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Abstract We use observations related to the variation of

fundamental constants, in order to impose constraints on the

viable and most used f (T ) gravity models. In particular,

for the fine-structure constant we use direct measurements

obtained by different spectrographic methods, while for the

effective Newton constant we use a model-dependent recon-

struction, using direct observational Hubble parameter data,

in order to investigate its temporal evolution. We consider two

f (T ) models and we quantify their deviation from �CDM

cosmology through a sole parameter. Our analysis reveals

that this parameter can be slightly different from its �CDM

value, however, the best-fit value is very close to the �CDM

one. Hence, f (T ) gravity is consistent with observations,

nevertheless, as every modified gravity, it may exhibit only

small deviations from �CDM cosmology, a feature that must

be taken into account in any f (T ) model-building.

1 Introduction

Modified gravity [1] is one of the two main roads one can fol-

low in order to provide an explanation for the early and late-

time universe acceleration (the second one in the introduction

of the dark-energy concept [2,3]). Furthermore, apart from

the cosmological motivation, modified gravity has a theoret-

ical motivation too, namely to improve the renormalizability

properties of standard general relativity [4].

In constructing a gravitational modification, one usually

starts from the Einstein–Hilbert action and extends it accord-

ingly. Thus, one can obtain f (R) gravity [5], Gauss–Bonnet
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and f (G) gravity [6,7], gravity with higher-order curva-

ture invariants [8,9], massive gravity [10] etc. Nevertheless,

one could start from the equivalent, torsional formulation

of gravity, namely from the Teleparallel Equivalent of Gen-

eral Relativity (TEGR) [11–13], in which the gravitational

Lagrangian is the torsion scalar T , and construct various

modifications, such as f (T ) gravity [14–29] (see [30] for

a review), teleparallel Gauss–Bonnet gravity [31,32], grav-

ity with higher-order torsion invariants [33], etc.

An important question in the above gravitational modifica-

tions is what are the forms of the involved unknown functions,

and what are the allowed values of the various parameters.

Excluding forms and parameter regimes that lead to obvi-

ous contradictions and problems, the main tool we have in

order to provide further constraints is to use observational

data. For the case of torsional gravity one can use solar sys-

tem data [34–37], or cosmological observations from Super-

novae type Ia, cosmic microwave background and baryonic

acoustic oscillations [38–41].

On the other hand, in some modified cosmological scenar-

ios one can obtain a variation of the fundamental constants,

such as the fine-structure constant and the Newton constant.

Such a possibility has been investigated in the literature since

Dirac [42,43] and Milne and Jordan [44–47] times. Later on,

Brans and Dicke proposed the time variation of the Newton

constant, driven by a dynamical scalar field coupled to cur-

vature [48,49], while Gamow triggered subsequent specula-

tions on the possible variation of the fine-structure constant

[50]. Similarly, in recent modified gravities, which involve

extra degrees of freedom compared with general relativity,

one may obtain such a variation of the fundamental constants

[51–63]. However, since experiments and observations give

strict bounds on these variations [64–76], one can use them

in order to constrain the theories at hand.
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In the present work we are interested in investigating the

constraints on f (T ) gravity by observations related to the

variation of fundamental constants. In particular, since f (T )

gravity predicts a variation of the fine-structure constant and

the Newton constant, we will use the recent observational

bounds of these variations in order to constrain the f (T )

forms as well as the range of the involved parameters. The

plan of the work is the following: In Sect. 2 we give a brief

review of f (T ) gravity and cosmology. In Sect. 3 we investi-

gate the constraints on specific f (T ) gravity models arising

from the observational bounds of the fine-structure constant

variation, while in Sect. 4 we study the corresponding con-

straints that arise from the observational bounds of the New-

ton constant variation. Finally, in Sect. 5 we summarize our

results.

2 f (T ) gravity and cosmology

In this section we provide a short review of f (T ) gravity

and cosmology. We use the tetrad fields e
μ
A, which form an

orthonormal base at each point of the tangent space of the

underlying manifold (M, gμν), where gμν = ηABeA
μeB

ν is

the metric tensor defined on this manifold (we use Greek

indices for the coordinate space and Latin indices for the

tangent one). Furthermore, instead of the torsionless Levi-

Civita connection which is used in the Einstein–Hilbert

action, we use the curvatureless Weitzenböck connection
w

Ŵ
λ

νμ ≡ eλ
A ∂μeA

ν [13]. Hence, the gravitational field in such a

formalism is described by the following torsion tensor:

T ρ
μν ≡ e

ρ
A

(

∂μeA
ν − ∂νeA

μ

)

. (1)

Subsequently, the Lagrangian of the teleparallel equivalent of

general relativity, namely the torsion scalar T , is constructed

by contractions of the torsion tensor as [13]

T ≡
1

4
T ρμνTρμν +

1

2
T ρμνTνμρ − Tρμ

ρT νμ
ν . (2)

One may consider generalized theories in which the

Lagrangian T is extended to an arbitrary function f (T ), sim-

ilarly to the f (R) extension of curvature-based gravity. In

particular, such a gravitational action will read

Sgr =
1

16πGN

∫

d4x |e| f (T ), (3)

where e = det(eA
μ) = √−g, and GN is the Newton constant.

Additionally, along the gravitational action (3) we consider

the matter sector, and hence the total action writes as

S =
1

16πGN

∫

d4x |e| f (T ) +
∫

d4x Lm(eA
μ , 
M ), (4)

where Lm(eA
μ , 
M ) is the total matter Lagrangian including

the electromagnetic field. Finally, variation in terms of the

tetrad fields give rise to the field equations as

e−1∂μ(ee
ρ
A Sρ

μν) fT − fT eλ
AT ρ

μλSρ
νμ +

1

4
eν

A f (T )

+e
ρ
A Sρ

μν∂μ(T ) fT T = 4πGNe
ρ
AT

(m)
ρ

ν, (5)

where fT = ∂ f/∂T , fT T = ∂2 f/∂T 2, and with T (m)
ρ

ν the

total matter energy-momentum tensor. In the above equa-

tion we have inserted for convenience the “super-potential”

tensor S
μν
ρ = 1

2

(

K
μν
ρ + δ

μ
ρ T αν

α − δν
ρT

αμ
α

)

, defined in terms

of the co-torsion tensor K
μν
ρ = − 1

2

(

T
μν
ρ − T

νμ
ρ − T

μν
ρ

)

.

Applying f (T ) gravity in a cosmological framework we

consider a spatially flat FLRW universe with line element

ds2 = −dt2+a2(t)[dr2+r2 dθ2+sin2 θ dφ2], which arises

from the diagonal tetrad eA
μ = diag(1, a(t), a(t), a(t)), with

a(t) the scale factor. In this case, the field equations (5)

become

H2 =
8πGN

3
(ρ + ρT ) , (6)

Ḣ = −4πGN [(p + pT ) + (ρ + ρT )] , (7)

where ρ and p are, respectively, the total matter energy den-

sity and pressure, and where ρT , pT are the effective dark-

energy density and the pressure of gravitational origin, given

by

ρT =
1

16πGN
[2T fT − f (T ) − T ] , (8)

pT =
1

16πGN

[

4Ḣ (2T fT T + fT − 1)
]

− ρT . (9)

In the above expressions we have used

T = −6H2, (10)

which arises straightforwardly from (2) in the FLRW uni-

verse. Finally, from Eqs. (8), (9) we can define the effective

dark-energy equation of state (EoS) as

w = −1 −
2Ḣ

3H2
= −1 +

2

3
H(1 + z)

dH

dz
, (11)

where as usual we use the redshift z = a0
a

− 1, as the inde-

pendent variable, and for simplicity we set a0 = 1. Clearly,

w has a dynamical nature.

In the following we focus on two well-studied, viable

f (T ) models, which correspond to a small deviation from

�CDM cosmology, and which according to [38–41] are the

ones that fit the observational data very efficiently.

123



Eur. Phys. J. C (2017) 77 :230 Page 3 of 9 230

• The first scenario is the power-law model (hereafter

f1CDM) introduced in [14], with

f (T ) = T + θ (−T )b , (12)

where θ , b are the two free model parameters, out of

which only one is independent. Inserting this f (T ) form

into the first Friedmann equation (6) at present time, i.e.

at redshift z = 0, one may derive that

θ = (6H2
0 )1−b

(

1 − �m0

2b − 1

)

, (13)

where �m0 = 8πGρm0

3H2
0

is the corresponding density

parameter at present. Hence, and using additionally that

ρm = ρm0(1 + z)3, Eq. (6) for this model can be written

as

H2(z)

H2
0

= (1 − �m0)

[

H2(z)

H2
0

]b

+ �m0(1 + z)3. (14)

Lastly, we mention that the above model for b = 0

reduces to �CDM cosmology, while for b = 1/2 it gives

rise to the Dvali–Gabadadze–Porrati (DGP) model [77].

• The second scenario is the square-root-exponential (here-

after f2CDM) of [15], with

f (T ) = T + βT0(1 − e−p
√

T/T0), (15)

in which β and p the two free model parameters out of

which only one is independent. Inserting this f (T ) form

into (6) at present time, one obtains

β =
1 − �m0

1 − (1 + p)e−p
. (16)

Finally, the first Friedmann equation (6) for this model

can be written as

H2(z)

H2
0

+
1 − �m0

1 − (1 + p)e−p

{[

1 +
pH(z)

H0

]

e
− pH(z)

H0 −1

}

= �m0 (1 + z)3. (17)

Lastly, note that this model reduces to �CDM cosmology

for p → +∞. Hence, in the following, for this model

it will be convenient to set b ≡ 1/p, and hence �CDM

cosmology is obtained for b → 0+.

3 Observational constraints from fine-structure

constant variation

In this section we will use observational data of the variation

of the fine-structure constant α, in order to constrain f (T )

gravity. Let us first quantify the α-variation in the frame-

work of f (T ) cosmology. In general, in a given theory the

fine-structure constant is obtained using the coefficient of the

electromagnetic Lagrangian. In the case of modified gravi-

ties, this coefficient generally depends on the new degrees

of freedom of the theory [56–63,78]. Even if one starts from

the Jordan-frame formulation of a theory, with an uncou-

pled electromagnetic Lagrangian, and although the electro-

magnetic Lagrangian is conformally invariant, and it is not

affected by conformal transformations between the Jordan

and Einstein frames, thus it will acquire a dependence on the

extra degree(s) of freedom due to quantum effects [79,80].

In particular, if φ is the extra degree of freedom that arises

from the conformal transformation g̃μν = �2gμν from the

Jordan to the Einstein frame, then quantum effects such as

the presence of heavy fermions (note that this does not nec-

essarily require new physics till the Planck scale) will induce

a coupling of φ to photons, namely [79,80]

SEM = −
1

g2
bare

∫

d4x
√

−gBF (φ)Fμν Fμν, (18)

where Fμν is the electromagnetic tensor, gbare the bare cou-

pling constant, and

BF (φ) = 1 + βγ

φ

Mpl
+ · · · , (19)

with Mpl = 1/(8πGN) the Planck mass and βγ = O(1)

a constant (we have assumed that βγ φ ≪ Mpl). Hence,

the scalar coupling to the electromagnetic field will imply

a dependence of the fine-structure constant of the form [78–

80]

1

αE
=

1

αJ
BF (φ), (20)

where the subscripts denote the Einstein and Jordan frames,

respectively, or equivalently

�α

α
≡

αE − αJ

αJ
=

1

BF (φ)
− 1. (21)

The above factor is in general time (i.e. redshift) dependent.

Therefore, it proves convenient to normalize it in order to

have �α = 0 at present (z = 0), which in the case where

BF (z = 0) ≡ BF0 �= 1 is obtained through a rescaling

Fμν →
√

BF0 Fμν and BF → BF/BF0. Thus, we result to

�α

α
=

BF0

BF (φ)
− 1. (22)

Although the above procedure is straightforward in cases

where a conformal transformation from the Jordan to the
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Einstein frame exists, it becomes more complicated for the-

ories where such a transformation is not known. In case of

f (T ) gravity, it is well known that a conformal transforma-

tion does not exist in general, since transforming the metric as

g̃μν = �2gμν , with �2 = fT a smooth non-vanishing func-

tion of spacetime coordinates, one obtains Einstein gravity

plus a scalar field Lagrangian, plus the transformed matter

Lagrangian, plus a non-vanishing term 2�−6∂̃μ�2T̃
ρ
ρμ [81].

This additional term forbids the complete transformation to

the Einstein frame, and hence in every application one has

indeed to perform calculations in the more complicated Jor-

dan one.

In order to avoid performing calculations in the Jor-

dan frame we will make the reasonable assumption that

f (T ) = T + const. + corrections, which has been shown to

be the case according to observations [34–41], and holds for

the two forms considered in this work, namely (12) and (15),

too. Hence, �2 = 1 + corrections, and then ∂̃μ�2 is negligi-

ble, which implies that the above extra term can be neglected.

In the end of our investigation, we will verify the validity of

the above assumption. Thus, we can indeed obtain an approx-

imate transformation to the Einstein frame, and in particular

the introduced degree of freedom reads φ = −
√

3/ fT [81].

Hence, inserting this into (19) we acquire

BF (φ) = 1 −
√

3βγ

Mpl fT

+ · · · , (23)

and thus inserting into Eq. (22), we can easily extract the

variation of the fine-structure constant as

�α

α
(z) =

Mpl fT 0 −
√

3βγ

Mpl fT (z) −
√

3βγ

− 1, (24)

where fT 0 = fT (z = 0). Lastly, since βγ = O(1), the above

relation becomes

�α

α
(z) ≈

fT 0

fT (z)
− 1. (25)

Hence, for a general f (T ), the ratio �α/α indeed depends

on z, through the fT (z) function (we recall that according

to (10), T (z) = −6H2(z)), while in the case of standard

�CDM cosmology, where f (T ) = T + �, �α/α becomes

zero.

In the following, we confront Eq. (25) with observations

of the fine-structure constant variation, in order to impose

constraints on f (T ) gravity (it proves that the neglected

term between (24) and (25) imposes an error of the order

of 10−9 and hence our approximation is justified). We use

direct measurements of the fine-structure constant that are

obtained by different spectrographic methods, summarized

in Table 1. Additionally, along with these data sets, and in

order to diminish the degeneracy between the free parame-

Table 1 Compilation of recent measurements of the fine-structure con-

stant obtained by different spectrographic methods. For details in each

case, see the corresponding references

z �α/α (ppm) References

1.08 4.3 ± 3.4 [82]

1.14 −7.5 ± 5.5 [83]

1.15 −0.1 ± 1.8 [84]

1.15 0.5 ± 2.4 [85]

1.34 −0.7 ± 6.6 [83]

1.58 −1.5 ± 2.6 [86]

1.66 −4.7 ± 5.3 [82]

1.69 1.3 ± 2.6 [87]

1.80 −6.4 ± 7.2 [82]

1.74 −7.9 ± 6.2 [83]

1.84 5.7 ± 2.7 [84]

ters of the models, we use 580 Supernovae data (SNIa) from

Union 2.1 compilation [88], as well as data from BAO obser-

vations, adopting the three measurements of A(z) obtained

in [89], and using the covariance among these data given in

[90].

In the following two subsections, we analyze two viable

models, namely f1CDM of (12) and f2CDM of (15), sepa-

rately.

3.1 Model f1CDM: f (T ) = T + θ (−T )b

For the power-law f1CDM model of (12), we easily acquire

fT (z) = 1 − b

(

1 − �m0

2b − 1

)

[

H2(z)

H2
0

](b−1)

, (26)

where we have used also (10). Inserting (26) into (25) we can

derive the evolution of �α/α as

�α

α
(z) ≈

[

1 − b
(

1−�m0

2b−1

)]

{

1 − b
(

1−�m0

2b−1

)

[

H2(z)

H2
0

](b−1)
} − 1, (27)

where the ratio H2(z)/H2
0 is given by (14).

We mention that while analyzing the model for the data

set of �α/α of Table 1, we have marginalized over �m0, and

thus the statistical information focuses only on the parameter

b. For the fittings �α/α + SNIa and �α/α + SNIa + BAO,

we have considered �m0 as a free parameter, and we have

found that �m0 = 0.23 ± 0.13 (for �α/α + SNIa) and

�m0 = 0.293 ± 0.023 (for �α/α + SNIa + BAO) at 1σ

confidence level.
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0.24 0.26 0.28 0.30 0.32 0.34

0.6

0.4

0.2

0.0

0.2

m0

b

Fig. 1 1σ and 2σ confidence regions for the f1CDM power-law model

of (12), obtained from the joint analysis �α/α + SNIa + BAO. The

cross marks the best-fit value

Table 2 Summary of the best-fit values of the parameter b of the

f1CDM power-law model of (12), for three different observational data

sets with reduced χ2: χ2
min/d.o.f. (d.o.f. stands for the “degrees of free-

dom”)

Data b χ2
min/d.o.f.

�α/α 0.35 ± 0.40 1.1

�α/α + SNIa 0.25 ± 0.70 0.96

�α/α + SNIa + BAO −0.10 ± 0.18 0.97

Finally, in Fig. 1 we present the 68.27 and 95.45% confi-

dence regions in the plane �m0 −b, considering the observa-

tional data �α/α + SNIa + BAO. Note that these results are

in qualitative agreement with those of different observational

fittings [38–40], and show that �CDM cosmology (which is

obtained for b = 0) is inside the obtained region. In fact,

one may notice from Table 2 that the reduced χ2 for �α/α

+ SNIa and �α/α + SNIa + BAO data are very close to 1,

while for single data from �α/α its value slightly exceeds 1

although not significantly.

Additionally, in order to examine the late-time asymptotic

behavior of the scenario at hand, in Fig. 2 we depict the

evolution of the equation-of-state parameter given in (11),

applying a reconstruction at 1σ confidence level via error

propagation using the joint analysis �α/α + SNIa + BAO.

As we can see, w at late times acquires values very close

to ‘−1’, as expected. For a more detailed investigation of

the late-time asymptotics up to the far future one must apply

the method of dynamical system analysis as it was done in

0.0 0.5 1.0 1.5 2.0 2.5

–1.008

–1.006

–1.004

–1.002

–1.000

z

w
(z

)

Fig. 2 The evolution of the equation-of-state parameter given in (11),

for the f1CDM power-law model of (12), applying a reconstruction at

1σ confidence level via error propagation using the joint analysis �α/α

+ SNIa + BAO

[91–93], where it was thoroughly shown that the universe

will end in a de Sitter phase.

In summary, it is clear that f1CDM model, under all the

above three different combinations of statistical data sets,

remains close to �CDM cosmology as expected. Lastly, note

that this is a self-consistent verification for the validity of our

assumption that f (T ) = T + const. + corrections, which

allowed us to work in the Einstein frame.

3.2 Model f2CDM: f (T ) = T + βT0(1 − e−p
√

T/T0)

For the square-root-exponential f2CDM model of (15), we

easily obtain

fT (z) = 1 +
p

2

[

1 − �m0

1 − (1 + p) e−p

] [

H0

H(z)

]

e
− pH(z)

H0 .

(28)

Inserting (28) into (25) we can derive the evolution of �α/α

as

�α

α
(z) ≈

{

1 + p
2

[

1−�m0

1−(1+p)e−p

]

e−p
}

{

1 + p
2

[

1−�m0

1−(1+p) e−p

] [

H0
H(z)

]

e
− pH(z)

H0

} − 1,

(29)

where the ratio H2(z)/H2
0 is given by (17).

We mention that while analyzing the model for the data

set of �α/α of Table 1, we have marginalized over �m0, and

thus the statistical information focuses only on the parameter
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0.22 0.24 0.26 0.28 0.30 0.32 0.34
0.0

0.1

0.2

0.3

0.4

m0

b

Fig. 3 1σ and 2σ confidence regions for the f2CDM square-root-

exponential model of (15), obtained from the joint analysis �α/α +
SNIa + BAO. The cross marks the best-fit value

Table 3 Summary of the best-fit values of the parameter b ≡ 1/p of

the f2CDM square-root-exponential model of (15), for three different

observational data sets with reduced χ2: χ2
min/d.o.f. (d.o.f. stands for

“degrees of freedom”)

Data b χ2
min/d.o.f.

�α/α 0.94 ± 1.98 1.1

�α/α + SNIa 0.038 ± 0.161 0.97

�α/α + SNIa + BAO 0.031 ± 0.246 0.97

b. For the fittings �α/α+ SNIa and �α/α+SNIa+BAO we

have taken �m as a free parameter, and we note that �m0 =
0.277±0.019 (for �α/α + SNIa) and �m0 = 0.283±0.016

(for �α/α + SNIa + BAO) at 1σ confidence level.

Finally, in Fig. 3 we present the 68.27% and 95.45% confi-

dence regions in the plane �m0 −b, considering the observa-

tional data �α/α + SNIa + BAO (we have taken b � 0.001

in order to avoid divergences in the function H(z) at high red-

shifts). Note that these results are in qualitative agreement

with those of different observational fittings [38–40], and

show that�CDM cosmology (which is obtained for b → 0+)

is inside the obtained region. Furthermore, and similarly to

the f1CDM model, from Table 3 we deduce that although

the data from �α/α alone show a slightly deviating nature

(reduced χ2 = 1.1) from �CDM scenario, but for �α/α

+ SNIa and �α/α + SNIa + BAO data it is implied that

the model is very close to �CDM cosmology. This is also a

self-consistent verification for the validity of our assumption

that f (T ) = T + const. + corrections, which allowed us to

work in the Einstein frame.

0.5 1.0 1.5 2.0 2.5

1.005

1.004

1.003

1.002

1.001

1.000

z

w
(z

)

Fig. 4 The evolution of the equation-of-state parameter given in (11),

for the f2CDM square-root-exponential model of (15), applying a

reconstruction at 1σ confidence level via error propagation using the

joint analysis �α/α + SNIa + BAO

Lastly, in order to examine the late-time asymptotic behav-

ior of f2CDM model, in Fig. 4 we depict the evolution of the

equation-of-state parameter given in (11), applying a recon-

struction at 1σ confidence level via error propagation using

the joint analysis �α/α + SNIa + BAO, where one can

see that w at late times acquires values very close to ‘−1’, as

expected. Similarly to the previous model, for a more detailed

investigation of the late-time asymptotics one must apply the

method of dynamical system analysis [91–93], where it can

thoroughly be shown that the universe will end in a de Sitter

phase.

4 Observational constraints from the Newton constant

variation

In this section we will directly use the observational con-

straints imposed on f (T )models in order to examine the vari-

ation of the gravitational constant GN. Let us first quantify

the GN-variation in the framework of f (T ) cosmology. As is

well known, a varying effective gravitational constant is one

of the common features in many modified gravity theories

[1]. In case of f (T ) gravity, the effective Newton constant

Geff can be straightforwardly extracted as [40,94]

Geff =
GN

fT

. (30)

Hence, for the f1CDM power-law model of (12), and using

(26), we obtain
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Fig. 5 Results for the f1CDM power-law model of (12). Left graph estimation of Geff/GN as a function of the redshift, from 37 Hubble data

points. Right graph reconstruction of Geff/GN as a function of the redshift, from the observational Hubble parameter data, for b ∈ [−0.01, 0.01]

Geff(z) =
GN

1 − b
(

1−�m0

2b−1

)

[

H2(z)

H2
0

](b−1)
, (31)

where the ratio H2(z)/H2
0 is given by (14) (clearly, for b = 0

we have Geff(z) = GN = const.). Similarly, for the f2CDM

square-root-exponential model of (15), and using (28), we

acquire

Geff(z) =
GN

1 + p
2

[

1−�m0

1−(1+p) e−p

] [

H0
H(z)

]

e
− pH(z)

H0

, (32)

where the ratio H2(z)/H2
0 is given by (17) (clearly, for b =

1/p → 0+ we have Geff(z) = GN = const.).

Let us now use the above expressions for Geff(z) and con-

front them with the observational bounds of the Newton con-

stant variation. We use observational Hubble parameter data

in order to investigate the temporal evolution of the function

Geff(z), since such a compilation is usually used to constrain

cosmological parameters, due to the fact that it is obtained

from model-independent direct observations. We adopt 37

observational Hubble parameter data in the redshift range

0 < z ≤ 2.36, compiled in [95], out of which 27 data points

are deduced from the differential age method, whereas 10

correspond to measures obtained from the radial baryonic

acoustic oscillation method.

We apply the following methodology: Firstly, we estimate

the error in the measurements associated with the function

Geff/GN, for both models of (31) and (32), via the standard

method of error propagation theory, namely

σ 2
Geff/GN

=
∣

∣

∣

∣

∂Geff/GN

∂ H

∣

∣

∣

∣

2

σ 2
H +

∣

∣

∣

∣

∂Geff/GN

∂b

∣

∣

∣

∣

2

σ 2
b

+
∣

∣

∣

∣

∂Geff/GN

∂�m

∣

∣

∣

∣

2

σ 2
�m

, (33)

and we fix the free parameters of the two models within the

values obtained in the joint analysis of [41] and of Sect. 3

of the current work. Then the measurements of Geff/GN are

calculated directly for each redshift defined in the adopted

compilation.

In the left graph of Fig. 5 we depict the 1σ confidence-level

estimation of the function Geff(z)/GN from 37 Hubble data

points, in the case of the f1CDM power-law model of (12).

Additionally, in the right graph of Fig. 5 we present the corre-

sponding 1σ confidence-level reconstruction of Geff(z)/GN

for b ∈ [−0.01, 0.01] from the observational Hubble param-

eter data. When we perform the analysis within the known

range of the parameter b for this model (from [41] as well

as from Fig. 1 above), we find that Geff/GN ≈ 1. Never-

theless, a minor deviation is observed for the fixed value of

b = 0.01 (see the left graph of Fig. 5). For instance, note

that Geff(z = 0.07)/GN = 0.992 ± 0.004 and Geff(z =
2.36)/GN = 0.99923 ± 0.00005, for the first and the last

data points of the redshift interval [0, 2.36], respectively.

In Fig. 6 we present the corresponding graphs for the

f2CDM square-root-exponential model of (15). When we

perform the analysis within the known range of the parame-

ter b ≡ 1/p for this model (from [41] as well as from Fig.

3 above), we find that Geff/GN ≈ 1, similarly to the case of

f1CDM model.

In summary, from the analysis of this section, we verify the

results of the previous section, namely that the parameter b,
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which quantifies the deviation of both f1CDM and f2CDM

models from �CDM cosmology, is very close to zero. These

results are in qualitative agreement with previous observa-

tional constraints on f (T ) gravity, according to which only

small deviations are allowed, with �CDM paradigm being

inside the allowed region [34–41].

5 Conclusions

In the present work we have used observations related to the

variation of fundamental constants, in order to impose con-

straints on the viable and most used f (T ) gravity models. In

particular, since f (T ) gravity predicts a variation of the fine-

structure constant, we used the recent observational bounds

of this variation, from direct measurements obtained by dif-

ferent spectrographic methods, along with standard probes

such as Supernovae type Ia and baryonic acoustic oscilla-

tions, in order to constrain the involved model parameters of

two viable and well-used f (T ) models.

For both the f1CDM power-law model and the f2CDM

square-root-exponential model, we found that the parameter

that quantifies the deviation from �CDM cosmology can

be slightly different from its �CDM value, nevertheless the

best-fit value is very close to the �CDM one. Additionally,

since f (T ) gravity predicts a varying effective gravitational

constant, we quantified its temporal evolution with the use

of the previously constrained model parameters. For both the

f1CDM and the f2CDM models, we found that the deviation

from �CDM cosmology is very close to zero.

These results are in qualitative agreement with previous

observational constraints on f (T ) gravity [38–41], however,

they have been obtained through completely independent

analysis. In summary, f (T ) gravity is consistent with obser-

vations, and thus it can serve as a candidate for modified grav-

ity, although, as every modified gravity, it may have only a

small deviation from �CDM cosmology, a feature that must

be taken into account in any f (T ) model-building.
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