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Abstract In this paper, we investigate the dark energy phe-

nomenon by studying the Tsallis holographic dark energy

within the framework of Brans–Dicke (BD) scalar–tensor

theory of gravity (Brans and Dicke in Phys. Rev. 124:925,

1961). In this context, we choose the BD scalar field φ as

a logarithmic function of the average scale factor a(t) and

Hubble horizon as the IR cutoff (L = H−1). We reconstruct

two cases of non-interacting and interacting fluid (dark sec-

tors of cosmos) scenario. The physical behavior of the mod-

els are discussed with the help of graphical representation to

explore the accelerated expansion of the universe. Moreover,

the stability of the models are checked through squared sound

speed v2
s . The well-known cosmological plane i.e., ωde −ω′

de

is constructed for our models. We also include comparison

of our findings of these dynamical parameters with observa-

tional constraints. It is also quite interesting to mention here

that the results of deceleration, equation of state parameters

and ωde −ω′
de plane coincide with the modern observational

data.

1 Introduction

Over the last few years, different cosmological observations

such as type Ia supernovae [1,2], cosmic microwave back-

ground radiation (CMBR) [3,4], Baryon acoustic oscilla-

tions (BAO) [5,6], galaxy redshift survey [7] and large scale

structure [8,9] strongly suggest that our universe is cur-

rently undergoing a phase of accelerated expansion. Also,

it is believed that the mysterious force known as dark energy

(DE) with huge negative pressure is responsible for the cur-
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rent expanding universe with an acceleration. The present

Planck data tells that there is 68.3% DE of the total energy

contents of the universe. We know very well that the standard

cosmology has been extraordinarily successful but it unable

to solve some serious issues including the search for the best

DE candidate. Still there is some uncertainty in the origin and

composition of DE except some particular ranges of the equa-

tion of state (EoS) parameter ωde. The approaches to answer

this DE problem fall into two representative categories: one is

to introduce dynamical DE in the right-hand side of the Ein-

stein field equations in the framework of general relativity

and the second one is to modify the left hand side of the Ein-

stein equations, leading to a modified theories of gravity. In

the literature, there are very nice reviews on both dynamical

DE models and modified theories [10–17]. In the absence of

any strong argument in favor of DE candidate, a variety of DE

models have been discussed. Cosmological constant is the

primary DE candidate for describing DE phenomenon but it

has some serious problems like fine tuning and cosmic coin-

cidence. Due to this reason, several dynamical DE models

include a family of scalar fields such as quintessence [18–

21], phantom [22–25], quintom [26,27], tachyon [28–30],

K-essence [31], various Chaplygin gas models like general-

ized Chaplygin gas, extended Chaplygin gas and modified

Chaplygin gas [32–47] have been developed.

The holographic DE (HDE) model [48] has been sug-

gested in the context of quantum gravity with the help of

holographic principle [49]. This holographic principle says

that the bound on the vacuum energy Λ of a system with

size L should not cross the limit of the black hole (BH) mass

having the same size due to the formation of BH in quantum

field theory [50]. The energy density of HDE is defined as

ρde = 3d2m2
p L−2. (1)

where m p is the reduced Planck mass. This HDE model gives

the relationship between the quantum fields energy density in
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vacuum to the various cut-offs such as infrared and ultravio-

let. Granda and Oliveros [51] proposed a IR cut-off contain-

ing the local quantities of Hubble and time derivative Hubble

scales. The advantages of HDE with Granda and Oliveros

cutoff (new HDE model) is that it depends on local quanti-

ties and avoids the causality problem appearing with event

horizon IR cutoff. The new HDE model can also obtain the

accelerated expansion of the universe and also showed that

the transition redshift from deceleration phase (q > 0) to

acceleration phase (q < 0) is consistent with current obser-

vational data [51,52]. Nowadays, HDE attracted attention as

it can alleviate the issue of cosmic coincidence, i.e., why the

energy densities due the dark matter and the DE should have

a constant ratio for the present universe [53]. Also, various

works show that the HDE model is in fairly good agreement

with the observational data [54–57]. Nojiri and Odintsov [58]

have proposed unifying approach to early-time and late-time

universe based on generalized HDE and phantom cosmol-

ogy, and recently generalized this idea as Hinflation [59].

In recent years, various entropy formalism have been used

to investigate the gravitational and cosmological setups.

Also, some new HDE models are constructed such as Tsal-

lis HDE (THDE) [60,61], Renyi HDE model (RHDE) [62]

and Sharma-Mittal HDE (SMHDE) [63]. Among these mod-

els, RHDE based on the absence of interactions between

cosmos sectors, and this model shows more stability by

itself [62]. SMHDE is classically stable in the case of non-

interacting cosmos. The THDE model based on the Tsallis

generalized entropy, which is never stable at the classical

level [60,61,63]. Hence, with this motivation, in this work

we consider the HDE with another entropy formalism i.e.,

Tsallis HDE.

As mentioned above, another approach to explore the

present accelerated expansion of the universe is the modified

theories of gravity. Standard Einstein’s theory of gravitation

may not completely explain the gravity at very high energy.

In this situation cosmic acceleration would arise not from

DE as a substance but rather from the dynamics of modified

gravity [12]. The simplest alternative to general relativity is

the scalar-tensor theory obtained by Brans and Dicke [64]

(BD). But, in case of w parameter value, there is a major

difference between the theoretical and observational data. It

is observed that the theoretical values are much less than that

of observational value which motivates many researchers to

explore various aspects of universe in BD framework [65–

76]. Nojiri et al. [77] have studied the properties of singu-

larities in the phantom DE universe. They have, also, men-

tioned that the phantom-like behavior of EoS parameter ωde

may appear from BD theory, either from the non-minimal

coupling of a scalar Lagrangian with gravity, or from nega-

tive (non-standard) potentials, or even the usual matter may

appear in phantom-like nature. Recently, Saridakis et al. [78]

have discussed HDE through Tsallis entropy and its cosmo-

logical evolution through observational constraints. Barboza

et al. [79] and Nunes et al. [80] have studied DE models

through non-extensive Tsallis entropy framework and cos-

mological viability of non-gaussian statistics. Agostino [81]

has investigated the holographic principle through the non-

additive Tsallis entropy, used to describe the thermodynamic

properties of nonstandard statistical systems such as the grav-

itational ones. Zadeh et al. [82] have explored the effects of

different infrared cutoffs, such as the particle, Ricci horizons

and the Granda–Oliveros cutoffs, on the properties of THDE

model. Sharma and Pradhan [83] have investigated diag-

nosing THDE models with statefinder and ωde − ω′
de plane

analysis. Sadri [84] has studied observational constraints on

interacting THDE model. Sharif and Saba [85] have recon-

structed the THDE model with Hubble horizon within the

framework of f (G, T ) gravity. Nojiri et al. [86] have stud-

ied modified cosmology from extended entropy with varying

exponent. Ghaffari et al. [87] have discussed interacting and

non-interacting THDE models by considering the Hubble

horizon as the IR cutoff within BD scalar theory framework,

while Jawad et al. [88] have studied cosmological implica-

tions of THDE in modified version of BD scalar theory. In

both the models the authors have considered the BD scalar

field φ as a power function of average scale factor a(t). Here,

we are interested to extend the study of THDE models in BD

theory with scalar field φ as logarithmic function of average

scale factor.

In this work, we are interested in studying the both non-

interacting and interacting Tsallis holographic dark energy

in Brans–Dicke scalar–tensor theory by considering homo-

geneous, isotropic FRW flat universe. Here, we focus our

attention on the THDE models in BD theory with logarith-

mic expansion of average scale factor a(t) for BD scalar field

φ. The present work is organized as follows: in Sect. 2, we

derive BD field equations in the presence of THDE and pres-

sure less dark matter (DM). Also, we have constructed non-

interacting and interacting THDE models along with their

complete physical discussion. Finally, in Sect. 3, we present

the conclusions of this paper and also made a comparative

analysis.

2 Tsallis holographic dark energy in BD theory

We consider the homogeneous, isotropic and flat FRW metric

in the form

ds2 = dt2 − a2{dr2 + r2(dθ2 + sin2 θdψ2)}, (2)

where a(t) is the scale factor of the model. The spatial volume

(V ), Hubble parameter (H ) and deceleration parameter (q)

of this model are given by
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V = a3 (3)

H =
ȧ

a
(4)

q = −
Ḣ

H2
− 1. (5)

Different theories of gravitation have been proposed as

alternatives to Einstein’s general theory of gravity. But, the

scalar–tensor theory formulated by Brans and Dicke [64]

is supposed to be the best alternative to Einstein’s theory.

We consider the universe filled with pressure less DM with

energy density ρm and DE with density ρde. Hence, in this

case the BD field equations for the combined scalar and tenor

fields are given by

Ri j −
1

2
Rgi j = −

8π

φ
(Ti j + T i j ) − φ−1

(

φi; j − gi jφ
,k
;k

)

−wφ−2

(

φ,iφ, j −
1

2
gi jφ,kφ

,k

)

, (6)

φ
,k
;k

=
8π

(3 + 2w)
(T + T ) (7)

and the energy conservation equation is

(Ti j + T i j ); j = 0, (8)

which is a consequence of field equations (6) and (7). Here, R

and Ri j are the Ricci scalar and Ricci tensor respectively, w

is a dimensionless coupling constant. Ti j and T i j are energy-

momentum tensors for pressure less DM and THDE, respec-

tively, which are defined as

Ti j = ρmui u j (9)

T i j = (ρde + pde)ui u j − pdegi j (10)

where pde and ρde are the pressure and energy density of DE

respectively and ρm is energy density of DM.

The field equations (6) and (7) for the metric (2) are

obtained as

2
ä

a
+

ȧ2

a2
+

w

2

φ̇2

φ2
+ 2

ȧφ̇

aφ
+

φ̈

φ
= −

ωdeρde

φ
(11)

3
ȧ2

a2
−

w

2

φ̇2

φ2
+ 3

ȧφ̇

aφ
=

ρde + ρm

φ
(12)

φ̈ + 3φ̇
ȧ

a
=

ρde(1 − 3ωde) + ρm

3 + 2w

(13)

and the energy conservation equation (8), leads to

ρ̇de + ρ̇m + 3H(ρde(1 + ωde) + ρm) = 0, (14)

where overhead dot denotes ordinary differentiation with

respect to time t . Here, ωde is the equation of state (EoS)

parameter of dark energy and is given by

ωde =
pde

ρde

. (15)

In literature it is also common to use a power-law rela-

tion between BD scalar field φ and average scale factor ’a’

of the form φ = φ0al [89,90], where φ0 is a constant and

l is a power index. Various authors have discussed differ-

ent aspects of this form of scalar field φ and have shown

that it leads to constant deceleration parameter [72,91] and

also time varying deceleration parameter [69,92]. Recently,

Kumar and Singh [93] have introduced a BD scalar field

evolves as a logarithmic function of the average scale factor

to study the evolution of holographic and new agegraphic DE

models. The relation is given by

φ = φ1 ln(β1 + β2 a(t)) (16)

where φ1, β1 > 1 and β2 > 0 are constants. Recently,

Singh and Kumar [94], Sadri and Vakili [95], and Aditya

and Reddy [96] have investigated holographic DE models in

BD theory using this logarithmic law for scalar field.

The energy density of Tsallis holographic DE model is

given by [61]

ρde = ηL2δ−4 (17)

where η is a parameter with dimensions [L]−2δ . For δ = 1

the above equation gives the usual holographic DE ρde =

3d2m2
p, with η = 3d2m2

p and d2 the model parameter. Also,

it is interesting to mentioning that in the special case δ = 2

the above equation gives the standard cosmological constant

model ρde = constant = Λ (Saridakis et al. [78]).

By considering the Hubble horizon as the IR cutoff, L =

H−1, in BD theory the energy density (17) takes the form

ρde = 3d2φH−2δ+4. (18)

The dimensionless density parameters are defined as

Ωm =
ρm

ρcr

; Ωde =
ρde

ρcr

; Ωφ =
ρφ

ρcr

(19)

where ρcr = 3m2
p H2 is called the critical energy density and

in BD theory it can be written as ρcr = 3φH2.

In the following sections, we consider the two cases: non-

interacting model and interacting model. We determine, in

both the cases energy density of THDE ρde, EoS parameter

ωde, deceleration parameter q, squared sound speed v2
s and

ωde − ω′
de plane by solving the BD field equations. We also

study their physical behavior.

2.1 Non-interacting model

First we consider that there is no energy exchange between

the two fluids (cosmic sectors), and hence, the energy con-

servation equation (8) leads us to the following separate con-

servation equations:

ρ̇de + 3Hρde(1 + ωde) = 0, (20)

ρ̇m + 3Hρm = 0. (21)
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Taking differentiation with respect to time t for Eq. (20), and

using BD scalar field Eq. (16), we have

ρ̇de =ρde H

(

β2a

(β1 + β2a) ln(β1+β2a)
+(4 − 2δ)

Ḣ

H2

)

.

(22)

By taking the time derivative of Eq. (12), using Eqs. (16)

and (18)–(21), we obtain

Ḣ

H2
= −

{

6β2a

(β1 + β2a) ln(β1 + β2a)

−
wβ2

2 a2

(β1 + β2a) [ln(β1 + β2a)]2

+9Ωde(1 + ωde + u)

−
3β2

2 a2

(β1 + β2a)2 ln(β1 + β2a)

+
wβ3

2 a3

(β1 + β2a)2 [ln(β1 + β2a)]2

+
wβ3

2 a3

(β1 + β2a)3 [ln(β1 + β2a)]3

}

×

{

6 +
6β2a

(β1 + β2a) [ln(β1 + β2a)]

−
wβ2

2 a2

(β1 + β2a) [ln(β1 + β2a)]2

}−1

(23)

where u =
ρm

ρde
=

Ωm

Ωde
. On the other side, from Eqs. (18)

and (20), we obtain

Ḣ

H2
=

3

2(δ − 2)

[

1+ωde+
φ1β2a

3(β1+β2a) ln(β1 + β2a)

]

.

(24)

From the above two Eqs. (23) and (24), we find that

Ḣ

H2
= −

{

3β2a(2 + Ωde)

(β1 + β2a) ln(β1 + β2a)

−
wβ2

2 a2

(β1 + β2a) [ln(β1 + β2a)]2

−
3β2

2 a2

(β1 + β2a)2 ln(β1 + β2a)

+
wβ3

2 a3

(β1 + β2a)2 [ln(β1 + β2a)]2

+
wβ3

2 a3

(β1 + β2a)3 [ln(β1 + β2a)]3
+ 9Ωdeu

}

×

{

6 + 6(δ − 2)Ωde +
6β2a

(β1 + β2a) [ln(β1 + β2a)]

−
wβ2

2 a2

(β1 + β2a) [ln(β1 + β2a)]2

}−1

(25)

Taking time derivative of Eq. (19), we obtain

Ω̇de = 2Ωde (1 − δ)
Ḣ

H
. (26)

In order to observe the behavior density parameter of THDE,

we define Ω ′
de =

Ω̇de

H
, where the prime denotes derivative

with respect to ‘ln a(t)’. Then from Eqs. (25) and (26) we

have

Ω ′
de = 2

{

3β2a(2 + Ωde)

(β1 + β2a) ln(β1 + β2a)

−
wβ2

2 a2

(β1 + β2a) [ln(β1 + β2a)]2

−
3β2

2 a2

(β1 + β2a)2 ln(β1 + β2a)

+
wβ3

2 a3

(β1 + β2a)2 [ln(β1 + β2a)]2

+
wβ3

2 a3

(β1 + β2a)3 [ln(β1 + β2a)]3
+ 9Ωdeu

}

×Ωde(δ − 1)

×

{

6 + 6(δ − 2)Ωde +
6β2a

(β1 + β2a) [ln(β1 + β2a)]

−
wβ2

2 a2

(β1 + β2a) [ln(β1 + β2a)]2

}−1

. (27)

Also, from Eqs. (23) and (24) we obtain EoS parameter of

THDE as

ωde = −1 −

{

6β2a

(β1 + β2a) ln(β1 + β2a)

−
wβ2

2 a2

(β1 + β2a) [ln(β1 + β2a)]2
+ 9Ωdeu

+
wβ3

2 a3

(β1 + β2a)2 [ln(β1 + β2a)]2

+
wβ3

2 a3

(β1 + β2a)3 [ln(β1 + β2a)]3

−
3β2

2 a2

(β1 + β2a)2 ln(β1 + β2a)

+
β2a

2(δ − 2)(β1 + β2a) [ln(β1 + β2a)]

×

{

6 +
6β2a

(β1 + β2a) [ln(β1 + β2a)]

−
wβ2

2 a2

(β1 + β2a) [ln(β1 + β2a)]2

}}

×

{

3

2(δ − 2)

{

6 +
6β2a

(β1 + β2a) [ln(β1 + β2a)]

−
wβ2

2 a2

(β1 + β2a) [ln(β1 + β2a)]2
+ 9Ωde

}}−1

. (28)
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redshift z

-1 -0.5 0 0.5 1 1.5 2

Ω
de

0

1

2

3

4

5

6

δ=0

δ=1

δ=1.1

δ=1.3

δ=1.5

δ=2

Fig. 1 Plot of Ωde of non-interacting THDE model versus redshift z

for β1 = 7.1, β2 = 2.15, w = 1000, Ω0
de = 0.73 and u = 0.3

To study the behavior of dimensionless density parame-

ter of THDE Ωde, we solve the Eq. (27) numerically corre-

sponding to redshift z whose output is given in Fig. 1. In the

evolution of dynamical parameters the THDE parameter δ

plays a crucial role and hence we have taken various values

to δ = 0, 1, 1.1, 1.3, 1.5, 2. Here, we have used the initial

value of Ωde as Ω0
de = 0.73 and additionally we have taken

β1 = 7.1, β2 = 2.15, w = 1000 [87,97] and u = 0.3 [98]. It

can be seen that the Ωde is positive and decreasing function

throughout the evolution, and finally it approaches to differ-

ent positive constant values for δ = 1, 1.1, 1.3, 1.5, 2

whereas the density parameter is increasing function for

δ = 0. Also, we observe that the steepness of density param-

eter Ωde increases with increase in δ. Observations from

Planck’s data (2014) [99] have given the following con-

straints on the DE density parameter Ωde = 0.717+0.023
−0.020

(Planck + WP) and Ωde = 0.717+0.028
−0.024 (WMAP-9) and

Planck’s data (2018) [100] have given the constrains on DE

density parameter as Ωde = 0.679 ± 0.013 (TT + lowE),

0.699 ± 0.012 (TE + lowE), 0.711+0.033
−0.026 (EE + lowE),

0.6834 ± 0.0084 (TT, TE, EE + lowE), 0.6847 ± 0.0073

(TT, TE, EE + lowE + lensing), 0.6889 ± 0.0056 (TT, TE,

EE + lowE + lensing + BAO) by implying various com-

bination of observational schemes at 68% confidence level.

We observed that the THDE density parameter meets the

above mentioned limits at present epoch, which shows that

our results are consistent.

The EoS parameter is the relationship between pressure

pde and energy density ρde of DE whose expression is given

by ωde =
pde

ρde
. The EoS parameter is used to classify the

decelerated and accelerated expansion of the universe and it

categorizes various epochs as follows: when ω = 1, it rep-

resents stiff fluid, if ω = 1/3, the model shows the radiation

dominated phase while ω = 0 represents matter dominated

phase. In DE dominated accelerated phase, −1 < ω < −1/3

redshift z

-0.5 0 0.5 1 1.5 2

ω
de

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8 δ=0

δ=1

δ=1.1

δ=1.3

δ=1.5

Fig. 2 Plot of EoS parameter of non-interacting THDE model versus

redshift z for β1 = 7.1, β2 = 2.15, w = 1000, Ω0
de = 0.73 and u = 0.3

shows the quintessence phase and ω = −1 shows the cosmo-

logical constant, i.e., ΛCDM model and ω < −1 yields the

phantom era. In Fig. 2, we have plotted EoS parameter versus

redshift z for different values of δ. We observe from Fig. 2

that the EoS parameter starts from matter dominated era, then

goes towards quintessence DE era and finally approaches

to vacuum DE era for different values of δ = 0, 1, 1.1,

1.3, 1.5. For δ = 2, it is clear from the Eq. (28) that the EoS

parameter becomes −1, i.e., cosmological constant. This is in

agreement with the results obtained by Saridakis et al. [78].

Also, it is interesting to mention here that as δ decreases the

transition from matter dominated phase to dark energy phase

is delayed considerably. It may be noted that the EoS param-

eter, in this non-interacting case, never crosses the phantom

divided line (PDL) ωde = −1.

Deceleration parameter is another important cosmological

parameter by means of which one can distinguish current

accelerated or early decelerated expansions. It is defined as

q = −1 −
Ḣ

H2
. (29)

In this case, with the help of Eq. (25) this deceleration param-

eter can be obtained as

q = −1 +

{

3β2a(2 + Ωde)

(β1 + β2a) ln(β1 + β2a)

−
3β2

2 a2

(β1 + β2a)2 ln(β1 + β2a)

−
wβ2

2 a2

(β1 + β2a) [ln(β1 + β2a)]2

+
wβ3

2 a3

(β1 + β2a)2 [ln(β1 + β2a)]2

+
wβ3

2 a3

(β1 + β2a)3 [ln(β1 + β2a)]3
+ 9Ωdeu

}
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Fig. 3 Plot of deceleration parameter of non-interacting THDE model

versus redshift z for β1 = 7.1, β2 = 2.15, w = 1000, Ω0
de = 0.73 and

u = 0.3

Fig. 4 Plot of ωde − ω′
de plane of non-interacting THDE model for

β1 = 7.1, β2 = 2.15, w = 1000, Ω0
de = 0.73 and u = 0.3

×

{

6 + 6(δ − 2)Ωde +
6β2a

(β1 + β2a) [ln(β1 + β2a)]

−
wβ2

2 a2

(β1 + β2a) [ln(β1 + β2a)]2

}−1

(30)

The plot of above constructed deceleration parameter ver-

sus redshift z is shown in Fig. 3 for different values of δ and

assumed values of other parameters. It may be noted that for

δ = 1, 1.1, 1.3, 1.5, 2 the model exhibits a smooth tran-

sition from early deceleration era to the current acceleration

era of the universe, whereas for δ = 0 the model remains in

the accelerated phase. Moreover, the transition redshift zt is

decreasing as δ increases. We observed that the transition red-

shift zt from a deceleration phase to an accelerated universe

lies within the interval 0.57 < zt < 0.77. This is in accor-

dance with the recent cosmological observations [101,102].

Theωde−ω′
de (where ′denotes differentiation with respect

to ln a) plane explains the accelerated expansion regions of

the universe. Caldwell and Linder [103] have firstly proposed

this plane for analyzing the quintessence scalar field. Two dif-

ferent classes have been characterized from this plane known

as thawing region (ω′
de > 0 when ωde < 0) and freezing

region (ω′
de < 0 when ωde < 0) on the ω′

de−ωde plane. Here,

for non-interacting model, we have developed ωde − ω′
de

plane for different values of δ as given in Fig. 4. From Fig. 4,

it can be observed that ωde −ω′
de plane corresponds to freez-

ing region for all the values of δ = 0, 1, 1.1, 1.3, 1.5.

Observational data says that the expansion of the universe is

comparatively more accelerating in freezing region. Also,

for δ = 2 the model coincides with the ΛC DM limit

(ωde, ω
′
de) = (−1, 0). Hence, the behavior of ωde − ω′

de

plane is consistent with the present day observations.

In order to check the stability against small perturbations

of our non interacting THDE model in this scenario, we

obtain the squared speed of sound. Sign of square of speed

of sound plays a crucial role, i.e., its negativity (v2
s < 0) rep-

resents instability and vice versa. It can be defined as follows

v2
s =

ṗde

ρ̇de

. (31)

By differentiating the relation ωde =
pde

ρde
with respect to time

t and dividing by ρ̇de, we get

v2
s = ωde +

ρde

ρ̇de

ω̇de (32)

Now, using Eq. (22) in above Eq. (32), we get

v2
s = ωde +

ω̇de

H
(

β2a
(β1+β2a) ln(β1+β2a)

+ (4 − 2δ) Ḣ
H2

) (33)

where ωde and Ḣ
H2 are, respectively, given in Eqs. (25)

and (28).

In the present scenario, we develop the squared speed of

sound trajectories in terms redshift z as shown in Fig. 5 using

same values of the constants in the model. For all the values

of δ, we can observe from Fig. 5 that initially v2
s exhibits a

decreasing behavior but with positive sign. This shows that

the model stable at early epochs. Later, all the curves related

to the parameter δ exhibit negative behavior. Thus for the

non-interacting THDE model is found the stability at initial

epoch and then becomes unstable in later epochs.

2.2 Interacting model

Here, we consider the interaction between the two flu-

ids. Since the nature of both DE and dark matter is still

unknown, there is no physical argument to exclude the pos-

sible interaction between them. Some observational evi-

dences of the interaction in dark sectors have been found
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Fig. 5 Plot of squared sound speed of non-interacting THDE model

versus redshift z for β1 = 7.1, β2 = 2.15, w = 1000, Ω0
de = 0.73 and

u = 0.3

recently [104,105]. Abdalla et al. [106,107] have investi-

gated the signature of interaction between DE and dark mat-

ter by using optical, X-ray and weak lensing data from the

relaxed galaxy clusters. So, it is reasonable to assume the

interaction between DE and dark matter in cosmology.

For this purpose we can write the energy conservation

equations as

ρ̇de + 3Hρde(1 + ωde) = −Q, (34)

ρ̇m + 3Hρm = Q. (35)

where the quantity Q represents interaction between DE

components. From the Eqs. (34) and (35) we can say that the

total energy is conserved i.e., ρ̇tot + 3H(ωtot + 1)ρtot = 0,

where ρtot = ρm +ρde. Since there is no natural information

from fundamental physics on the interaction term Q, one can

only study it to a phenomenological level. Various forms of

interaction term extensively considered in literature include

Q = 3cHρm , Q = 3cHρde and Q = 3cH(ρm + ρde).

Here, c is a coupling constant and positive c means that DE

decays into dark matter, while negative c means dark mat-

ter decays into DE. Also, there are many other forms for

interaction term considered in literature which are defined as

Q = γ ρ̇i and Q = 3cHγρi + γ ρ̇i where i = m, de, tot .

A detailed analysis of linear interacting terms can be found

in Izaquierdo and Pavon [108], Ferreira et al. [109], Sadeghi

et al. [47,110] and Wei [111]. Most of these interactions are

either positive or negative and can not give the possibility to

change their signs. Cai and Su [112] have proposed a new

sign-changeable interaction by allowing ρ̇ and deceleration

parameterq into interacting term as Q = q(γ ρ̇ + 3cHρi )

where i = m, de, tot . Here γ and c dimensionless constants

and deceleration parameter is defined in Eq. (5). Recently,

Sadri et al. [113] have compared different phenomenologi-

cal linear as well as non-linear interaction cases in the frame-

work of the holographic Ricci DE model and they found that

the linear interaction are the best cases among the others.

Inspired by the works of Pavon and Zimdahl [114], Sadeghi

et al. [115], Honarvaryan et al. [116], Zadeh et al. [82] and

Sadri [84], in this work, we consider the linear interacting

term as Q = 3c2 H(ρm + ρde). It is worthwhile to mention

here that this work can be extended using sign-changeable

interaction term, which will be done in other forthcoming

articles.

Now, combining the time derivative of Eq. (12) with Eqs.

(16)–(19), (34) and (35), we easily get

Ḣ

H2
= −

{

3β2a(2 − Ωde)

(β1 + β2a) ln(β1 + β2a)

−
wβ2

2 a2

(β1 + β2a) [ln(β1 + β2a)]2

−
3β2

2 a2

(β1 + β2a)2 ln(β1 + β2a)

+
wβ3

2 a3

(β1 + β2a)2 [ln(β1 + β2a)]2

+
wβ3

2 a3

(β1 + β2a)3 [ln(β1 + β2a)]3

−9Ωde

(

u(c2 − 1) + c2
)

}

×

{

6 + 6(δ − 2)Ωde +
6β2a

(β1 + β2a) [ln(β1 + β2a)]

−
wβ2

2 a2

(β1 + β2a) [ln(β1 + β2a)]2

}−1

(36)

In view of Eq. (26), from Eq. (36) we obtain

Ω ′
de = 2Ωde(δ − 1)

{

3β2a(2 − Ωde)

(β1 + β2a) ln(β1 + β2a)

−
wβ2

2 a2

(β1 + β2a) [ln(β1 + β2a)]2

−
3β2

2 a2

(β1 + β2a)2 ln(β1 + β2a)

+
wβ3

2 a3

(β1 + β2a)2 [ln(β1 + β2a)]2

+
wβ3

2 a3

(β1 + β2a)3 [ln(β1 + β2a)]3
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Fig. 6 Plot of density parameter of interacting THDE model versus redshift z for β1 = 7.1, β2 = 2.15, w = 1000, Ω0
de = 0.73, u = 0.3 and

δ = 1.3

−9Ωde

(

u(c2 − 1) + c2
)

}

×

{

6 + 6(δ − 2)Ωde +
6β2a

(β1 + β2a) [ln(β1 + β2a)]

−
wβ2

2 a2

(β1 + β2a) [ln(β1 + β2a)]2

}−1

(37)

We solve the differential equation (37) for dimensionless

density parameter Ωde in interacting THDE model and plot

it against redshift z as shown in Fig. 6. Here, we have ana-

lyzed all the dynamical parameters through both δ and cou-

pling coefficient c2. Remaining constant parameters are same

as used in previous section. It can be seen that the density

parameter Ωde shows decreasing behavior for all values of δ

except for δ = 0. Also, we observe that increase of the cou-

pling coefficient c2 and parameter δ cause the Ωde increases

but, the effect of coupling coefficient vanishes near past and

Ωde becomes more steeper with the increase of δ.

From Eqs. (18), (34) and (36), we find that

ωde = −1 − c2(u + 1) −
β2a

3(β1 + β2a) ln(β1 + β2a)

−
2(δ − 2)

3

{{

3β2a(2 − Ωde)

(β1 + β2a) ln(β1 + β2a)

−
wβ2

2 a2

(β1 + β2a) [ln(β1 + β2a)]2

−
3β2

2 a2

(β1 + β2a)2 ln(β1 + β2a)

+
wβ3

2 a3

(β1 + β2a)2 [ln(β1 + β2a)]2

+
wβ3

2 a3

(β1 + β2a)3 [ln(β1 + β2a)]3

−9Ωde

(

u(c2 − 1) + c2
)

}

×

{

6 + 6(δ − 2)Ωde +
6β2a

(β1 + β2a) [ln(β1 + β2a)]

−
wβ2

2 a2

(β1 + β2a) [ln(β1 + β2a)]2

}−1}

(38)

We can get EoS parameter behavior from it’s plots which

are shown in Fig. 7, for various values of c2 and δ. It

can be observed from Fig. 7 that the EoS parameter starts

from quintessence phase and turns towards phantom region

by crossing vacuum dominated era (phantom divide line

ωde = −1) of the universe for all the values of δ and c2.

At late times, it can also be observed that the EoS parameter

attains high phantom region with the increase of coupling

coefficient c2 but, attains a constant value in phantom region

for various values of δ. For δ = 0 the model varies from

matter dominated phase to dark energy phase, whereas for

δ = 2 the model remains in the phantom region (ωde < −1).

It is interesting to note here that as δ and c2 increases, there

is a delay in transition of the model from quintessence to

phantom phase.

The deceleration parameter is given by

q = −1 +

{

3β2a(2 − Ωde)

(β1 + β2a) ln(β1 + β2a)

−
wβ2

2 a2

(β1 + β2a) [ln(β1 + β2a)]2

−
3β2

2 a2

(β1 + β2a)2 ln(β1 + β2a)

+
wβ3

2 a3

(β1 + β2a)2 [ln(β1 + β2a)]2

+
wβ3

2 a3

(β1 + β2a)3 [ln(β1 + β2a)]3

−9Ωde

(

u(c2 − 1) + c2
)

}
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Fig. 7 Plot of EoS parameter of interacting THDE model versus redshift z for β1 = 7.1, β2 = 2.15, w = 1000, Ω0
de = 0.73, u = 0.3 and δ = 1.3
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Fig. 8 Plot of deceleration parameter of of interacting THDE model versus redshift z for β1 = 7.1, β2 = 2.15, w = 1000, Ω0
de = 0.73 and

u = 0.3

×

{

6 + 6(δ − 2)Ωde +
6β2a

(β1 + β2a) [ln(β1 + β2a)]

−
wβ2

2 a2

(β1 + β2a) [ln(β1 + β2a)]2

}−1

(39)

Figure 8 represents the behavior of deceleration parame-

ter for interacting THDE model for different values of δ and

c2. In both cases, it shows that the deceleration parameter

starts from decelerating phase, then goes towards accelerat-

ing phase and finally approaches to q = −1. Also, the tran-

sition from deceleration to acceleration occurred between

z = 0.6 to 0.8. It may be noted here that the transition red-

shift of the model decreases as δ increases and it is quite

opposite in case of coupling coefficient c2, i.e., the transition

is delayed as coupling coefficient increases.

The ωde − ω′
de plane is used to present the dynamical

property of dark energy models, where ω′
de is the evolution-

ary form of ωde with prime indicates derivative with respect

to ln a. The ωde − ω′
de plane for the constructed interacting

THDE model is developed for various values of δ and c2 as

shown in Fig. 9. We observed from these plots that ωde −ω′
de

plane corresponds to the freezing region only. It is concluded

that ωde − ω′
de plane analysis for the present scenario gives

consistent results with the accelerated expansion of the uni-

verse.

Using Eqs. (36) and (38) in Eq. (33) we can obtain the

expression for squared sound speed v2
s of interacting THDE

model in BD theory. In Fig. 10, we plot its obtained expres-

sion in terms of redshift z for same values of the other

constants involved in the equations as for above figures. It

can be seen that initially v2
s shows a decreasing behavior

but with positive sign which shows the stable model. As

the model evolves, these trajectories bear a negative behav-

ior. Thus for the interacting THDE model in BD theory is

stable at initial epoch and then exhibits instability at late

times.
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Fig. 9 Plot of ωde − ω′
de plane of interacting THDE model for β1 = 7.1, β2 = 2.15, w = 1000, Ω0

de = 0.73, u = 0.3 and c2 = 0.15

Fig. 10 Plot of squared sound speed of interacting THDE model versus redshift z for β1 = 7.1, β2 = 2.15, w = 1000, Ω0
de = 0.73 and u = 0.3

3 Conclusions

The current scenario of accelerated expansion of the uni-

verse has become more fascinating with the passage of time.

In order to address this problem, different approaches have

been adopted through lot of dynamical DE models and modi-

fied theories of gravity. In this work, we investigate this phe-

nomenon by assuming the Tsallis Holographic DE within

Brans–Dicke scalar–tensor theory of gravity by taking the

BD scalar field as a logarithmic function of average scale

factor. We have studied both scenarios i.e., interaction and

non-interaction between DE and pressure less DM. We have

summarized our results as follows:

• In order to explore the viability of constructed THDE

models, we have obtained different dynamical cosmological

parameters. In their evolution (non-interacting and interact-

ing) the THDE parameter δ and coupling coefficient c2 play

a significant role. Hence, we have explored the dynamics of

physical parameters in terms of redshift z for the values of

δ = 0, 1, 1.1, 1.3, 1.5, 2 and c2 = 0.05, 0.15, 0.25. We
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solve THDE density parameters (Eqs. (27) and (38)), in both

non-interacting and interacting models, numerically corre-

sponding to redshift z and their outputs are plotted in Figs. 1

and 6. It can be seen that the Ωde is positive and decreasing

function throughout the evolution, and at present epoch it

approaches to 0.73 for all the three values of δ and c2. Also,

Ωde increases with δ and c2. But for δ = 0, the energy den-

sity parameter increases. Planck’s observations (2014, 2018)

[99,100] have put the following constraints on the DE density

parameter Ωde = 0.717+0.023
−0.020 (Planck + WP), 0.717+0.028

−0.024

(WMAP-9), 0.679±0.013 (TT + lowE), 0.699±0.012 (TE

+ lowE), 0.711+0.033
−0.026 (EE + lowE), 0.6834 ± 0.0084 (TT,

TE, EE + lowE), 0.6847 ± 0.0073 (TT, TE, EE + lowE +

lensing), 0.6889 ± 0.0056 (TT, TE, EE + lowE + lensing +

BAO). We observed that, in both non-interacting and interact-

ing, the THDE density parameter meets the above mentioned

limits which shows that our results are consistent.

• The behaviors of EoS parameter versus redshift for non-

interacting and interacting THDE models are respectively

given in Figs. 2 and 7. We observe that the non-interacting

model starts from matter dominated era, then goes towards

quintessence DE era and finally approaches to vacuum DE era

for all three values of δ (Fig. 2). For δ = 2, the EoS parameter

becomes −1 i.e., cosmological constant, which is in agree-

ment with the results obtained by Saridakis et al. [78]. Also,

we observed that as δ decreases the transition from matter

dominated phase to dark energy phase is delayed is delayed

considerably. It may be noted that the non-interacting model

never crosses the PDL (ωde = −1). Also, the EoS param-

eter shows translation from matter dominated era and goes

towards phantom region by crossing the phantom divide line

(Fig. 7). In interacting THDE case, the model starts from

accelerated phase and then goes towards phantom DE era by

crossing the quintessence era as well as PDL (i.e. vacuum

DE) (Fig. 7). This type of behavior corresponds to quintom.

It can also be observed that as δ and c2 increases the transi-

tion from quintessence to phantom phase of the interacting

THDE model is delayed. The present Planck collaboration

data (2018) [100] gives the limits for EoS parameter as

ωde = −1.56+0.60
−0.48 (Planck + TT + lowE)

ωde = −1.58+0.52
−0.41 (Planck + TT, TE, EE + lowE)

ωde = −1.57+0.50
−0.40 (Planck + TT, TE, EE + lowE + lensing)

ωde = −1.04+0.10
−0.10

(Planck + TT, TE, EE + lowE + lensing + BAO).

It can be seen that the trajectories of EoS parameter of

both interacting and non-interacting THDE models (Figs. 2,

7) coincide with this Planck collaboration (2018) results.

• The trajectory of deceleration parameter versus redshift

for non-interacting and interacting models are shown in Figs.

3 and 8, respectively. It can be seen that, in both the cases, the

model exhibits a smooth transition from early deceleration

era to the current acceleration era of the universe. Also, the

transition redshift zt from a deceleration to acceleration lies

within the interval 0.58 < zt < 0.8. Also, the observational

data from H(z) + SN I a for ΛCDM model given a range

for transition redshift as zt = 0.682 ± 0.082 and q → −1

as z → −1. Hence, we can say that the above results are in

accordance with the recent cosmological observations [101,

102].

• In this present scenario, we develop the squared speed of

sound v2
s trajectories for both non-interacting and interacting

THDE models (Figs. 5, 10). In both the models, v2
s varies in

positive region initially which shows the stability of the mod-

els. However, it has become negative within short interval of

time and remains negative forever exhibits instability of the

models later epochs. Many authors [60,82] in the literature

have shown that the non-interacting or interacting THDE

models with different IR cutoff’s are unstable. However, it

is interesting to mention that for increasing value of δ and

decreasing value of interaction parameter c2, we expect sta-

bility of the both models in near future. The ωde −ω′
de plane

for the non-interacting and interacting THDE models is also

developed as given in Figs. 4 and 9. It may be observed from

these trajectories that ωde−ω′
de plane corresponds to freezing

only. Many researchers have concluded that the expansion of

the universe is comparatively more accelerating in freezing

region. Also, in both the models ωde − ω′
de plane meets the

observational data from Planck collaboration (Planck + WP

+ BAO, [99]) which is given by −0.89 ≤ ωde ≤ −1.38 and

ω′
de < 1.32.

Now it will be interesting to compare our THDE mod-

els in BD theory with logarithmic scalar field with the other

THDE models in literature with regard to the energy density

(Ωde), EoS (ωde), deceleration (q) parameters and the sta-

bility analysis v2
s . Zadeh et al. [82] has explored the effects

of different IR cutoffs on the properties of THDE model. It

seems that our findings are coincide with the results of Ghaf-

fari et al. [98], Zadeh et al. [82] and Tavayef et al. [60]. Ghaf-

fari et al. [87] have investigated THDE in BD theory, while

Jawad et al. [88] have studied THDE in modified BD theory

with scalar field as power function of average scale factor.

Ghaffari et al. [98] have shown that the density parameter is

increasing function and converges to Ωde = 1 at late times,

but in our models (both non-interacting and interacting) the

density parameter has opposite behavior, i.e., Ωde is decreas-

ing positive function and finally tends to a positive constant

value. This is due to because of logarithmic BD scalar field

in our model. However, the present value of Ωde is same as

in [87] and also coincide with the observational results. Our

THDE non-interacting model never crosses the PDL but, in

the work of Jawad et al. [88] the EoS parameter behaves like

quintom. We, also, observed from the findings of Ghaffari et

al. [87] that the transition redshift of each dynamical param-
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eter is same, but in our models it varies through δ and c2.

Our both THDE models are unstable for any value of δ or

coupling constant c2, a result the same as that of the models

in [87,88]. The above results leads to the conclusion that our

THDE models in BD theory with logarithmic form of scalar

field are in good agreement with the observational data and

also we hope that the above investigations will help to have

a deep insight into the behavior of THDE universe in BD

cosmology.

It is interesting to mention here that, for δ = 0, the dynami-

cal behavior of properties such as Ωde (Figs. 1, 6), ωde −ω′
de

plane (Figs. 4, 9) and squared sound speed (Fig. 10) have

some peculiar behavior when compared with the other val-

ues of δ. For δ = 0, it is clear from the Figs. 1 and 6 that

the density parameter Ωde positive and increasing function

which is quite opposite to the behavior of Ωde when δ is

non-zero. Also, for δ = 0, the interacting THDE model is

unstable near present epoch whereas for other non-zero val-

ues of δ the model becomes unstable near past. The inter-

acting THDE model varies in DE region only for non-zero

values of δ whereas for δ = 0 the interacting model varies in

both matter dominated and DE regions.
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