13 \pm 0.38$	21	-
$B^{-} \rightarrow D_{s}^{*+} K^{-} \pi^{-}$	5.9%	3.6%	5.1%	4 ± 5	178 ± 18	87.1 ± 3.5	$1.67 \pm 0.16 \pm 0.35$	14	-
$\bar{B}^{0} \rightarrow D_{s}^{+} K_{S}^{0} \pi^{-}$	8.8%	5.3%	7.6%	28 ± 6	61.8 ± 14.4	94.5 ± 5.5	$0.55 \pm 0.13 \pm 0.10$	5.2	-
$\bar{B}^{0} \rightarrow D_{s}^{*+} K_{S}^{0} \pi^{-}$	3.8%	2.3%	3.4%	-1.1 ± 2.7	13.6 ± 8.4	62.8 ± 3.4	$0.29 \pm 0.18 \pm 0.07$	1.8	0.55×10^{-4}
$B^{-} \rightarrow D_{s}^{+} K^{-} K^{-}$	7.1%	4.3%	6.3%	-0.3 ± 1.9	14.4 ± 5.6	9.8 ± 1.3	$0.11 \pm 0.04 \pm 0.02$	3.3	-
$B^{-} \rightarrow D_{s}^{*+} K^{-} K^{-}$	3.8%	2.4%	3.5%	-1.7 ± 1.3	4.7 ± 4.0	6.5 ± 0.9	$0.07 \pm 0.06 \pm 0.02$	1.3	0.15×10^{-4}

FIG. 2 (color online). $m_{\text {ES }}$ spectra for all modes as labeled. Solid curves show the fits described in the text. Dashed lines in the signal regions correspond to the peaking and nonpeaking background components of the fit. The data are the points with error bars.
$f\left(m_{\mathrm{ES}}\right)$ characterizing the combinatorial background and a Gaussian function to describe the signal. The likelihood function is given by

$$
\mathcal{L}=\frac{e^{-\left(n_{\mathrm{sig}}+n_{\mathrm{bkg}}\right)}}{N!} \prod_{i=1}^{N}\left(n_{\mathrm{sig}} P_{i}^{\mathrm{sig}}+n_{\mathrm{bkg}} P_{i}^{\mathrm{bkg}}\right)
$$

where P_{i}^{sig} and P_{i}^{bkg} are the probability density functions for signal and background, $n_{\text {sig }}$ and $n_{\text {bkg }}$ are the number of signal and background events, and N is the total number of events in the fit.

Final signal yields (column $n_{\text {sig }}$ of Table I) are obtained by subtracting the estimated peaking background and cross-feed contributions from the yields of the $m_{\text {ES }}$ fits described in the preceding paragraph. No peaking background is subtracted from modes that have $n_{\text {peaking }}$ less than zero in Table I because these values are consistent with zero. However, their errors are still propagated. The total signal yield in each B decay mode is related to the B branching fraction by $\mathcal{B}=n_{\text {sig }} /\left(N_{B \bar{B}} \cdot \sum_{i} \mathcal{B}_{i} \cdot \varepsilon_{i}\right)$, where $N_{B \bar{B}}$ is the number of produced $B \bar{B}$ pairs, \mathcal{B}_{i} is the product of the intermediate branching ratios, ε_{i} is the reconstruction efficiency (from Table I), and the sum is over D_{s}^{+} modes $\left(i=\phi \pi^{+}, \bar{K}^{* 0} K^{+}, K_{S}^{0} K^{+}\right)$. As an input to the calculations, we used branching fraction numbers from [9]. Results are summarized in Table I.

The total relative systematic uncertainty in the B branching fractions is estimated to be approximately $19 \%-25 \%$ depending on the decay mode. The largest contribution, an uncertainty of 15%, comes from the D_{s}^{+}branching fractions. The differences between selection efficiencies in MC simulation and in the data (estimated using the control mode $B^{-} \rightarrow D_{s}^{-} D^{0}, D^{0} \rightarrow K^{-} \pi^{+}$) contribute to the sys-

FIG. 3 (color online). $D_{s}^{(*)+} K^{-}$invariant mass spectra using data (points with error bars) and nonresonant signal MC events scaled to the number of events in data (solid curves) subjected to signal selection described in the text and $m_{\mathrm{ES}}>5.270 \mathrm{GeV} / c^{2}$. Combinatorial background is approximated and then subtracted using events outside the signal region ($m_{\mathrm{ES}}<5.265 \mathrm{GeV} / c^{2}$).
tematic uncertainty $(5 \%-10 \%)$ as does the efficiency dependence on the $D_{s}^{(*)+} K^{-}$invariant mass spectrum (7\%9%). In the m_{ES} fits of the lower statistics modes ($D_{s}^{*+} K_{S}^{0} \pi^{-}, D_{s}^{*+} K^{-} K^{-}$) the signal Gaussian parameters and \sqrt{s} in $f\left(m_{\mathrm{ES}}\right)$ are fixed to ensure fit convergence. The associated systematic uncertainties are 14% and 9%, respectively. The cross-feed matrix elements affecting the $D_{s}^{(*)+} K^{-} K^{-}$modes vary by $8 \%(5 \%)$ when estimated with MC events weighted according to the observed spectra of the $D_{s}^{(*)+} K^{-}$invariant mass.

The invariant mass spectra of the $D_{s}^{(*)+} K^{-}$system in $B^{-} \rightarrow D_{s}^{(*)+} K^{-} \pi^{-}$reveal distributions incompatible with those of three-body phase space. As shown in Fig. 3, there are enhancements in the number of events at the lower ends of the $m\left(D_{s}^{(*)+} K^{-}\right)$spectra, suggesting the presence of charm resonances lying below the $D_{s}^{(*)+} K^{-}$threshold [3].

In summary, $B^{-} \rightarrow D_{s}^{+} K^{-} \pi^{-}, B^{-} \rightarrow D_{s}^{*+} K^{-} \pi^{-}$, and $\bar{B}^{0} \rightarrow D_{s}^{+} K_{S}^{0} \pi^{-}$decays are observed for the first time each with a significance greater than 5σ. Evidence for $B^{-} \rightarrow$ $D_{s}^{+} K^{-} K^{-}$is found with a significance slightly greater than 3σ. For channels with significances lower than 2σ, upper limits are set on $\mathcal{B}\left(\bar{B}^{0} \rightarrow D_{s}^{*+} K_{S}^{0} \pi^{-}\right)$and $\mathcal{B}\left(\bar{B}^{0} \rightarrow\right.$ $D_{s}^{*+} K_{S}^{0} \pi^{-}$) using a frequentist approach [9] and taking into account the systematic uncertainties. The ratios $\mathcal{B}\left(B^{-} \rightarrow D_{s}^{(*)+} K^{-} K^{-}\right) / \mathcal{B}\left(B^{-} \rightarrow D_{s}^{(*)+} K^{-} \pi^{-}\right)$are consistent with the expected Cabibbo suppression. That $\mathcal{B}\left(\bar{B}^{0} \rightarrow\right.$ $\left.D_{s}^{+} K_{S}^{0} \pi^{-}\right)$is less than half of $\mathcal{B}\left(B^{-} \rightarrow D_{s}^{+} K^{-} \pi^{-}\right)$may be due to the W-exchange diagram correction to the neutral mode and the color-suppressed contribution to the charged mode.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support $B A B A R$. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from
the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.
*Deceased.
${ }^{\dagger}$ Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy.
${ }^{\ddagger}$ Also with Università della Basilicata, Potenza, Italy.
${ }^{\text {§ }}$ Also with Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain.
"Also with IPPP, Physics Department, Durham University, Durham DH1 3LE, United Kingdom.
[1] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 75, 072002 (2007).
[2] Charge conjugate reactions are implicitly included throughout this Letter.
[3] O. Antipin and G. Valencia, Phys. Lett. B 647, 164 (2007).
[4] K. Abe et al. (Belle Collaboration), Phys. Rev. D 69, 112002 (2004).
[5] H. Albrecht et al. (ARGUS Collaboration), Z. Phys. C 60, 11 (1993).
[6] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[7] S. Agostinelli et al. (Geant4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).
[8] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 553, 317 (2005).
[9] W.-M. Yao et al., J. Phys. G 33, 1 (2006).
[10] G.C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978).
[11] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 70, 032006 (2004).
[12] H. Albrecht et al. (ARGUS Collaboration), Z. Phys. C 48, 543 (1990).

