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Traveling wave parametric amplifiers (TWPAs) have recently emerged as essential tools for broad-
band near quantum-limited amplification. However, their use to generate microwave quantum states
still misses an experimental demonstration. In this letter, we report operation of a TWPA as a source
of two-mode squeezed microwave radiation. We demonstrate broadband entanglement generation
between two modes separated by up to 400 MHz by measuring logarithmic negativity between 0.27
and 0.51 and collective quadrature squeezing below the vacuum limit between 1.5 and 2.1 dB. This
work opens interesting perspectives for the exploration of novel microwave photonics experiments
with possible applications in quantum sensing and continuous variable quantum computing.

Frequency conversion and wave mixing processes in
nonlinear media allow manipulation and control of the
electromagnetic radiation [1] and are extensively used
for a broad range of applications including, for exam-
ple, coherent high harmonics generation [2], nonlinear
spectroscopy [3], nonlinear imaging [4] and quantum op-
tics experiments for the generation of entanglement and
squeezing [5, 6]. In the last two decades, it became pos-
sible to tailor such nonlinear interactions by engineering
artificial media with specifically designed nonlinear prop-
erties: nonlinear meta-materials [7–9]. Superconducting
quantum circuits based on Josephson junctions recently
gained a key role in this framework since they can be used
to engineer strong nonlinearities without dissipation.

Josephson junctions based nonlinar meta-materials [7,
8] have been successfully implemented as near quantum-
noise-limited traveling wave parametric amplifiers (TW-
PAs) [10–15]. However, the potential of these devices
goes far beyond amplification: since they offer large
bandwidth and flexible customization of the desired non-
linear response, they have been identified as very promis-
ing for the generation of two-mode squeezing and broad-
band entanglement [16–18].

Two-mode squeezing in superconducting circuits has
been demonstrated in narrow-band Josephson paramet-
ric amplifiers based on resonant structures [19–26], semi
infinite transmission lines via Dynamical Casimir Effect
[27–29] and surface acoustic wave hybrid systems [30].

The use of TWPAs as entanglement and two-mode
squeezing sources would have the advantage of a large
instantaneous bandwidth and customizable nonlineari-
ties, with potential novel applications for quantum sens-
ing [31, 32], quantum enhanced detection [33], quantum
teleportation with propagating waves [34] and quantum
information with continuous variables [35–37].

For TWPA devices, however, the presence of loss [38–
40] and the activation of spurious nonlinear processes,
such as harmonics [41] and sidebands generation [42],
have very soon been identified as strong limitations for
the observation of squeezing.

In this letter, by using an improved fabrication pro-
cess [43, 44] and optimizing the device length to mitigate
internal loss, we demonstrate generation of vacuum two-
mode squeezing in a Josephson TWPA.

The device is driven with a pump microwave tone at
frequency fp and the generated two-mode quantum state
is characterized via repeated measurements of the field
quadratures at the signal and idler frequencies fs and fi,
such that 2fp = fs + fi (four wave mixing interaction).
Given the broadband nature of TWPAs, entangled pairs
of signal/idler photons are generated in the entire am-
plification bandwidth of the device. The entanglement
between signal and idler modes is quantified by the re-
construction of the two-mode covariance matrix [45] and
the estimation of the logarithmic negativity [46]. We ob-
tain non-zero logarithmic negativity and inferred squeez-
ing of the collective quadratures between 1.5 and 2.1 dB
below the vacuum limit, for a maximum frequency sep-
aration between signal and idler of 400 MHz, set by the
capability of the adopted experimental setup. In addi-
tion, we verify the stability in time of the entanglement
generation by studying the statistical distribution of ex-
periments repeated over time scale of hours.

The adopted device is a Josephson TWPA whose unit
cell consists in a superconducting nonlinear asymmetric
inductive element (SNAIL) [47] operated in a dilution re-
frigerator at 20 mK. Such Josephson meta-material has
been recently demonstrated and successfully operated as
near quantum-limit broadband microwave amplifier [15].
The device used in this experiment is similar to the one
presented in [15], with the only difference of a reduced
length of the medium (250 cells) for loss mitigation (see
Supplemental Material for details). The device is oper-
ated in the 4-wave mixing regime at zero flux. An exter-
nal magnetic flux threading the SNAIL loops is set by a
superconducting coil located alongside the device sample
holder to counter stray fields.

When the TWPA is driven with pump frequency fp,
photon pairs are generated at signal and idler frequencies
fs and fi such that fs/i = fp±∆, via a two-mode squeez-
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FIG. 1. (a) Simplified sketch of the experimental setup for two-mode squeezing generation and detection. The Josephson
TWPA device is composed of 250 SNAIL-based unit cells and it is anchored at the 20 mK stage of a dilution refrigerator.
The input pump field is obtained via up conversion with an IQ mixer: the I and Q inputs at an intermediate frequency
(fpump-IF = 290 MHz) are mixed with a microwave local oscillator (generated with a RF source). The output microwave
radiation is amplified, down converted with a mixer, split in two path and finally digitized. The room temperature electronics
is composed by an RF System-on-Chip (RFSoC) acquisition board with integrated FPGA (Field Programmable Gate Array),
two Digital to Analog Converters (DACs), used to generate the pulsed intermediate frequency inputs for the IQ mixer, and two
Analog to Digital Converters (ADCs), used for digitizing the down-converted output radiation. (b) Sketch of the frequency
spacing between pump and a pair of signal and idler. (c) Sketch of the control and readout pulse sequence for a single pump
on/off generation and measurement; the duration of the readout pulses (acquisition time) is 6µs.

ing interaction [45]. In absence of other frequency con-
version or wave-mixing processes and neglecting losses,
the input two-mode (signal-idler) vacuum state is trans-
formed at the output of the TWPA into a two-mode
squeezed state: |TMS〉 = Ŝ |0〉s |0〉i. The two-mode
squeezing operator is:

Ŝ = exp
(
ξâ†s,inâ

†
i,in − ξ∗âs,inâi,in

)
, (1)

where ξ = reiφ is the squeezing parameter and âs,in (âi,in)
is the signal (idler) mode operator at the input of the
TWPA.

A sketch of the experimental setup and device is shown
in Fig 1 (a). The device is driven with a pump tone and
the two-mode quantum state generated at the output un-
dergoes an amplification chain, from 20 mK to room tem-
perature, with total system gain Gsys. At room temper-
ature, a double heterodyne detection scheme allows the
detection of signal and idler fields: the output microwave
radiation is analogically down-converted to an interme-
diate frequency, split in two paths and digitized using
a multi-channel acquisition board with a sampling clock
set to 2 GSamples/s (see Supplemental Material for a de-
tailed description of the setup). Digital down conversion
is then performed on board. The resolution bandwidth
is defined by the inverse of the acquisition time τ = 6µs.

The raw measured observables are the signal and idler

field quadratures,

X̂s/i =
1

2

(
Âs/i + Â†s/i

)
, P̂s/i =

1

2i

(
Âs/i − Â†s/i

)
,

(2)

where Â†s/i and Âs/i are the creation and annihila-

tion operators for the signal and idler mode such that
[Âj , Â

†
k] = δj,k.

A single acquisition consists in measuring the raw
quadratures with the pump both switched off and
switched on. A sketch of the control/readout pulse se-
quence for a single on/off acquisition is shown in Fig 1
(c).

Once the raw quadrature data are measured, they are
normalized by the gain of the detection chain at signal
and idler frequency respectively:

xs/i = Xs/i/
√
Gsys, s/i , ps/i = Ps/i/

√
Gsys, s/i .

The estimation of the system gain, Gsys, s/i, is obtained
by using a shot noise tunnel junction (SNTJ) noise source
[48–50] (see Supplemental Material for details).

We stress that a careful calibration of Gsys, s/i is neces-
sary for a quantitative estimation of the amount of entan-
glement and squeezing. It should be noticed that here we
use an upper bound estimation for Gsys (see Supplemen-
tal Material). This choice gives a rigorous lower bound
estimation for the amount of entanglement and squeez-
ing.
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FIG. 2. (a) Measured quadrature phase space distribution (2-dimensional differential histogram plots: difference between
pump on and pump off histograms) for 108 on/off acquisitions and detuning ∆ = 200 MHz; the shape of the differential
quadrature distributions in the (xi, xs) and (pi, ps) phase spaces indicate presence of two-mode correlations. (b) Reconstructed
covariance matrix with uncertainty indicated by shaded regions; (c) Entanglement stability over time: histogram of 50 repeated
entanglement measurements, each obtained from a set of 2 × 106 repeated on/off quadrature acquisitions. Pump frequency
fp = 4.415 GHz.

The same acquisition is repeated for Nrep times,
obtaining, for both pump off and on, 6 two-dimensional
quadrature histograms (combinations of the four mea-
sured quadratures). For Nrep = 108 the full on/off
experiment takes about one hour.

Experimentally obtained quadrature histograms for
detuning ∆ = 200 MHz and Nrep = 108 are shown in
Fig 2 (a). Each two-dimensional histogram is obtained
by subtracting the histogram with pump-off from the his-
togram with pump-on.

Starting from the measured quadratures we estimate
the covariance matrix [45] of the generated bipartite
quantum state. This matrix encodes all the quantum
properties of the generated state. We compute the covari-
ance matrix from the experimental data for both pump-
on and pump-off as:

σmeas
jk = 4

[
1

2
〈RjRk +RkRj〉 − 〈Rj〉 〈Rk〉

]
, (3)

where R = (xs, ps, xi, pi). The covariance matrix of the
two-mode quantum state generated at the output of the
TWPA can be inferred by subtracting the pump-off noise
background as follows: [21]:

σ = σmeas,on − σmeas,off + 14 , (4)

where, with the adopted convention, the two-mode vac-
uum state covariance matrix corresponds to the unit ma-
trix.

The inferred covariance matrix is depicted in Fig 2 (b).
The presence of not vanishing off-diagonal elements in-
dicates two-mode squeezing correlations between signal
and idler, verifying a necessary condition for the demon-
stration of entanglement generation.

A quantitative entanglement estimation is provided
by the logarithmic negativity EN [46] defined as EN =

Max [− ln (ν−), 0], where ν− is the minimum symplectic
eigenvalue of the partially trasposed covariance matrix
(see Supplemental Material). Following the partial posi-
tive transpose (PPT) criterion [51], the logarithmic neg-
ativity being positive (EN > 0) is a sufficient condition
to demonstrate that the state is entangled.

For the data shown in Fig 2 we measure a logarithmic
negativity EN = 0.4 ± 0.1, which proves entanglement
generation, i.e. quantum nature of observed correlations.

The pump power is optimized to get the maximum
entanglement (maximum logarithmic negativity). This is
reached for a linear gain G = 1.30±0.05, corresponding
to a squeezing parameter r = arcosh(

√
G) = 0.52± 0.04.

For higher pump powers, that is higher TWPA gain
G, we observe a decrease of the logarithmic negativity
(see Supplemental Material). Similar behavior has been
observed in resonant Josephson parametric amplifiers
[52] and semi-infinite transmission lines [29], due to the
activation of spurious higher order and wave-mixing
processes. In TWPAs, the role of such spurious pro-
cesses on limiting the amount of generated squeezing
is currently an open question. Further explorations of
the high pump power regime is beyond the scope of this
letter.

The stability of the generated entanglement over
time is verified performing 50 repetitions of the same
experiment (each consisting of a set of 2×106 quadrature
acquisitions) over a total time of roughly one hour. In
Fig 2 (c) we show the obtained histogram distribution
of the logarithmic negativity. This result demonstrates
that the generated entanglement is stable for repeated
measurements over time scale of hours.

A largely adopted second criterion to verify the non-
classicality of the generated bipartite state, consists in
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estimating the variances of the collective quadratures,

x̂+ = (x̂s + x̂i) , p̂+ = (p̂s + p̂i) , (5)

and compare them with the vacuum noise [19, 20, 38].
Considering a squeezing parameter amplitude r and

accounting for average TWPA loss, 0 ≤ ε̄ ≤ 1, with a
simple lumped-element beam splitter model (see Supple-
mental Material), the variance of the collective quadra-
ture can be expressed as [38]:

〈x2
+〉 =

1

2

[
ε̄+ (1− ε̄)e−2r

]
. (6)

For a non-classical state, the latter is expected to be lower
than the vacuum quantum noise giving non-zero squeez-

ing, defined as Sq+ = 10 log
( 〈x2

+〉
0.5

)
.

For the data shown in Fig 2, we obtain a lower bound
on the squeezing value: Sq+ = −1.6 ± 0.5 dB below the
vacuum limit.

In the adopted pump power regime, the obtained
squeezing value is limited by the effect of internal loss
present in the device: for fixed TWPA gain, a device
with higher loss (composed of a higher number of unit
cells) will generate a reduced amount of squeezing.
We designed the length of the TWPA device, 250 unit
cells, to mitigate internal loss and foster the squeezing
generation for a fixed gain value (see Supplemental
Material).

In Fig 3 we show the pump phase-dependence of
the generated two-mode squeezing. By varying the
pump input phase, we observe the expected periodicity
of the collective quadrature variances, panel (a), and
consequently of the squeezing Sq+, panel (b). In panel
(c), the experimentally obtained logarithmic negativity
EN is reported. We stress that this is a conservative
lower bound estimation (an upper bound estimation
for Gsys is considered, giving a lower bound estimation
of the amount of entanglement). The gray shadow
area indicates the logarithmic negativiy predicted by
a simple two-mode squeezing model that considers the
measured TWPA gain and estimated device losses (see
Supplemental Material for details).

A key advantage in generating two-mode squeezing
with TWPAs is their broadband nature: when the
pump drives the device, all the pairs of signal and
idler modes within the TWPA bandwidth (several
GHz [17]) get entangled. To quantify the broadband
nature of the generated entangled states, we estimate
the rate of entangled bits generation by calculating
the entropy formation, EF = c+ log2 c+ − c− log2 c−,
with c± = (δ−1/2 ± δ1/2)2/4 and δ = 2EN [20, 53], and
multiplying it by the squeezing bandwidth 2∆. Despite
the fact that bandwidth of our device is in the GHz
range, we could only check entanglement between signal
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FIG. 3. Collective quadrature variance (a), squeezing (b), and
logarithmic negativity (c) as a function of the input pump
phase. Pump frequency fp = 4.415 GHz, detuning ∆ =
200 MHz, number of repeated measurements for each phase
Nrep = 107. Dashed lines indicate the vacuum state refer-
ence. Squeezing below the vacuum limit is highlighted with
a shadow area in panel (b). The gray shadow area in panel
(c) indicates the logarithmic negativity predicted by a simple
lumped-element model which takes into account the TWPA
gain and the estimated losses (see Supplemental Material).

and idler separated by a maximum of 2∆ = 400 MHz,
because of limitations of the adopted acquisition system.
We use such bandwidth to obtain a lower bound of
53 ± 20 Mebit/s (mega entangled bits per second) on
the rate of entanglement generation, which is already
comparable with previous state of the art (Supplemental
Material of [29]).

Finally, to further investigate the entanglement
generation within the available frequency bandwidth,
we vary the detuning ∆ between the pump frequency
and the signal/idler frequencies. For each value of the
detuning we measure the logarithmic negativity and
the squeezing. The results are shown in Fig 4. We
observe entanglement and two-mode squeezing in the
entire investigated frequency region. This result further
demonstrates the truly broadband nature of squeezing
generation in the device under study. We again report
the comparison between our lower bound estimation
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FIG. 4. Two-mode squeezing (a) and logarithmic negativity
(b) as a function of detuning ∆. Pump frequency: fp =
4.415 GHz, number of repeated measurements for each ∆:
Nrep = 107. Dashed lines indicate the vacuum state reference.
The gray shadow area in panel (b) indicates the logarithmic
negativity predicted by a simple lumped-element model which
takes into account the TWPA gain and the estimated loss (see
Supplemental Material).

of the logarithmic negativity and the prediction of a
simple lumped-element model which takes into account
measured TWPA gain and internal loss.

In conclusion, we demonstrated two-mode squeezing
generation in a traveling wave parametric amplifier. This
result proves that TWPAs can be effectively used as
sources of microwave radiation. We obtained broadband
squeezing of between 1.5 and 2.1 dB for signal and idler
modes separated by up to 400 MHz. This first result can
be further improved via a deeper understanding of loss
mechanisms and higher order non-linear effects in TW-
PAs. Another interesting direction will be to take advan-
tage of flexibility offered by TWPAs to explore different
wave-mixing processes and tailored nonlinearities.

On a broad prospective, our findings experimentally
demonstrate the potential of TWPA devices beyond
amplification, paving the way to their application in the
context of microwave photonics, quantum sensing and
quantum information with continuous variables.

The data supporting the findings pre-
sented in this work are openly available at
https://doi.org/10.5281/zenodo.5217996.

See Supplemental Material for details on the experi-
mental setup, models and calibration procedures, which
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I. EXPERIMENTAL SETUP
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FIG. 1. Sketch of the experimental setup for the measurement of two-mode squeezing.

The scheme of the experimental setup is shown in Fig 1. The TWPA device is anchored to the coldest plate of a
dilution refrigerator, at 20 mK. The device consists of a chain of 250 superconducting nonlinear asymmetric elements
(SNAILs) [1]. Details on device fabrication and design can be found in [2]. We use two cryogenic microwave switches
at 20 mK to switch between the TWPA device and a reference device which consists in a PCB CPW transmission line.
We use the PCB (reference device) to perform the calibration of the system gain (total gain of the detection chain)
via a calibrated noise source, shot noise tunnel junction (SNTJ), as explained in section VII. A superconducting coil
is placed alongside the device holder allowing to control the magnetic flux threading the SNAILs.

At room temperature, the pump tone is generated via up conversion by using an IQ mixer: the I and Q pulsed
inputs at an intermediate frequency (fpump-IF = 290 MHz) are generated by two digital to analog converters (DACs),
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while the local oscillator input is generated with a RF source. For the readout, a two step demodulation of the
microwave output radiation is performed [3]: the output is down-converted with a mixer to an intermediate frequency
band (with fpump-IF being the central frequency), split in two paths, digitized with two analog to digital converters
(ADCs), and finally a digital down conversion is performed from the intermediate frequency to DC. We need to split
the output in two paths because of a limitation of our present FPGA firmware (it does not allow us to use the data
coming from a single ADC to digitally down convert two different frequencies to DC). With a future upgrade of the
FPGA firmware, using just a single ADC, one will be able to acquire quadratures at different frequencies within the
intermediate frequency band.

The room temperature electronics is composed by a multi-channel Xilinx RF System-on-Chip (RFSoC) acquisition
board which includes a Field Programmable Gate Array (FPGA), 8 Digital to Analog Converters (DACs) and 8
Analog to Digital Converters (ADCs) with 2 GS/s sampling rate. The hardware and software architectures of the
acquisition board have been developed by the electronic engineering group at the Neel institute in Grenoble.

The sensitivity of the quadrature measurement is dictated by the sensitivity of our heterodyne detection, which is
currently limited by the noise performance of the first amplifier (HEMT) in the measurement setup. This sensitivity
is 2.3 in units of square root of number of photons.

An interferometric cancellation of the output pump field is performed at room temperature using a variable atten-
uator and a variable phase-shifter. Pump field cancellation at room temperature is used to avoid saturation of the
acquisition board due to the intense transmitted pump field.

The same setup is used also for the measurement of the TWPA gain G. In that case, a weak tone at the sig-
nal frequency (fs = fp + ∆) is injected into the device together with the strong tone at the pump frequency
fp. To do so, the I and Q pulsed inputs (digitally generated with the DACs) contains both a component at the
pump intermediate frequency (fpump-IF = 290 MHz) and a weaker component at the signal intermediate frequency
(fsignal-IF = fpump-IF − ∆). The output power at the signal frequency is measured (by using the two step demodulation
explained earlier) for pump tone off and on, allowing to extract the TWPA gain.

II. DEVICE

The device is a Josephson-junction meta-material fabricated with standard double-angle Aluminum evaporation
techniques, followed by dielectric and top-ground deposition [4]. Design and fabrication of the device used in this
experiment are identical to the one presented in [2]. The unit cell consists in a superconducting loop with 3 big
Josephson junctions (critical current I0) and one small Josephson junction (critical current rI0). The adopted device
is composed by 250 unit cells. The values of r = 0.05 and I0 = 1.47µA are obtained from the device characterization
in linear regime (with no pump applied).

The Josephson capacitance per unit cell is CJ = 31 fF, while the ground capacitance per unit cell is Cg = 550 fF;
they have been also estimated from the linear characterization of the device [2].

TWPA losses are estimated by measuring the transmission (S21 scattering parameter) of the TWPA in the linear
regime (no pump tone applied) with a Vector Network Analyzer (VNA). The S21 transmission measurement is
performed both through the TWPA device and through the reference device (dubbed ’PCB’ in Fig. 1), consisting in a
copper PCB CPW transmission line of identical size of the TWPA chip wire-bonded in a sample box identical to the
one of the TWPA chip. We can switch from the TWPA device to the PCB within the same cool-down by means of
two cryogenic microwave switches (see Fig. 1). The cables used to connect the TWPA and the PCB to the switches
are nominally identical. By subtracting the S21 PCB transmission from the S21 TWPA transmission we can estimate
the TWPA losses. Measured TWPA losses are found to be between 0.5 and 1 dB in the 4-6 GHz frequency region,
primary arising from dielectric losses [2]. We estimate loss tangent (tan δ0) to be approximately 1.6× 10−3 .

III. TWO MODE SQUEEZING GENERATION

Signal and idler mode operators under the action of a two-mode squeezing interaction evolve as follows:

âs,out = Ŝ† âs,in Ŝ = cosh r âs,in + eiφ sinh r â†i,in , (1)

âi,out = Ŝ† âi,in Ŝ = cosh r âi,in + eiφ sinh r â†s,in , (2)

where Ŝ = exp
(
ξâ†s,inâ

†
i,in − ξ∗âs,inâi,in

)
is the two-mode squeezing operator and ξ = reiφ is the complex squeezing

parameter.
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The squeezing amplitude r is related to the TWPA gain G, assumed to be identical for signal and idler, G = cosh2 r,
while the phase φ depends on the pump field input phase.

In absence of other frequency conversion or wave-mixing processes and neglecting losses, the TWPA scattering
matrix is the following:




cosh r 0 sinh r cosφ sinh r sinφ
0 cosh r − sinh r sinφ sinh r cosφ

sinh r cosφ sinh r sinφ cosh r 0
− sinh r sinφ sinh r cosφ 0 cosh r


 , (3)

which maps the input vector (âs,in, â
†
s,in, âi,in, â

†
i,in)T to the corresponding output one.

When the TWPA is pumped (pump field is on), the input two-mode (signal-idler) vacuum state is converted into
a two-mode vacuum squeezed state:

|TMS〉 = Ŝ |0〉s |0〉i =
1

cosh r

∑

n

(tanh r)n |n〉s |n〉i . (4)

This is a highly entangled state given by the superposition of twin Fock states at signal and idler frequency.

Internal losses in the TWPA device, can degrade the two-mode squeezed state. A simple model for losses in
TWPAs consists in considering the action of two independent beam splitter operators, with transmission coefficients
ηs/i, acting after the squeezing operator on the signal and idler fields respectively [5]. In absence of losses, the beam
splitter transmits the entire field (η = 1), while in presence of losses, the beam splitter transmits with efficiency η < 1
[5, 6].

The mode operators after the beam splitter evolution are the following:

âs =
√
ηs âs,out +

√
1− ηs âs,th , (5)

âi =
√
ηi âi,out +

√
1− ηi âi,th , (6)

where ηs/i are the transmission rate of the signal and idler through the beam splitter, and âs,th and âi,th are the
ladder operator of the thermal states (noise modes) at the second input of each beam splitter. Since losses can be
different for signal and idler [5], in general ηs 6= ηi.

A sketch of such simple lumped-element model [5] for generation of two-mode squeezing in a TWPA is shown in
Fig 2.

TWPA

Generation Detection

FIG. 2. Sketch of two-mode squeezing generation and detection.

The quadrature operators, x̂s and p̂s for the signal field, and x̂i and p̂i for the idler field, are defined as follows [7, 8]:

x̂s,i =
1

2

(
âs,i + â†s,i

)
, p̂s,i =

1

2i

(
âs,i − â†s,i

)
. (7)
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The generated two-mode state at the output of the TWPA is a Gaussian state and as such it is completely characterized
by its covariance matrix σ [9]:

σjk = 4

[
1

2
〈RjRk +RkRj〉 − 〈Rj〉 〈Rk〉

]
, (8)

where R = (x̂s, p̂s, x̂i, p̂i). The expression for the covariance matrix for a two-mode squeezed state with squeezing
parameter ξ = reiφ and considering losses with the beam splitter model [5, 6] is:

σTMS =



ηs cosh (2r) + (1− ηs) 0

√
ηs ηi sinh (2r) cosφ

√
ηs ηi sinh (2r) sinφ

0 ηs cosh (2r) + (1− ηs) √
ηs ηi sinh (2r) sinφ −√ηs ηi sinh (2r) cosφ√

ηs ηi sinh (2r) cosφ
√
ηs ηi sinh (2r) sinφ ηi cosh (2r) + (1− ηi) 0√

ηs ηi sinh (2r) sinφ −√ηs ηi sinh (2r) cosφ 0 ηi cosh (2r) + (1− ηi)


 . (9)

One can notice that with the convention adopted here, the two-mode vacuum state covariance matrix corresponds to
the unit matrix 14. The covariance matrix in (9) is used to estimate the expected logarithmic negativity in the main
text (shadow area in Fig 3 and Fig 4), using the measured device gain and estimated losses. In Fig 4, small variations
of the model at different detuning values are due to TWPA gain wiggles in the explored frequency band.

A. Entanglement quantification

It is useful to decompose the two-mode covariance matrix in four 2 X 2 block matrices. The diagonal block matrices
represent respectively the signal and idler single-mode covariance matrix, while the off diagonal blocks describe the
correlations between the two-modes:

σ =

(
A C
CT B

)
. (10)

We can define the symplectic eigenvalue ν− as follows [10]:

ν− =

√
∆σ −

√
(∆σ)2 − 4 detσ

2
(11)

where

∆σ = detA+ detB − 2 detC . (12)

This quantity encodes the entanglement characterization of the two-mode Gaussian state. In particular, using the
PPT criterion [11], a necessary and sufficient condition for entanglement is

ν− < 1 .

A typical quantitative measure of entanglement for a bipartite state is the logarithmic negativity EN [10] defined as
follows:

EN = Max [− ln (ν−), 0] . (13)

The two-modes are entangled when EN > 0. For a two-mode squeezed state with squeezing parameter amplitude r
and accounting for loss with the beam splitter model, the logarithmic negativity is expected to be [5]:

EN = − ln
[
e−2r + (1− e−2r) ε̄+ tanh (r) ε̄2 δ2

]
, (14)

where ε̄ = 1− (ηs + ηi)/2 indicates the average loss and δ = (ηi − ηs)/(2ε̄) indicates the loss asymmetry [5].
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B. Collective quadratures and squeezing

The collective quadrature operators can be defined as follows,

x̂+ = (x̂s + x̂i) , x̂− = (x̂s − x̂i) , (15)

p̂+ = (p̂s + p̂i) , p̂− = (p̂s − p̂i) . (16)

For a two-mode squeezed state with squeezing parameter amplitude r and accounting for loss with the beam splitter
model as sketched in Fig 2, the variance of the collective quadrature is expected to be [5]:

〈x2
+〉 =

1

2

[
ε̄+ (1− ε̄)e−2r

]
, (17)

in the approximation of symmetric loss, ηs = ηi = (1− ε̄).
The amount of two-mode squeezing in dB is calculated as:

Sq+ = 10 log

( 〈x2
+〉

0.5

)
. (18)

For a fixed squeezing parameter amplitude r, corresponding to the gain value that experimentally maximizes the
inferred logarithmic negativity (G = 1.30± 0.05), the amount of squeezing is limited by internal loss.

Knowing the loss per unit cell, given by the fabrication process (section II), one simple way to mitigate the total
loss ε̄ is to reduce the number of unit cells composing the device. In Fig 3, we use equations (17) and (18) to plot the
predicted squeezing as a function of the total number of unit cells (total loss ε̄). This simple lumped element model

0.0 0.2 0.4 0.6 0.8 1.0
Total loss 

0 200 400 600 800 1000 1200
Total number of cells

4

3

2

1

0

Sq
+
 [d

B]

250 cells

FIG. 3. Amount of squeezing as a function of total number of unit cells (total loss ε̄). Fixed gain G = 1.3 (r = 0.52), fixed
loss per unit length (ε̄cell = 8.2 × 10−4) obtained from linear device characterization (section II). The dashed line indicates our
device length (250 cells).

for losses [5] can be used to have a rough estimation of the amount of squeezing for a fixed TWPA gain value as a
function of the device length (knowing the loss per unit cell).

C. Rate of entangled bits

Defining the bandwidth B as the frequency separation between the signal and idler frequencies, in our case B = 2∆,
the rate of entanglement bit generation is given by

Entanglement bit rate = B × EF , (19)

where EF is the entropy formation defined as

EF = c+ log2 c+ − c− log2 c−, (20)
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with c± = (δ−1/2 ± δ1/2)2/4 and δ = 2EN .
In our experiment, the limit to B = 400 MHz is given by the sampling rate of the acquisition board and not by the
device itself. With a faster acquisition setup it could be possible to demonstrate even larger rate of entanglement bit
generation.

IV. PUMP POWER DEPENDENCE

In the experiments shown in the main text, we optimize the pump power to get the maximum entanglement
(maximum logarithmic negativity). This is reached for a linear gain G = 1.30± 0.05, corresponding to a squeezing

parameter r = arcosh(
√
G) = 0.50 ± 0.04. We experimentally observe that, for higher values of G, the inferred

logarithmic negativity and squeezing are reduced. In Fig 4 we show an example of experiment in which we measure
TWPA gain, squeezing and logarithmic negativity as a function of the input pump power at the device.

100.0 97.5 95.0 92.5 90.0 87.5 85.0 82.5 80.0

Pump power [dBm]

3
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0
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+
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(a)
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FIG. 4. Squeezing (a), logarithmic negativity (b) and TWPA gain (c) as a function of the input pump power at the device.
The inferred squeezing and logarithmic negativity are obtained for detuning ∆ = 200 MHz, Nrep = 107 and pump frequency
fp = 4.415 GHz.

A detailed study of the effect of spurious non-linear processes in the high pump power (high gain) regime is beyond
the scope of this work and will be subject of future investigations.

V. QUADRATURES MEASUREMENT AND CALIBRATION

A sketch of the signal and idler mode evolution from the generation to the detection is shown in Fig 2. At the
output of the TWPA, the signal and idler fields under investigation (described by the mode operators âs and âi) go
through a detection chain (yellow rectangle in the sketch) which starts at the output of the TWPA device and ends
at the input of the acquisition board. The total system gain of such detection chain is indicated with Gsys,s and Gsys,i

for signal and idler frequency respectively.

We can model the uncorrelated noise added by the amplification chain with a bosonic operator ĥs,i associated with
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a thermal state. The final output field operators can be written as follows [3]:

Âs =
√
Gsys,s âs +

√
Gsys,s − 1 ĥs , (21)

Âi =
√
Gsys,i âi +

√
Gsys,i − 1 ĥi, (22)

where one can neglect the −1 in the square root, considering Gsys,s/i � 1.

What we experimentally measure are the four quadratures X̂s, P̂s, X̂i, P̂i, defined as:

X̂s,i =
1

2

(
Âs,i + Â†s,i

)
, P̂s,i =

1

2i

(
Âs,i − Â†s,i

)
. (23)

In detail, we pump the TWPA with a pump frequency fp and measure the quadratures at signal frequency, fs = fp+∆,
and idler frequency, fi = fp − ∆. The output voltage is analogically down converted to an intermediate frequency
band (with fpump-IF being the central frequency) using a microwave mixer. The output from the mixer is then split
in two channels and the two voltages are digitized every 0.5 ns using two on board ADCs. The typical acquisition
time is τ = 6µs.
The signals are then digitally down converted from the intermediate frequency fpump-IF −∆ (fpump-IF + ∆) to DC,
giving in output the raw quadratures Xraw

s , P raw
s (Xraw

i , P raw
i ) for the signal (idler), measured in Volts.

We repeat the quadrature acquisition Nrep times, obtaining 6 two-dimensional quadrature histograms. We perform
this measurement for both pump off and pump on.
We convert the measured raw quadratures from Volts to dimensionless units by using the conversion factor

γs,i =
1

Z

τ

h(fp ±∆)

where Z = 50 Ω and h is the Plank constant. We get,

Xs =
√
γsX

raw
s , Xi =

√
γiX

raw
i ,

Ps =
√
γs P

raw
s , Pi =

√
γi P

raw
i .

The final calibration step consists in considering the system gain (total gain of the detection chain). The final
calibrated quadratures are given by:

xs = Xs/
√
Gsys,s , ps = Ps/

√
Gsys,s ,

xi = Xi/
√
Gsys,i , pi = Pi/

√
Gsys,i ,

where Gsys,s and Gsys,i are the system gain of the detection chain at signal and idler frequencies respectively. The
system gain is obtained with a Shot Noise Tunnel Junction (SNTJ) calibrated noise source (see section VII).

VI. COVARIANCE MATRIX RECONSTRUCTION

Assuming that the noise added by the amplification chain is thermal, i.e. it is associated with a diagonal covariance
matrix σthermal [7], the measured covariance matrices for pump on and off (σmeas, on, σmeas, off) can be then expressed
as:

σmeas,on = σ|TMS〉 + σthermal + 14 , (24)

σmeas,off = σ|0〉 + σthermal + 14 = σthermal + 2 14 , (25)

where

σthermal =




2 〈ĥ†sĥs〉thermal 0 0 0

0 2 〈ĥ†sĥs〉thermal 0 0

0 0 2 〈ĥ†i ĥi〉thermal 0

0 0 0 2 〈ĥ†i ĥi〉thermal


 . (26)

Finally, the covariance matrix of the two-mode quantum state generated at the output of the TWPA is given by [7]:

σ|TMS〉 = σmeas,on − σmeas,OFF + 14 . (27)
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VII. SYSTEM GAIN CALIBRATION WITH SNTJ NOISE SOURCE

Here we describe the procedure used to estimate the system gain Gsys using a calibrated noise source consisting in
a shot noise tunnel junction (SNTJ) [12–14]. The setup used for the calibration is shown in Fig 1.

We switch to the reference device (PCB), and measure the output noise power at a give frequency f as a function
of the bias voltage V applied to the SNTJ.

We consider negligible loss for the PCB itself. In addition we use identical cables to connect the PCB and the
TWPA to the switches.

The fraction of the noise power emitted by the SNTJ that is dissipated into a matched load in the quantum regime
(kBT < hf) is the following:

N =

[
1

2

[
eV + hf

2kB
coth

(
eV + hf

2kBT

)
+
eV − hf

2kB
coth

(
eV − hf

2kBT

)]
+ Tsys

]
1

τ
GsyskB , (28)

where the resolution bandwidth is defined as the inverse of the acquisition time τ .
For a given frequency, we can fit the data using three free parameters: T , the SNTJ electronic temperature, the

system noise temperature Tsys, and the system gain Gsys. This procedure allows the estimation of Gsys at signal and
idler frequencies.

In Fig 5 we show the SNTJ noise as a function of the bias voltage and the corresponding best fit for two given
frequencies corresponding to signal and idler for the data in Fig 2 of main text. This procedure is repeated for all the

300 200 100 0 100 200 300
Voltage [ V]

59.0

58.5

58.0

57.5

57.0

No
ise

 [d
Bm

]

Gsys = 90.0 dB
Gsys = 90.5 dB
fsig = 4.215 GHz
fidl = 4.615 GHz

FIG. 5. Measured output noise as a function of SNTJ DC voltage bias at signal and idler frequencies. Best fits are shown with
dashed lines. The best fit parameters for Gsys are reported in the legend.

investigated signal and idler frequencies, allowing each time a careful estimation of Gsys,s and Gsys,i.
It is important to notice that the values of Gsys,s/i, obtained from the best fit of the data with the expression in

eq. (28), correspond to the total system gain, going from the reference plane of the SNTJ to the one of the room
temperature acquisition board. It is necessary to correct such estimation for the loss occurring between the SNTJ and
the input of the PCB. In particular, such loss are mainly due to SNTJ packaging, bias tee, directional coupler and
cryo-switch insertion loss. In the frequency range of interest, the insertion loss due to SNTJ packaging including the
bias tee has been reported to be 1 dB [14]; in addition we consider the nominal maximum insertion loss of the used
directional coupler and cryo-switch from the respective technical data sheet. In table I we summarize the estimated
maximum insertion loss contributions between SNTJ and PCB.
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TABLE I. Insertion loss budget bewteen SNTJ and PCB.

Insertion Loss Ref.
SNTJ packaging + K250 bias tee 1 dB [14]
directional coupler C20-0R518 0.7 dB [15]
cryo-switch Radiall R591722600 0.3 dB [16]

Thus, we estimate an upper bound of 2 dB for the total insertion loss between the SNTJ reference plane and the
device reference plane. The Gsys value obtained from the SNTJ calibration is corrected by such upper bound loss
estimation before it is used for the normalization of the quadrature data.

Considering that the bias tee model used in this work is different from the one in [14] and considering typical ripples
in the characterization of insertion loss of the used microwave components between SNTJ and device [17], we assume
an uncertanty of 1 dB in our final estimation of Gsys. The error bars on squeezing and logarithmic negativity in the
main text and in Fig 4 are obtained assuming that the total error is dominated by such uncertanty in the estimation
of Gsys.

It should be noticed that, since we are using an upper bound estimation for the losses between SNTJ and device,
we get an upper bound estimation for Gsys and hence a lower bound estimation for the amount of entanglement and
squeezing.
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