
Observation planning with on-line algorithms and GPU heuristic
computation ∗

Matthieu Boussard and Jun Miura
Department of Information and Computer Sciences

Toyohashi University of Technology,
Toyohahsi, Japan

Abstract

When making an useful description of its environment,
a robot has to identify both the free space and the
objects location. SLAM algorithms are used for com-
puting the free space map and an image processing al-
gorithm is used in order to identify the objects. Those
algorithms are time consuming (the time to go to the
observation location and the image processing time)
and are not perfect (their outcomes are stochastic).
Furthermore, the agent may have multiple target to
identify at the same time, and so has to build a policy
for identification. We propose a Markov Decision Pro-
cess (MDP)-based approach to compute those policies.
Since in our application, the policy has to be computed
on-line, in a limited time, optimal algorithms are too
slow for those on-line purposes with a large state space.
We show how on-line approaches offer solutions to the
observation planning problem, and how to efficiently
use those algorithms by computing an accurate admis-
sible heuristic on a GPU.

Introduction

Building a map of a robot’s environment has been well
studied, and many SLAM (Simultaneous Localization
and Mapping) methods have been developed (Thrun,
Burgard, and Fox 2005) in order to build this map.
Those methods are taking into account the uncertainty
on both perception and control. They provide a geo-
metric map, which allows the robot to move safely.

We are interested in building a cognitive map (Va-
sudevan et al. 2007), by adding semantic information
on the objects that are present in the room. In (Ma-
suzawa and Miura 2009) the authors present an object
recognition algorithm and a planning algorithm which
computes the related observation plan. In this scenario,
the robot has to explore an unknown room, make the
room’s map while putting on this map the position of
the various objects that have been detected and recog-
nized. The number of objects and their positions are

∗This work is supported by NEDO (New Energy and In-
dustrial Technology Development Organization, Japan) In-
telligent RT Software Project.
Copyright c© 2010, Association for the Advancement of Ar-
tificial Intelligence (www.aaai.org). All rights reserved.

unknown at the beginning of the exploration, and only
the object’s types are supposed previously given.

The robot can use two kinds of image processing al-
gorithm, for two different purposes. It has a color-based
algorithm that allows the detection of several candidate
objects in a wide area of the room, with a coarse local-
isation. Those objects have to be then identified by
coming closer, and by using the second type of algo-
rithm. Since multiple candidates are detected by the
first algorithm, the agent has to compute an identify-
ing policy for those detected objects. Nevertheless, the
image processing algorithm isn’t perfect, and may fail
to identify an object. The object recognition probabil-
ity depends on the viewpoint from where the object is
observed. So after one identification fails, the robots
may still want to observe the object from another view-
point. After several identification steps, the object is
ignored (the object is neither identified nor rejected).

The problem we are considering is dedicated to the
planning part of the previous problem. Namely, how
to compute an efficient plan to recognize several can-
didate objects under uncertainty. We are not dealing
with the exploration aspect since we suppose the map as
known, but the observation planning problem is still re-
lated to this problems, where next best viewpoint (Con-
nolly 1985) is a classical approach. Since we suppose as
known the global shape of the room, we can use plan-
ning techniques because the robots has now enough re-
liable information to make an efficient long term plan.

The planning algorithm proposed in (Masuzawa and
Miura 2009) takes into account the uncertainty on the
observation, but lacks in showing an optimality proof,
and also performs an exhaustive search in the plan
space, which limits the tractability of the solution.

We propose a Markov Decision Process (MDP) (Bell-
man 1957)-based approach to compute the observation
policy. MDPs have been widely studied (Puterman
2005), and offer a strong theoretical background for ac-
tion planning under uncertainty. They offer optimality
proofs as well as many specialized algorithms. This pa-
per deals also with planning in large state space prob-
lems where the classical algorithms may not be used.

This paper proposes a modelization of a classic
robotic problem, the observation planning problem, as

jun
タイプライターテキスト
Proc. ICAPS-2010 Workshop on Planning and Scheduling under Uncertainty,May 13, 2010, Toronto, CANADA.

an MDP so that planning under uncertainty techniques
can then be used. It also shows the suitability of two
on-line algorithms UCT and LRTDP for solving MDP
on that mobile robot planning problem. Furthermore,
those two algorithms need an heuristic to focus their
search. Hence we also propose an admissible heuris-
tic, and since it is a different problem than the gen-
eral MDP, we show how this heuristic can be efficiently
solved on a GPU.

This paper is organized as follows : we first present
the Markov Decision Processes and the related algo-
rithms, then we show the MDP model for observation
planning. The algorithms we are using to solve the
MDP on-line, UCT and LRTDP, are then detailed, and
the heuristic computation on the GPU. The results we
obtain on complexity and on the quality of the solutions
are presented and finally we conclude this paper.

Related works

Markov Decision Processes (Bellman 1957; Puterman
2005) allow the formalization of a sequential decision
problem under uncertainty. This process is supposed
to be fully observable, i.e. the observed state is the
actual state of the system. By definition of the obser-
vation planning problem, this assumption is not true,
since uncertainty is on the observations. If we want to
take into account precisely this uncertainty, the process
became partially observable, and the related decision
process is called Partially Observable Markov Decision
Process (POMDP) (Cassandra, Kaelbling, and Littman
1994). In POMDP the state of an agent is represented
by a probability distribution over the states and this
distribution is updated according to the observation the
agent receive. Even this formalism is well suited for the
observation planning problem, the complexity of the re-
lated algorithms is too high for the size of the problem
we are considering here. Thus we are considering a fully
observable MDP and we will show it may still be suited
to the observation planning problem. An MDP is a
4-tuple 〈S, A, P, R〉, where :

• S is the (finite) set of states,

• A is the (finite) set of actions,

• P : S ×A× S → [0; 1] is the transition function,

• R : S ×A→ R is the reward function.

The transition function allows to model the dynamics
of the process. This process is supposed Markovian, so
the transition only depends on the current state, inde-
pendently to the history ∀st, st+1 ∈ S, a ∈ A:

P (st+1|s0, a0, . . . , st, a) = P (st+1|st, a) (1)

The reward function defines the parameter we want to
be optimized (here we want to minimize the time).

Once a problem is formalized as an MDP, it is then
possible to compute a policy. A policy π is a function
π : S → A that gives for every state, the action to per-
form. Following this policy, we can compute the value
function V π : S → R describing the expected reward

according to π, and a selected performance criterion.
The one we choose (and one of the most used) is the
total expected discounted reward, with a discount fac-
tor 0 ≤ γ < 1.

∀s ∈ S, V π
γ (s) = Eπ

[
∞∑

t=0

γtrt|s0 = s

]
(2)

V π
γ (s) is the unique solution to the fixed point equation
∀s ∈ S :

V π
γ (s) = r(s, π(s)) + γ

∑

s′∈S

p(s, π(s), s)V π
γ (s′) (3)

The unique optimal value function is given by the Bell-
man equation (Bellman 1957). ∀s ∈ S :

V ∗(s) = min
a∈A

(
r(s, a) + γ

∑

s′∈S

p(s, a, s′)V ∗(s′)

)
(4)

Once the optimal value function is obtained, we can
compute one optimal policy, noted π∗. It gives the best
action to perform according to the selected performance
criterion.∀s ∈ S :

π∗(s) = arg min
a∈A

(
r(s, a) + γ

∑

s′∈S

p(s, π(s), s′)V (s′)

)

(5)
There are various algorithms to compute V ∗, such

as Value Iteration, or Policy Iteration (dynamic pro-
gramming) (Bellman 1957). The complexity of those
algorithms is polynomial (O(|S|2 ∗ |A|) per iteration,
the number of iterations is bounded and polynomial).

The main problem in MDP, known as the “curse of
dimensionality”, is the exponential state space growth
due to the addition of one variable in the decision pro-
cess. But for real application, we may need to define a
state as a conjunction of several variables.

Researchers proposed different ways to tackle this
problem. Factorized planning (Boutilier, Dean, and
Hanks 1999) aims at exploiting the problem’s struc-
ture to define dependencies between variables so that
it may be possible to solve independent part separately
avoiding the Cartesian product of variables domains.

If the problem doesn’t seem to have such a structure,
it may be still possible to use heuristic algorithms like
LAO∗ (Hansen and Zilberstein 2001). They suppose a
goal directed MDP, with a starting state, a set of goal
state and an admissible heuristic function. They pro-
ceed by successively expanding the search tree and ap-
ply a dynamic programming algorithm on that partial
tree. Only accessible states are expanded, thus heuristic
algorithms explore only a subset of the full state space.
LAO∗ for instance uses policy iteration after an expan-
sion step. LRTDP (Bonet and Geffner 2003), which
will be detailed in the following, may be also classified
in this category.

It is also possible to get an approximate solution of
the optimal value function. For example, as solving an
MDP can be seen as solving a set of linear equation,

(a) Actual (b) Simplified

Figure 1: Room’s representation

in (Dolgov and Durfee 2006) the authors propose an
algorithm to approximate the resulting linear program.
But those approaches are still too slow for an embedded
real application.

Finally, Monte-Carlo algorithms aim at solving MDP
by generating simulated trajectories, where a trajec-
tory is a succession of states and actions following a
sampled policy. It has been proved in (Kearns, Man-
sour, and Ng 2002) that it is possible to obtain a policy
arbitrary close to the optimal one, given only a sim-
ulator of the system. The first proposed algorithm is
impractical due to the number of simulations needed,
but many improved algorithms (Péret and Garcia 2004;
Kocsis and Szepesvári 2006) have followed showing that
sampling-based algorithms may also be good tools for
solving MDP.

Observation Planning problem : Model
In order to use MDP to solve the observation planning
problem, we need to define the four components of an
MDP, namely 〈S, A, T,R〉.

States set S

Fig. 1(a) shows an example of environment where the
robot has to find objects. Fig. 1(b) is the simplified
view of this room, which will be used for planning.
Red squares are candidate objects, the grey squares
are viewpoints from where those objects can be iden-
tified by using a dedicated algorithm (observation suc-
ceed with higher probability on darker squares), and the
blue dot is the current robot position. Since the transi-
tions are independent to history, the current state has
to contains all previous information needed to take the
decision. Thus a state is composed by :

• the current position (x, y) of the agent ,

• the list of observed viewpoints. Since we
don’t want the agent to observe twice the
same object from the same viewpoint, we
need to keep the list of observed viewpoints
{{vp1

1, vp2
1, . . . , vpm

1 }, . . . , {vp1
n, vp2

n, . . . , vpm
n }} for

all n objects, where vp
j
i is the jth observation for

the ith object and m the maximum number of
observations allowed.

• the information Ii whether the object i still need to
be checked. Actually, an object has three states : it

may be identified, rejected, or still unknown. A goal
state is reached when all objects are non-unknown.

Hence, a state s is defined by :

s = 〈x, y,{
{vp1

1, . . . vpm
1 }, . . . , {vp1

n, . . . vpm
n }
}
,

{I1, . . . In}〉

It is clear that adding an object increases exponentially
the size of the states space. Nevertheless it is possible to
merge some states together. Since the state has to con-
tains all information needed to take the decision, any
superfluous information can be forgotten. Thus, once
an object has been set as identified or rejected, there’s
no need to keep the information about its viewpoints
anymore, since it isn’t significant to take the right deci-
sion. For instance, among the four states listed below,
the first three are equivalent, and not the fourth since
the first object yet has not been recognized yet.

〈3, 4,
{
{(3, 5)}, {∅}

}
,

{
Identified, Unknown}

}
〉

=
〈3, 4,

{
{(6, 8)}, {∅}

}
,

{
Identified, Unknown}

}
〉

=
〈3, 4,

{
{∅}, {∅}

}
,

{
Identified, Unknown}

}
〉

6=
〈3, 4,

{
{∅}, {∅}

}
,

{
Unknown,Unknown}

}
〉

Actions set A

The agent has two kind of actions, move actions and
observation actions. We suppose that the navigation
is made by another piece of software, and that the
robot reaches its destination without uncertainty. So
the move actions are just given by the destination the
agent wants to reach. The agent can actually only go on
a viewpoint. Observation actions are applying the im-
age recognition algorithm to a target candidate. Their
behaviours are given by the transition function.

Transition function P

Since we suppose that move actions are deterministic,
P (s′|a, s) = 1 iff s′ includes the target position of a and
if the remainder of the state is the same (see state def-
inition), 0 otherwise. In order to limit the expansion
of the search tree, we state also that the agent cannot
move if there is something to observe and that nothing
has yet been observed from this viewpoint. The opti-
mal policy cannot be composed of succession of move
actions. We avoid thus multiple unnecessary move ac-
tion. The observation actions are stochastic, and the
transition function is defined by the behaviour of the
image recognition algorithm. An example of the effect
of distance on recognition probability is given in Fig. 2.
Those matches are the results given by the algorithm
proposed in (Masuzawa and Miura 2009). If the num-
ber of SIFT matches is higher than a given recognition
limit, the object is recognized, otherwise not. Thanks to
experimentation, it is possible to compute the mean and
the standard deviation of the number of SIFT matches

Figure 2: Effect of distance on SIFT matches

according to several distance for various objects. With
those information it is then possible to compute the
probability of recognition. Furthermore, we define a
maximum number of observations MAX OBS per ob-
ject. Once this limit is reached or if this object has been
identified (or rejected) there is no need to check this ob-
ject again. Fig. 3 shows this process. It is impossible
to apply an observation action on an already identified
or rejected object and also for object that have been
observed MAX OBS times. If information about an
object, like its pose, are collected before the object is
recognized, then it is possible to modify the transition
function according those new information.

Observation

Unknown

Rejected

Identified

Unknown

Observation succeeded

Observation failed

Figure 3: Observation outcomes

Reward and Cost function R

For convenience, we can express an utility function U
instead of R so that U(s, a) = R(s, a) − C(s, a). The
cost function is given by the actual travelling time of the
robot from a viewpoint to another one and by the time
of the image processing algorithm. The agent should
not only optimize the time spend to recognize all the ob-
jects, but also the highest number of identified objects.
As discussed in the conclusion, finding a policy mak-
ing a good trade-off is a hard multicriteria optimization
problem. So, we are only using a Cost function, and ev-
ery reward are being set to 0. In that configuration, the
agent will perform the fastest plan, avoiding to make to
much observations, but will not take into account the
number of recognized objects.

Algorithms
The agent has to compute its policy on-line, during its
mission when discovering candidate objects. It is clear
that the computation time has to be low, and that the
algorithm should react when the agent gets new infor-
mation. In our case, we state one second as an accept-
able computation time. We compare here two algo-
rithms UCT (Kocsis and Szepesvári 2006) and LRTDP
(Bonet and Geffner 2003).

The general process of the system in the observation
planning context is shown in the Fig. 4. It first gathers
environment’s information, secondly updates if needed
the MDP model of the environment, then runs a plan-
ning algorithm to select the action to perform and fi-
nally executes this action. Then the process is repeated
until the end of the mission. The system is thus able to
adapt to any change in the environment or with any in-
formation gathered on candidates objects before every
decision step.

Execute action

Build MDP

Update information Select action

Figure 4: Global execution loop

Upper Confidence bound applied to Tree

UCB1 applied to trees (UCT) (Kocsis and Szepesvári
2006) algorithm has shown its efficiency in board games
with large state space, like Go (Gelly and Wang 2006).
Alg. 1 is the main loop of planning algorithm. This
part is controlling the depth of the search using H and
the time (so the number of generated samples) using
timeout. H is the number of decision steps that are
being sampled. As shown in (Péret and Garcia 2004)
it may be important to control this depth in order not
to lower the quality of the estimated value. The algo-
rithm has an anytime behaviour where another process
may interrupt the algorithm and the current solution
is returned. Otherwise, the solution is returned once a
fixed number of samples have been computed. Alg. 2
is the sample’s generation. When the sample reaches a
goal state, the Goalvalue function evaluates it.

Algorithm 1: UCT Planning

Data: Starting state s0

Result: Approximate best action a
repeat

search (s0, H);
until timeout ;
return BestAction (s0, a)

1UCB stands for Upper Confidence Bounds

Algorithm 2: UCT Search

Data: Starting state s, depth h
Result: The value q of the sample
if IsTerminal (s) then

return goalValue (s)

if h = 0 then
return heuristicValue (s)

action a← selectAction(s);
state s′ ← simulateAction(s, a);
q ← cost(s, a) + γsearch(s′, h− 1);
updateValue (s, a, q, h);
minQ← mina cost(s, a) + γ

∑
s′∈S p̃(s′|s, a)V (s′);

return minQ

Figure 5: Action selection frequency

The selectAction function chooses the next action to
sample using the UCB1, Eq. 6. It keeps tracks of the
average sampled reward Q(s, a) and selects the action
with the best confidence bound (here we are minimizing
a cost, instead of maximizing rewards) :

a = argmina∈A

{
Q(s, a)− C

√
lnNs

Ns,a

}
(6)

Where Ns is the number of times for which s has been
sampled, and Ns,a the number of time action a has been
selected in s. The C constant allows to tune the explo-
ration strategy. A low value of C will give more impor-
tance to the Q-values, and thus exploit more, whereas
a high value of C will give more importance to explo-
ration. The focus of the exploration is illustrated on
Fig. 5. To explain the advantages of UCB1, we intro-
duce some definitions from the bandit theory (Auer,
Cesa-Bianchi, and Fischer 2002), and we adapt them
to the MDP problem. Since actions are uncertain, to
sample several times an action ai leads to the Q-values
Qai1

, Qai2
. . . The expected regrets of the exploration

policy after n sample is given by :

E

|A|∑

j=1

Nn
s,aj∑

t=1

Qajt

−min

i
E

[
n∑

t=1

Qait

]
, (7)

where ait is the action selected by the exploration strat-
egy at time t, and Nn

s,aj
is the number of time ac-

tion aj has been selected up to time n. By increas-
ing n, it has been shown that no exploration policy
can have a regret that grows slower than O(lnn). If
an operator has a regret which grows in a constant
factor of the best possible regret, it is said as solving
the exploration-exploitation trade-off. In (Kocsis and
Szepesvári 2006) the authors proved that UCB1 oper-
ator solves the exploration-exploitation trade-off.

In Alg. 2, if a state is expanded for the first time,
every action have to be sampled once to apply the se-
lectAction function. In Monte-Carlo planning the next
state is generated only by a call to a simulator of the
system, the simulateAction(s, a) function. For exam-
ple, in a state where an object is observable, and not
yet identified, let a be the action selected by UCB1.
The algorithm will generate, or update, a branch in
the search tree corresponding of one possible outcome
s′ of action a executed from s. Since the actions are
supposed stochastic, many different outcomes are pos-
sible. By contrast with traditional MDPs algorithms,
there’s no need to define the model, and only a simu-
lator is needed. Nevertheless, it is still possible to get
an approximation of the transition function p̃(s′|s, a)
by computing the number of time s′ has been reached
from s using action a, divided by the total number of

execution of a in s, p̃(s′|s, a) =
Ns,a,s′

Ns,a
.

The updateValue function updates the Q-value of ac-
tion a. This is done by computing mean value of the
trajectories sampled for this action. Then the value of
the state is updated using Bellman equation Eq. 5.

Labeled Real Time Dynamic Programming

The algorithm LRTDP (Bonet and Geffner 2003),
Alg. 3, is an extension of RTDP (Barto, Bradtke, and
Singh 1995) with a labeling process. It solves an MDP
by ordering the update and by using an heuristic to re-
strict the updates to potentially interesting states. It
starts from a starting state, and selects the next state
to update with the function pickNextState which sim-
ulates one outcome of an action. The Update func-
tion apply the backup operator in a state according to
the complete transition function. The Checksolved is
the labeling technique that improves RTDP algorithm
by marking the converged states. The algorithm stops
when the starting state is labelled as solved or when it
reaches the timout.

Heuristic computation

We use as an heuristic the values of the same MDP
where the observation always succeed. This is an admis-
sible heuristic and underestimates the actual value func-

Algorithm 3: LRTDP

Data: Starting state s0, ǫ
Result: Optimal action a
while ¬Solved(s0) ∧ ¬timout do

LRTDPtrial (s0, ǫ);

return Best (s0, a)

Algorithm 4: LRTDPtrial

Data: Start state s,ǫ
visited =EMPTYSTACK;
while ¬Solved(s) do

Push(visited, s);
if isGoal (s) then

break;

a←GreedyAction (s);
Update (s);
s←PickNextState (s, a);

while visited 6=EMPTY STACK do
s←Pop (visited);
if ¬CheckSolved(s, ǫ) then

break;

tion. This Deterministic MDP can be represented by a
directed acyclic graph, we organize the states by level
according to the number of observations needed and
perform a bottom-up backup. This exhaustive backup
can be massively parallelized and has been developed
in order to be computed on a GPU, each thread com-
puting its value. GPU are taking advantages of data
locality, hence we represents the states by a simple 1D
array, Fig. 6, where the first elements are the states
with 0 observation, then the states with 1 etc. We en-
code all state information on a 32 bits integers, 10 bits
for the coordinates (x, y), and one bit for the status of
each object (observed or not). It is sufficient since in
that case there is no uncertainty on the observations.

To compute the shortest path, we use a simple
bottom-up parallel algorithm, see Fig. 7 and Alg. 5.
Its has been coded in OpenCL. Implementation de-
tails have been omitted like memory alignment, local
memory management or synchronizations. Many use-
less computations are made since every states of the
level l + 1 are evaluated to compute one state of level
l and lots of them have a transition probability of

0Obs 1Obs

0 X Y 1 bit / Obj

(n−1)Obs (n)Obs

State encoding on a 32bit integer
5101531 0

Array sorted by number of identified objects

Figure 6: Data structure for planning on GPU (5 obj)

Values propagation

0 Obs 1 Obs 3 Obs2 Obs 4 Obs 5 Obs

Figure 7: Bottom-up shortest path (5 Obj)

0. The number of operation needed for one level l is(
NB OBJ

l

)
∗
(
NB OBJ

l+1

)
∗ |V iewpoints|2. This algorithm

is work-efficient since it doesn’t perform more backup
than the non-parallel one (O(|S|2)). Despite of that
quite inefficient algorithm, the design fits perfectly of
the requirement for good performances on GPU and
allows to find the optimal heuristic value function.

Algorithm 5: Parallel bottom-up heuristic

Data: states[],nb obj,nb vp
Result: V*
end← nb vp∗2NB OBJ − 1;
start← end-nb vp+1;
for level=nb obj-1 down to 0 do

target start ← start ;
target end ← end ;
end ← start-1;
start ← start−

(
nb obj
level

)
∗nb vp;

forall k ∈ [start;end] in parallel do
s←states[k];
min← +∞;
for target=target start to target end do

s’←states[target];
val← V*[target];
val← val+cost(s,s’)+obs cost;
val← val*transition(s,s’);
if val<min then

min← val;

V*[k]← min;

return V*

Computing this heuristic is time consuming (see
Tab. 1) and the complete plan must be computed un-
der 1s. So, given the current heuristic implementa-
tion, we can’t deal with more than 8 objects and 21
viewpoints per objects (on a GeForce 8600GTS). The
CPU algorithm performs the same bottom-up algo-
rithm. LRTDP can’t use an good heuristic so it almost
has to explore the complete state space. The setup time
for executing the kernel on the GPU is around 0.15s
(load the program from a file, compile it and build the

#object 4 5 6 7 8 9
GPU 0.36 0.35 0.39 0.43 0.6 1.24
CPU 0.01 0.03 0.1 0.33 1.36 7.14

LRTDP 4.56 13.27 33.94 19.59 98.27 134.1

Table 1: Deterministic shortest path computation time

executable), so we need a certain size of problem to see
the efficiency of the GPU algorithm. Once build, the
kernel can be reused without this extra time.

Results

When UCT don’t explore, its main difference with
LRTDP is that the Q-values aren’t computed from the
complete model, but only sampled from executions. We
fixed the timout to 0.5s, since it takes around 0.5s to
computes the heuristic. Because the heuristic value is
a good estimation of the real cost, and because the
robot will receive new information between two plan-
ning steps, we are taking into account only the uncer-
tainty on a limited horizon. After that horizon H, we
are using the heuristic value.

Fig. 8(a) shows the impact of H on the performances.
This is the mean on 100 runs values on the situation de-
picted Fig.11. The plan alternatively selects one move
action and one observation action. Furthermore the
move actions are deterministic, hence the uncertainty
arises only on observation steps. The deterministic ex-
ecution computes a plan without uncertainty (i.e. fol-
lows the heuristic). With H = 1 the robot are just
following the heuristic value, it also gives the determin-
istic plan value. With a limited H LRTDP manages to
find the optimal value. When H is very high, (H > 8),
UCT is still able to find a good plan, while LRTDP
performances drop. This drop can be explained by the
time spent for labeling the states while UCT just sam-
ples trajectories with no further work. The fact that
UCT only samples the Q-value impacts on the graph
expansion, limiting it, see Fig. 8(b).

The evolution of the value functions are presented
Fig. 9 and Fig. 10. It shows that the expected value of
LRTDP is more accurate (V (s0) is higher) than UCT
and that LRTDP is able to converge for H ≤ 6. It also
shows that increasing H first increases the precision of

 29000

 30000

 31000

 32000

 33000

 34000

 35000

 0 2 4 6 8 10 12 14 16 18 20

R
e
a
l
C
o
s
t

H

Real execution cost (mean 100 runs)

UCT
LRTDP

Deterministic

(a) Mean execution cost

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0 2 4 6 8 10 12 14 16 18 20

S
iz

e

H

Graph expansion

UCT

LRTDP

(b) Size of search Graph

Figure 8: Comparison between UCT and LRTDP

Figure 9: Evolution of UCT starting state’s value

Figure 10: Evolution of LRTDP starting state’s value

the value function and then, due to insufficient com-
putation time, decrease. The mean cost of 100 runs
is in the best case 29000 and the higher value of the
starting state is 26567. So it shows that both algo-
rithms are underestimating the real value. The optimal
value, without any restriction on the horizon, is 28366
and has been computed using LRTDP in 10 minutes.
Fig. 11 shows the path followed by the various algo-

rithms. Greedy policy goes to the closest viewpoint,
optimal deterministic is the shortest path with deter-
ministic observation, the two others are LRTDP and
UCT computed with H = 6.

Conclusion and future works

This paper shows the suitability of UCT and LRTDP,
two on-line algorithms, for observation planning. The
main advantage is their anytime behaviour, allowing
the robot’s main controller to stop the algorithm when
action is needed or let the quality of the solution in-
creases. The other advantages comes with the MDP
formalisation, allowing a good description of the vari-
able to optimize. We have shown several algorithms,
and each of them has advantages and drawbacks. Se-
lecting the good algorithm according to the problem to
solve is also an interesting decision problem.

Planning with limited lookahead using an heuristic
has yet some issues. With a very small horizon, the
policy tends to be greedy. We can’t avoid that issue,
and we have to set a minimum horizon so that this
phenomenon will not occur. The second issue is the
labelling process of LRTDP which may labelled some
states as solved when they are not (observing twice an
object, or immediately succeed the observation, may
leads to the same state). In that case the value of s0

(a) Greedy (b) Optimal deterministic

(c) Lrtdp (d) UCT

Figure 11: Execution of different policies, 10 runs

depends on which trajectory has been first sampled. We
want to introduce a backward re-labelling process to fix
that issue and study the impact on the quality.

Lots of work has been done in multi-criteria MDP
(White 1982). Since the observation planning problem
has two different and opposite variables to optimize,
namely the time and the number of identified objects,
it is hard to merge everything in a single real valued
reward function. Adapting UCT or LRTDP in a multi-
criteria context is a challenging work. We are more
especially interested in finding one pareto-optimal pol-
icy instead of all non dominated policies, which is often
the case in multi-objective optimisation.

We manage to compute the heuristic efficiently on
the GPU. The current implementation is very simple
and, even the algorithm is work-efficient, it still com-
putes many unnecessary null transition. There lots of
space for further optimization. Since the MDP are P-
complete, we don’t want to solve every MDP on the
GPU, but we want to define a subclass of MDP which
could efficiently be solved with that kind of algorithm,
or, like in the present paper, how a part of the compu-
tation can be efficiently deported on the GPU.

References

Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002.
Finite-time analysis of the multiarmed bandit prob-
lem. Mach. Learn. 47(2-3):235–256.

Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995.
Learning to act using real-time dynamic programming.
Artif. Intell. 72(1-2):81–138.

Bellman, R. 1957. Dynamic Programming. Princeton
University Press.

Bonet, B., and Geffner, H. 2003. Labeled rtdp: Im-
proving the convergence of real-time dynamic pro-
gramming. In Giunchiglia, E.; Muscettola, N.; and
Nau, D. S., eds., ICAPS, 12–31. AAAI.

Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-
theoretic planning: Structural assumptions and com-
putational leverage. Journal of Artificial Intelligence
Research 11:1–94.

Cassandra, A. R.; Kaelbling, L. P.; and Littman, M. L.
1994. Acting optimally in partially observable stochas-
tic domains. In AAAI’94: Proceedings of the twelfth
national conference on Artificial intelligence (vol. 2),
1023–1028. Menlo Park, CA, USA: American Associ-
ation for Artificial Intelligence.

Connolly, C. 1985. The determination of next best
views. In IEEE International Conference on Robotics
and Automation., 432–435.

Dolgov, D. A., and Durfee, E. H. 2006. Symmetric
primal-dual approximate linear programming for fac-
tored MDPs. In Proceedings of the Ninth International
Symposiums on Artificial Intelligence and Mathemat-
ics (AI&M 2006).

Gelly, S., and Wang, Y. 2006. Exploration exploitation
in Go: UCT for Monte-Carlo Go.

Hansen, E. A., and Zilberstein, S. 2001. Lao*: A
heuristic search algorithm that finds solutions with
loops. Artif. Intell. 129(1-2):35–62.

Kearns, M. J.; Mansour, Y.; and Ng, A. Y. 2002. A
sparse sampling algorithm for near-optimal planning
in large markov decision processes. Machine Learning
49(2-3):193–208.

Kocsis, L., and Szepesvári, C. 2006. Bandit based
monte-carlo planning. In Fürnkranz, J.; Schef-
fer, T.; and Spiliopoulou, M., eds., ECML, volume
4212 of Lecture Notes in Computer Science, 282–293.
Springer.

Masuzawa, H., and Miura, J. 2009. Observation plan-
ning for efficient environment information summariza-
tion. In IROS. IEEE.

Péret, L., and Garcia, F. 2004. On-line search for solv-
ing markov decision processes via heuristic sampling.
In de Mántaras, R. L., and Saitta, L., eds., ECAI,
530–534. IOS Press.

Puterman, M. L. 2005. Markov Decision Processes :
Discrete Stochastic Dynamic Programming. Wiley.

Thrun, S.; Burgard, W.; and Fox, D. 2005. Proba-
bilistic Robotics (Intelligent Robotics and Autonomous
Agents). The MIT Press.

Vasudevan, S.; Gächter, S.; Nguyen, V.; and Siegwart,
R. 2007. Cognitive maps for mobile robots-an object
based approach. Robot. Auton. Syst. 55(5):359–371.

White, D. J. 1982. Multi-objective infinite-horizon dis-
counted markov decision processes. Journal of math-
ematical analysis and applications 89:639–647.

