
Observation of two-dimensional nonlocal gap solitons

Per Dalgaard Rasmussen1,2, Francis H. Bennet1, Dragomir N. Neshev1, Andrey

A. Sukhorukov1, Christian R. Rosberg1, Wieslaw Krolikowski1, Ole Bang2, and

Yuri S. Kivshar1

1Nonlinear Physics Centre and Laser Physics Centre, Centre for Ultrahigh bandwidth

Devices for Optical Systems (CUDOS), Research School of Physical Sciences and

Engineering, Australian National University, Canberra, ACT 0200, Australia
2DTU Fotonik, Department of Photonics Engineering,

Technical University of Denmark, Ørsteds Plads 345V, DK-2800 Kgs., Lyngby, Denmark

We demonstrate, both theoretically and experimentally, the existence of nonlocal
gap solitons in two-dimensional periodic photonic structures with defocusing
thermal nonlinearity. We employ liquid-infiltrated photonic crystal fibers and show
how the system geometry can modify the effective response of a nonlocal medium
and the properties of two-dimensional gap solitons. c© 2008 Optical Society of
America

OCIS codes: 190.4420, 190.6135, 190.4870

The study of nonlinear wave propagation in periodic photonic structures has attracted a

lot of recent interest due to possibility to engineer both linear and nonlinear properties of the

material. In such systems, self-localized beams or lattice solitons can exist due to the interplay

between effective diffraction and nonlinearity. Lattice solitons have been observed in various

physical systems including optics [1], but only with on-site nonlinearity. The consideration

of long-range nonlinear interactions between lattice sites, on the other hand, have shown to

lead to novel nonlinear phenomena [2]. Such interactions appear when the nonlinear response

at a particular lattice site is affected by the light intensity not only at this site but also at its

neighbors. In periodic structures, long-range nonlinear interactions can naturally arise from

nonlocal response. Nonlocality is common to many physical systems [3], occurring due to

electrostatic interactions or diffusion processes, however, its effect in periodic structures has

not been investigated experimentally.

In this Letter we study nonlinear localized states in a two-dimensional (2D) periodic system

with nonlocal nonlinear interaction between the lattice sites and demonstrate, for the first

time to our knowledge, the formation of nonlocal gap solitons. We utilize the hexagonal
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lattice of the cladding of a photonic crystal fiber (PCF), where the holes are infiltrated with

a high-index weakly absorbing oil. The nonlinearity in our system is defocusing and has

thermal origin that arises due to the negative thermooptic coefficient of the oil, while the

nonlocality originates from the diffusive nature of heat transfer [4].

Nonlocal solitons have been experimentally studied in homogeneous media [5], but in peri-

odic structures only theoretical studies in the one-dimensional (1D) case can be found [6–9].

In defocusing materials, however, no nonlocal bright solitons have been observed to date.

Only recently, it has been theoretically shown that 1D nonlocal solitons can exist in periodic

structures with defocusing nonlinearity through localisation in the Bragg gap. In two dimen-

sions, however, the situation can become dramatically different, since a complete Bragg gap

only exists above a threshold value of the refractive index contrast [10,11].

Therefore, we first study theoretically the existence of 2D nonlocal gap solitons in hexag-

onal lattices [11]. We consider the paraxial beam propagation in a periodic system with

diffusive thermal nonlocal nonlinearity described by the equations,

iaz(x, y, z) +∇2
⊥a(x, y, z)− p2a(x, y, z)

= −[n0(x, y)− τ(x, y, z)f(x, y)]2q2a(x, y, z), (1)

∇2
⊥τ(x, y, z) = −|a(x, y, z)|2, (2)

where a(x, y, z) stands for the normalized envelope of the electric field, and τ(x, y, z) is the

normalized nonlinearly-induced temperature change. The transverse dimensions are scaled to

the pitch Λ, which is the distance between two adjacent holes [Fig. 1(a)]. q is the normalized

vacuum wavenumber, p is the normalized propagation constant, and n0(x, y) is the linear

periodic refractive index. f(x, y) is a normalized nonlinear coefficient with f(x, y) = 1 in the

holes and zero elsewhere. This is justified since the thermal nonlinear response of the liquid

dominates the thermal response of the glass. Due to our scaling −τ(x, y, z)f(x, y) can be

interpreted as the light induced index change.

Our structure [Fig. 1(a)] consists of high-index cylinders placed in a hexagonal pattern

inside a circle with radius R0 = 5Λ. R0 must be large enough to encompass all the high-

index cylinders and our results do not depend on its value. Away from the core the electric

field decays rapidly, and we can therefore assume that a vanishes at the boundary of our

computational domain R0. The boundary condition for the temperature field requires a more

careful analysis since commercially available PCFs often contain a large homogeneous region

of silica outside the last ring of holes. If we assume that the physical fiber has a radius R1 =

sR0 (s ≥ 1), and that the temperature at the outer boundary is constant, τ(r = sR0/Λ) = 0,

it can be shown that τ(R0/Λ)/τr(R0/Λ) = − log(s)R0/Λ. Here τr denotes differentiation with

respect to radial coordinate. The above relation is derived under the condition that the heat

distribution in the region from R0 to R1 is radially symmetric, and that there is no heat
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source in this region. The meaning of this relation is that one can practically control the

electric field inside the lattice by varying the homogeneous spatial extent of the fibre (where

the field is zero). This is a clear signature of the nonlocal thermal response, where the degree

of nonlocality in the system is measured by the parameter s = R1/R0. The larger s relates

to stronger nonlocality.

The 2D lattice with thermal nonlinearity is inherently finite because the nonlinearity relies

on the boundaries [4]. Therefore, we find the eigenmodes of Eq. (1) on the finite domain

shown in Fig. 1(a). The discrete spectrum of eigenvalues is divided into bands of closely

spaced values separated by large jumps, similarly to the Bloch states of an infinite periodic

lattice as shown in Fig. 1(b) (d/Λ = 0.5). In these calculations n(x, y) = 1.4605 in the holes,

and 1.46 elsewhere. A bandgap is seen to open up at q ≈ 140. In Fig. 1(b) the edges of the

first finite bandgap of the corresponding infinite periodic lattice are also plotted with solid

lines. At large q the edges of the first gap for the finite and the infinite structure almost

coincide, while at smaller values there are propagation constants where a gap exists in the

infinite, but does not exist in the finite structure.

The presence of the bandgap allows for existence of nonlinear localized states which for

defocusing nonlinearity bifurcate from the bottom of the first band. We find these modes by

looking for self-consistent z-independent solutions of Eqs. (1-2). Importantly, our calculations

presented in Fig. 2 show that the gap solitons occupy the whole bandgap, regardless of the

degree of nonlocality. We have tested this for different relative hole-diameters and outer

boundaries, and every time the gap solitons occupy the whole bandgap. This is in contrast

to earlier studies of asymmetric nonlocal response where solitons cease to exist at large

nonlocality [7].

In Fig. 2(a), we show the soliton power vs. effective index for different values of nonlocality

s. Notice that at high powers even solitons with propagation constants inside the second band

of the corresponding linear structure exist. This apparent contradiction is a result of the finite

size of our system which enables the temperature response to perturb the whole lattice, and

thereby change the linear dispersion bands. The same behavior was also recently reported

for a 1D system [9]. Another interesting feature seen in Fig. 2(a) is the decrease of the soliton

power at increased degree of nonlocality. This is somewhat counter-intuitive, as one might

expect that with increase of the thermal mass of the fibre (larger s) one would need to inject

more power in order to achieve the same nonlinear effect.

In Fig. 2(b) we plot the soliton width wa = (
∫
r2|a|2dxdy/

∫
|a|2dxdy)1/2 as a function of

nEff = p/q for different values of the nonlocality parameter s. The solitons are seen to localize

as they move further into the bandgap, until the effective index reaches approximately the

middle of the bandgap. Then the solitons start to delocalize again. This behavior is similar

to what has been observed for gap solitons with local nonlinearity [13]. The main effect of
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nonlocality in the system is the spatial broadening of the solitons with increasing parameter

s. This behavior is typical to other nonlocal nonlinear systems [3].

An example of a gap-soliton profile is shown in Fig. 3(a). An inherent signature of the

localization in the Bragg gap is the staggered phase structure shown in Fig. 3(b). This

staggered structure is in the form of concentric rings around the central hole and resembles

the electric field profile of one-dimensional gap solitons [12]. An important difference from gap

solitons with local nonlinearity is the actual induced index change. In the thermal nonlocal

case, this is represented by the induced temperature response [Fig. 3(d)] that is extended

fully towards the boundaries of the structure.

To verify experimentally our predictions that gap solitons exists in nonlocal 2D lattice,

we employ a system comprising the liquid-infiltrated PCF cladding, similar to our earlier

experiments [14]. We use a commercially available fibre LMA-15 (Crystal Fibre) with a

relative hole diameter d/Λ ≈ 0.498 and s ≈ 1. The cladding holes are filled by capillary

action with an index matching oil (n = 1.48). The fibre is placed in a temperature controlled

oven and heated to 76◦C such that the refractive index of the oil is reduced closer to the

index of silica. 532 nm light is butt coupled into a single infiltrated hole in the cladding, well

away from the core, using a single-mode fibre. In this system, we observe linear diffraction

at low input power (∼ 3 mW) [Fig. 4(a)], corresponding to propagation of approximately

three diffraction lengths. At high laser power (∼ 100 mW) [Fig. 4(b)] we observe nonlinear

self-localization to almost a single lattice site. Utilizing a pinhole we also measure the amount

of light in the input hole as a function of the power injected in the fibre [Fig. 4(c)]. This

dependence effectively represents the degree of localization achieved experimentally, and it

corresponds to the theoretical predictions in Fig. 2. Indeed, our experiments confirm that the

amount of localization is highest for intermediate powers, while the soliton is delocalised at

both band edges. In addition, we observe the alternating phase structure of the gap solitons

by producing an interference of the nonlinear mode [Fig. 4(b)] and a wide inclined reference

beam. In the resulting interferogram [Fig. 4(d)], the input hole is out of phase with the first

ring (upper line, expressed in a half-a-period shift in the interference fringes), while the first

ring has constant phase (lower line).

It is important to mention that in our previous experiments [14] utilising infiltrated fibers

with stronger nonlocality s ≈ 2, we observed no localization but only beam defocusing. This

is a direct consequence of the fact that the nonlocal solitons in those fibers are much wider

(due to the larger degree of nonlocality) and therefore they could not be excited via single

site coupling. In this presented work our nonlocal parameter is s = 1. Hence the observed

localization is an indication of the formation of nonlocal gap solitons.

In conclusion, we have studied theoretically and generated in experiment nonlocal gap

solitons in liquid-infiltrated photonic-crystal fibers. We have shown a possibility to control
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nonlocality in a realistic periodic structure by varying its boundaries.
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Figure Captions

Fig. 1. (Color online) (a) System geometry. (b) Bandgap structure for nS = 1.46, nL =

1.4605, and d/Λ = 0.5. Shaded regions correspond to the bands of the finite structure in (a),

while the solid lines show the edges of the first bandgap of an infinite lattice. The dashed

line indicates the index of the solid material nS.

Fig. 2. (Color online) Families of nonlocal gap solitons. (a,b) Power P =
∫
|E|2dr and

soliton width vs. effective index for different values of s. The normalized wave number is

q = 200. The dots correspond to the example in Fig. 3.

Fig. 3. (Color online) Numerically calculated nonlocal gap soliton for power P = 4·10−5 and

s = 10, marked with a dot in Fig. 2. (a) Intensity and (b) corresponding phase distribution.

(c) Soliton profile and (d) induced temperature change along the symmetry line shown white

dashed line in (a).

Fig. 4. (Color online) (a, b) Experimentally observed output diffraction pattern and soliton

localisation in a liquid infiltrated PCF, at low and high input power, respectively. (c) Fraction

of light in the input hole vs. input power. (d) Measured interference pattern of the output

beam with an inclined reference beam.
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Fig. 1. (Color online) (a) System geometry. (b) Bandgap structure for nS = 1.46, nL = 1.4605,
and d/Λ = 0.5. Shaded regions correspond to the bands of the finite structure in (a), while the
solid lines show the edges of the first bandgap of an infinite lattice. The dashed line indicates the
index of the solid material nS .

Fig. 2. (Color online) Families of nonlocal gap solitons. (a,b) Power P =
∫
|E|2dr and soliton

width vs. effective index for different values of s. The normalized wave number is q = 200. The dots
correspond to the example in Fig. 3.
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Fig. 3. (Color online) Numerically calculated nonlocal gap soliton for power P = 4 · 10−5 and
s = 10, marked with a dot in Fig. 2. (a) Intensity and (b) corresponding phase distribution. (c)
Soliton profile and (d) induced temperature change along the symmetry line shown white dashed
line in (a).
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Fig. 4. (Color online) (a, b) Experimentally observed output diffraction pattern and soliton local-
isation in a liquid infiltrated PCF, at low and high input power, respectively. (c) Fraction of light
in the input hole vs. input power. (d) Measured interference pattern of the output beam with an
inclined reference beam.
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