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ABSTRACT

We report on the first high-resolution spectroscopic analysis of HE0020–1741, a bright (V=12.9), ultra metal-
poor ([ ]Fe H =−4.1), carbon-enhanced ([ ]C Fe =+1.7) star selected from the Hamburg/ESO Survey. This star
exhibits low abundances of neutron-capture elements ([ ]Ba Fe =−1.1) and an absolute carbon abundance A
(C)=6.1; based on either criterion, HE0020–1741 is subclassified as a carbon-enhanced metal-poor star without
enhancements in neutron-capture elements (CEMP-no). We show that the light-element abundance pattern of
HE0020–1741 is consistent with predicted yields from a massive (M= M21.5 ), primordial-composition,
supernova (SN) progenitor. We also compare the abundance patterns of other ultra metal-poor stars from the
literature with available measures of C, N, Na, Mg, and Fe abundances with an extensive grid of SN models
(covering the mass range – M10 100 ), in order to probe the nature of their likely stellar progenitors. Our results
suggest that at least two classes of progenitors are required at [ ]Fe H< -4.0, as the abundance patterns for more
than half of the sample studied in this work (7 out of 12 stars) cannot be easily reproduced by the predicted yields.

Key words: Galaxy: halo – stars: abundances – stars: atmospheres – stars: individual (HE 0020–1741) – stars:
Population II – techniques: spectroscopic

1. INTRODUCTION

Observational evidence has emerged over the past few

decades indicating that carbon is ubiquitous in the early

universe. The class of carbon-enhanced metal-poor (CEMP;

[ ]C Fe  +0.7; e.g., Beers & Christlieb 2005; Aoki

et al. 2007) stars is found with increasing fractions at lower

metallicities and accounts for at least 80% of all ultra metal-

poor (UMP;9 [Fe/H]< -4.0) stars observed to date (Lee et al.

2013; Placco et al. 2014c). In particular, the so-called CEMP-

no stars (which exhibit subsolar abundances of neutron-capture

elements; e.g., [ ]Ba Fe <0.0) are believed to be direct

descendants from the very first stellar generations formed after

the big bang (Ito et al. 2013; Spite et al. 2013; Placco et al.

2014a; Hansen et al. 2016). In addition, the discovery of high-

redshift carbon-enhanced damped Lyα systems (Cooke

et al. 2011, 2012), which present qualitatively similar light-

element (from C to Si) abundance patterns to those of the

CEMP-no stars, provides additional evidence that carbon is an

important contributor to the earliest chemical evolution.
One of the main open questions is whether the presence of

carbon is required for the formation of low-mass second-

generation stars (Frebel et al. 2007). This idea can be tested

with low-mass long-lived UMP stars that are thought to have

formed from an ISM polluted by the nucleosynthesis products

of massive metal-free Population III (Pop III) stars. These
massive stars could have formed as early as several hundred
million years after the big bang, at redshift »z 20 (Alvarez
et al. 2006). The recently discovered quasar ULASJ1120
+0641 at redshift z=7.085 (Simcoe et al. 2012), with an
overall metal abundance (defined as elements heavier then
helium) of [ ]Z H  -4.0, could be an example of a viable site
for the formation of the first stars. The lack of heavy metals
may prevent the formation of low-mass stars (due to inefficient
cooling; Bromm et al. 2001), supporting the suggestion that the
early-universe initial mass function was strongly biased toward
high-mass stars. In the picture that has developed, it is these
high-mass stars that would quickly evolve and enrich the
primordial ISM with elements heavier than helium, including
carbon (Meynet et al. 2006).
Even though the relevance of CEMP-no stars as probes of

the first stellar generations in the universe is well established,
the exact conditions that led to their formation remain an active
area of inquiry. There have been a number of advances in the
theoretical description of the likely stellar progenitors of
CEMP-no stars over the past decade (see Nomoto et al. 2013,
for a recent review on the subject). The suggested scenarios
include the “spinstar” model (rapidly rotating, near-zero-
metallicity, massive stars; Meynet et al. 2010; Chiappini 2013),
the “faint supernovae (SNe)” that undergo mixing and fallback
(Umeda & Nomoto 2005; Nomoto et al. 2006; Tominaga
et al. 2014), and the metal-free massive stars from Heger &
Woosley (2010).
In the spinstar model, it is assumed that the chemical

composition of the observed UMP stars is a combination of the
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*
Based on observations gathered with the 6.5 m Magellan Telescopes located

at Las Campanas Observatory, Chile, and the New Technology Telescope
(NTT) of the European Southern Observatory (088.D-0344A), La Silla, Chile.
9

[ ]A B = ( ) ( ) -N N N Nlog logX Y X Y , where N is the number density of
atoms of elements X and Y in the star (å) and the Sun (e), respectively.
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evolution of the massive star itself mixed with some amount of
interstellar material (Meynet et al. 2006, 2010). It follows that
the source of heavy metals in the UMP stars could arise from a
different set of progenitors. For the faint SNe and metal-free
massive stars, the initial chemical abundances of the progenitor
mimic the primordial big bang nucleosynthesis composition:
76% hydrogen, about 24% helium, and a trace amount of
lithium. In both cases, the observed chemical elements in UMP
stars were formed during the progenitor stellar evolution, by
internal burning and/or explosive events, and their abundance
is the result of mixing between the SN ejecta and surrounding
primordial gas. These two models differ in terms of the
treatment of the mixing and fallback of processed materials in
the progenitor, which varies with mass and explosion energy
(see Tominaga et al. 2007, for details). The Heger & Woosley
(2010) models compute explosion energy and fallback self-
consistently based on a hydrodynamic model, considering that
the SN explosion is spherical.

All of the aforementioned models are able to reproduce a
subset (but not all) of the observed elemental abundance
patterns of UMP stars reasonably well. Nevertheless, the
question whether one or more classes of progenitors were
present (and their relative frequencies) in the primordial
universe is still under discussion. In PaperI of this series,
Yoon et al. (2016) present evidence based on the morphology
of the relationship between the absolute abundance of carbon,
A(C) = log (C), and [Fe/H], coupled with clear differences in
the absolute abundances of the light elements Na and Mg
among CEMP-no stars, that at least two classes of progenitors
are likely to be required. It appears that one class (spinstars)
dominates at the very lowest metallicities, [Fe/H] < -4.5,
whereas the other class (faint SNe) dominates over the range

-4.5 [Fe/H]  -2.5. In the metallicity range -5.0 [Fe/
H] -4.0, there are examples of stars that are associated with
either.

For the above reasons, we suggest that the very best stars to
place constraints on the nature of the CEMP-no progenitors are
the UMP stars with metallicities between −5.0 and −4.0.
Unfortunately, such stars are still exceedingly rare (Yong
et al. 2013b). Even though their numbers have increased
considerably over the past decade (21 stars according to Placco
et al. 2015b), many more are needed in order to fully
understand the nature of their stellar progenitors and the
associated nucleosynthesis processes.

In this paper, we report on a high-resolution spectroscopic
abundance analysis of HE0020–1741, a relatively bright
(V=12.89) CEMP-no ([ ]Fe H = -4.05, [ ]C Fe =+1.74,
and [ ]Ba Fe =−1.11) star, which was first identified as the
metal-poor candidate CS30324–0063 in the HK Survey (Beers
et al. 1985, 1992) and later reidentified in the Hamburg/ESO
Survey (HES; Christlieb et al. 2008) and the Radial Velocity
Experiment (RAVE; Fulbright et al. 2010). HE0020–1741 was
also studied by Hansen et al. (2016), focusing on long-term
radial velocity monitoring of CEMP-no stars. We use the newly
derived abundance pattern of HE0020–1741, along with
literature data for 11 other UMP and hyper metal-poor
(HMP; [Fe/H] < -5.0) stars, to assess evidence in support
of the conclusion in PaperI that CEMP-no stars require more
than one class of stellar progenitors.

This paper is outlined as follows: Section 2 describes the
medium-resolution spectroscopic target selection and high-
resolution follow-up observations, followed by the

determinations of the stellar parameters and chemical abun-
dances in Section 3. Section 4 details our analysis of UMP and
HMP stars from the literature with a grid of SN yields and
evaluates the impact of these data on current hypotheses for
chemical evolution in the early universe. Our conclusions are
provided in Section 5.

2. OBSERVATIONS

The star HE0020–1741 was selected as a metal-poor
candidate by Christlieb et al. (2008), based on its weak Ca IIK
feature (3933Å, used as the primary metallicity indicator) in
the HES objective-prism spectrum. This star was also selected
by Placco et al. (2010), based on its strong CH G band (4300
Å, the primary carbon-abundance indicator). Figure 1 is a
comparison between the low-resolution HES objective-prism
spectrum ( ~R 500; upper panels), the medium-resolution
(R∼2000; middle panels) spectrum, and the high-resolution
(R∼35,000; lower panels) spectrum of HE0020–1741. The
left panels show a zoom-in of the region surrounding the
Ca IIK line, and the right panels show a zoom-in of the region
near the CH G band. Note the lack of measurable metallic
features (other than Ca) in the HES spectra, which is an
indication of the low metallicity of the target. The Balmer lines
of hydrogen are also quite weak, suggesting that the target has
a cool effective temperature. However, as can be seen from
inspection of the medium- and high-resolution spectra, the Ca II
lines, as well as hydrogen lines from the Balmer series, are
clearly identifiable, as labeled in Figure 1. In addition, the
lower panels show a number of CH features in both regions,
which are used below to determine the carbon abundance from
the high-resolution spectrum.

2.1. Medium-resolution Spectroscopy

The medium-resolution spectrum of HE0020–1741 was
obtained as part of an effort to follow up CEMP candidates
from the HES, as described in Placco et al. (2010, 2011). The
observations were carried out in semester 2011B using the
EFOSC-2 spectrograph (Buzzoni et al. 1984) mounted on the
3.5 m ESO New Technology Telescope. The setup made use of
Grism7 (600 gr mm-1) and a 1. 0 slit with 1×1 on-chip
binning, resulting in a wavelength coverage of 3550–5500Å,
resolving power of R∼2000, dispersion of 0.96Å pixel–
1(with ∼2 pixels per resolution element), and signal-to-noise
ratios S/N∼60 pixel–1 at 4300Å. The calibration frames
included FeAr exposures (taken following the science observa-
tion), quartz-lamp flat fields, and bias frames. All reduction
tasks were performed using standard IRAF10 packages. Table 1
lists basic information on HE0020–1741 and details of the
spectroscopic observations at medium and high resolution.

2.2. High-resolution Spectroscopy

A high-resolution spectrum was obtained during the 2015A
semester using the Magellan Inamori Kyocera Echelle (MIKE;
Bernstein et al. 2003) spectrograph mounted on the 6.5 m
Magellan-Clay Telescope at Las Campanas Observatory. The
observing setup included a 0. 7 slit with 2×2 on-chip binning,
yielding a resolving power of R∼35,000 (blue spectral range)
and R∼28,000 (red spectral range), with ∼3 pixels per
resolution element. The S/N at 4300 Å is ∼100 pixel–1. MIKE

10
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spectra have nearly full optical wavelength coverage
( –~3500 8500 Å). The data were reduced using the data
reduction pipeline developed for MIKE spectra, first described
by Kelson (2003).11

3. ANALYSIS

3.1. Stellar Parameters

The stellar atmospheric parameters were first obtained from
the medium-resolution ESO/NTT spectrum using the n-SSPP
(Beers et al. 2014), a modified version of the SEGUE Stellar
Parameter Pipeline (SSPP; Allende Prieto et al. 2008; Lee
et al. 2008a, 2008b, 2011, 2013; Smolinski et al. 2011). The
values for Teff , glog , and [ ]Fe H determined from this analysis
were used as first estimates for the high-resolution analysis.
Using the high-resolution MIKE spectrum, we determined the
stellar parameters spectroscopically, using software developed
by Casey (2014). Equivalent width measurements were
obtained by fitting Gaussian profiles to the observed absorption

lines. Table 2 lists the lines used in this work, their measured

equivalent widths, and the derived abundance from each line.

We employed one-dimensional plane-parallel model atmo-

spheres with no overshooting (Castelli & Kurucz 2004),

computed under the assumption of local thermodynamic

equilibrium (LTE).
The effective temperature of HE0020–1741 was determined

by minimizing trends between the abundances of 77 Fe I lines

and their excitation potentials and applying the temperature

corrections suggested by Frebel et al. (2013). The micro-

turbulent velocity was determined by minimizing the trend

between the abundances of Fe I lines and their reduced

equivalent widths. The surface gravity was determined from

the balance of the two ionization stages of iron, Fe I and Fe II.

HE0020–1741 also had its stellar atmospheric parameters

determined from the moderate-resolution (R∼8000) RAVE

spectrum by Kordopatis et al. (2013). These values, together

with our determinations from the medium- and high-resolution

spectra, are listed in Table 3.
There is very good agreement between the temperatures

derived from the medium- and high-reslution spectra used in

Figure 1. Spectra of HE0020–1741 with three different resolving powers. Upper panels: low-resolution ( ~R 500) HES objective-prism spectrum. Middle panels:
medium-resolution (R∼2000) ESO/NTT spectrum. Lower panels: high-resolution (R∼35,000) Magellan/MIKE spectrum. The left panels show a zoom-in of the
region including the Ca II H and K lines, and the right panels show a zoom-in of the region surrounding the CH G band. Interesting strong features are identified in the
lower panels; the blue lines correspond to individual lines associated with the CH molecule.

11
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this work; the RAVE value is about ∼200K warmer. The

surface gravities are all within 2σ, and the ESO/NTT and

RAVE values agree with each other exactly. This is expected,

since both of these estimates come from isochrone matching,

while the high-resolution glog was determined from the

balance of Fe I and Fe II lines. For [ ]Fe H , the RAVE value is

0.8 dex higher than the other two results. According to the

RAVE Data Release 4 (Kordopatis et al. 2013), the spectrum

for HE0020–1741 has an S/N=40, which is below the S/
N=50 limit set by Kordopatis et al. (2011) for reliable

parameter estimates for halo giants, and their pipeline analysis

converged without warnings for this star. Since the difference

in temperature cannot alone account for such a large

discrepancy in [ ]Fe H , this most likely arises from a

combination of the lower S/N and the methods used to

calibrate the RAVE metallicity scale for giants, which have a

0.40 dex dispersion in their residuals.

3.2. Chemical Abundances and Upper Limits

Elemental abundance ratios, [ ]X Fe , are calculated adopting

solar photospheric abundances from Asplund et al. (2009). The

average measurements (or upper limits) for 18 elements,

derived from the Magellan/MIKE spectrum, are listed in

Table 4. The σ values are the standard error of the mean.

Abundances were calculated by both equivalent width analysis

and spectral synthesis. The 2014 version of the MOOG code

(Sneden 1973), which includes a more realistic treatment of

scattering (see Sobeck et al. 2011, for further details), is used

for the spectral synthesis.

Table 1

Observational Data

Identifiers

HK Survey BPSCS30324–0063

Hamburg/ESO Survey HE 0020–1741

2MASS 2MASSJ00224486–1724290

RAVE RAVEJ002244.9–172429

Coordinates and Photometry

α (J2000) 00:22:44.86

δ (J2000) −17:24:29.07

V (mag) 12.89

B−V 0.94

RAVE

R ∼8000

vr(km s−1) 90.49

ESO/NTT

Date 2011 Oct 16

UT 03:40:27

Exptime (s) 120

R ∼2000

Magellan/MIKE

Date 2015 Jun 17

UT 08:26:20

Exptime (s) 1800

R ∼35,000

vr(km s−1) 94.91

Table 2

Equivalent Width Measurements

Ion λ χ gflog W log (X)

(Å) (eV) (mÅ)

C CH 4246.000 L L syn 5.83

C CH 4313.000 L L syn 5.73

N CNa 3883.000 L L syn 6.13

Na I 5889.950 0.00 0.108 97.06 2.77

Na I 5895.924 0.00 −0.194 83.35 2.79

Mg I 3829.355 2.71 −0.208 syn 4.60

Mg I 3832.304 2.71 0.270 syn 4.60

Mg I 3838.292 2.72 0.490 syn 4.60

Mg I 4571.096 0.00 −5.688 syn 4.90

Mg I 4702.990 4.33 −0.380 syn 4.90

Mg I 5172.684 2.71 −0.450 syn 4.25

Mg I 5183.604 2.72 −0.239 syn 4.25

Mg I 5528.405 4.34 −0.498 syn 4.85

Al I 3961.520 0.01 −0.340 syn 2.05

Si I 4102.936 1.91 −3.140 syn 4.36

Ca I 4454.780 1.90 0.260 syn 2.64

Ca I 5588.760 2.52 0.210 4.87 2.71

Ca I 6122.220 1.89 −0.315 8.78 2.75

Ca I 6162.170 1.90 −0.089 11.92 2.68

Sc II 4246.820 0.32 0.240 57.45 −0.75

Sc II 4400.389 0.61 −0.540 13.70 −0.69

Sc II 4415.544 0.59 −0.670 10.63 −0.72

Ti I 3989.760 0.02 −0.062 10.92 1.14

Ti I 4533.249 0.85 0.532 6.36 1.19

Ti I 4981.730 0.84 0.560 7.55 1.17

Ti I 4991.070 0.84 0.436 6.31 1.20

Ti II 3759.291 0.61 0.280 85.34 1.10

Ti II 3761.320 0.57 0.180 84.26 1.12

Ti II 4012.396 0.57 −1.750 26.82 1.30

Ti II 4417.714 1.17 −1.190 23.80 1.31

Ti II 4443.801 1.08 −0.720 39.21 1.07

Ti II 4450.482 1.08 −1.520 17.08 1.34

Ti II 4468.517 1.13 −0.600 42.03 1.07

Ti II 4501.270 1.12 −0.770 37.73 1.13

Ti II 4533.960 1.24 −0.530 42.09 1.12

Ti II 4563.770 1.22 −0.960 29.43 1.25

Ti II 4571.971 1.57 −0.320 38.54 1.23

Cr I 4254.332 0.00 −0.114 57.03 1.50

Cr I 4274.800 0.00 −0.220 52.38 1.48

Cr I 4289.720 0.00 −0.370 49.12 1.56

Cr I 5206.040 0.94 0.020 19.37 1.48

Cr I 5208.419 0.94 0.160 26.73 1.52

Mn I 4041.380 2.11 −0.350 syn 1.43

Mn I 4754.021 2.28 −0.647 syn 1.43

Mn I 4783.424 2.30 −0.736 syn 1.43

Mn I 4823.514 2.32 −0.466 syn 1.43

Fe I 3727.619 0.96 −0.609 70.55 3.28

Fe I 3743.362 0.99 −0.790 65.97 3.32

Fe I 3753.611 2.18 −0.890 16.00 3.41

Fe I 3758.233 0.96 −0.005 97.02 3.50

Fe I 3763.789 0.99 −0.221 80.31 3.23

Fe I 3765.539 3.24 0.482 13.97 3.20

Fe I 3767.192 1.01 −0.390 78.19 3.35

Fe I 3786.677 1.01 −2.185 15.44 3.30

Fe I 3820.425 0.86 0.157 105.31 3.33

Fe I 3824.444 0.00 −1.360 82.76 3.28

Fe I 3886.282 0.05 −1.080 96.13 3.48

Fe I 3887.048 0.91 −1.140 57.68 3.22

Fe I 3899.707 0.09 −1.515 80.32 3.39

Fe I 3902.946 1.56 −0.442 57.99 3.30

Fe I 3917.181 0.99 −2.155 25.67 3.51

Fe I 3920.258 0.12 −1.734 72.13 3.33

Fe I 3922.912 0.05 −1.626 83.66 3.57
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Table 2

(Continued)

Ion λ χ gflog W log (X)

(Å) (eV) (mÅ)

Fe I 3940.878 0.96 −2.600 9.80 3.39

Fe I 3949.953 2.18 −1.251 9.97 3.49

Fe I 3977.741 2.20 −1.120 14.87 3.58

Fe I 4005.242 1.56 −0.583 57.44 3.38

Fe I 4045.812 1.49 0.284 91.47 3.49

Fe I 4063.594 1.56 0.062 80.91 3.45

Fe I 4071.738 1.61 −0.008 71.90 3.28

Fe I 4132.058 1.61 −0.675 56.36 3.47

Fe I 4143.414 3.05 −0.200 8.23 3.32

Fe I 4143.868 1.56 −0.511 64.30 3.46

Fe I 4147.669 1.48 −2.071 12.23 3.55

Fe I 4181.755 2.83 −0.371 14.24 3.51

Fe I 4187.039 2.45 −0.514 20.15 3.40

Fe I 4187.795 2.42 −0.510 25.89 3.51

Fe I 4191.430 2.47 −0.666 13.35 3.35

Fe I 4202.029 1.49 −0.689 60.77 3.43

Fe I 4216.184 0.00 −3.357 31.11 3.60

Fe I 4227.427 3.33 0.266 11.13 3.31

Fe I 4233.603 2.48 −0.579 18.59 3.44

Fe I 4250.787 1.56 −0.713 65.76 3.67

Fe I 4260.474 2.40 0.077 42.71 3.27

Fe I 4337.046 1.56 −1.695 20.27 3.51

Fe I 4375.930 0.00 −3.005 36.62 3.33

Fe I 4383.545 1.48 0.200 93.96 3.46

Fe I 4404.750 1.56 −0.147 84.25 3.60

Fe I 4415.122 1.61 −0.621 62.06 3.48

Fe I 4427.310 0.05 −2.924 50.84 3.61

Fe I 4447.717 2.22 −1.339 10.82 3.58

Fe I 4459.118 2.18 −1.279 14.36 3.62

Fe I 4461.653 0.09 −3.194 31.59 3.50

Fe I 4494.563 2.20 −1.143 14.62 3.51

Fe I 4528.614 2.18 −0.822 23.98 3.44

Fe I 4531.148 1.48 −2.101 14.00 3.59

Fe I 4602.941 1.49 −2.208 13.52 3.68

Fe I 4871.318 2.87 −0.362 13.81 3.44

Fe I 4872.137 2.88 −0.567 8.68 3.43

Fe I 4890.755 2.88 −0.394 11.25 3.37

Fe I 4891.492 2.85 −0.111 19.51 3.35

Fe I 4918.994 2.85 −0.342 13.04 3.36

Fe I 4920.503 2.83 0.068 24.34 3.28

Fe I 5012.068 0.86 −2.642 22.92 3.60

Fe I 5041.756 1.49 −2.200 9.41 3.44

Fe I 5051.634 0.92 −2.764 16.69 3.61

Fe I 5083.339 0.96 −2.842 12.69 3.59

Fe I 5142.929 0.96 −3.080 9.26 3.67

Fe I 5171.596 1.49 −1.721 24.59 3.46

Fe I 5194.942 1.56 −2.021 14.64 3.55

Fe I 5216.274 1.61 −2.082 10.02 3.48

Fe I 5232.940 2.94 −0.057 17.98 3.33

Fe I 5269.537 0.86 −1.333 80.63 3.60

Fe I 5328.039 0.92 −1.466 74.91 3.64

Fe I 5328.531 1.56 −1.850 21.81 3.59

Fe I 5371.489 0.96 −1.644 65.45 3.61

Fe I 5397.128 0.92 −1.982 44.81 3.44

Fe I 5405.775 0.99 −1.852 45.96 3.42

Fe I 5429.696 0.96 −1.881 45.71 3.40

Fe I 5434.524 1.01 −2.126 37.72 3.56

Fe I 5446.917 0.99 −1.910 45.31 3.46

Fe I 5455.609 1.01 −2.090 38.32 3.53

Fe I 5615.644 3.33 0.050 10.91 3.39

Fe II 4583.840 2.81 −1.930 15.01 3.63

Fe II 4923.930 2.89 −1.320 25.42 3.38

Fe II 5018.450 2.89 −1.220 28.24 3.34

Table 2

(Continued)

Ion λ χ gflog W log (X)

(Å) (eV) (mÅ)

Co I 3845.468 0.92 0.010 33.28 1.33

Co I 3995.306 0.92 −0.220 21.90 1.24

Co I 4118.767 1.05 −0.490 12.50 1.33

Co I 4121.318 0.92 −0.320 21.33 1.29

Ni I 3500.850 0.17 −1.294 38.99 1.92

Ni I 3519.770 0.28 −1.422 32.90 2.00

Ni I 3566.370 0.42 −0.251 61.60 1.90

Ni I 3597.710 0.21 −1.115 44.05 1.88

Ni I 3783.520 0.42 −1.420 32.18 2.01

Ni I 3807.140 0.42 −1.220 36.58 1.91

Ni I 3858.301 0.42 −0.951 51.19 1.99

Sr II 4077.714 0.00 0.150 syn −1.93

Sr II 4215.524 0.00 −0.180 syn −1.88

Ba II 4554.033 0.00 0.163 syn −2.97

Ba II 4934.086 0.00 −0.160 syn −2.97

Eu II 4129.720 0.00 0.220 syn <−3.28

Pb I 4057.810 1.32 −0.170 syn <−0.25

Note.
a
Using ( )log C =5.78.

Table 4

Abundances for Individual Species

Species log (X) log (X) [ ]X H/ [ ]X Fe/ σ N

C (CH) +8.43 +5.78 −2.65 +1.40 0.15 2

C (CH) +8.43 +6.12 −2.31 +1.74a 0.15 2

N (CN) +7.83 +6.13 −1.70 +2.35 0.20 1

Na I +6.24 +2.78 −3.46 +0.59 0.05 2

Mg I +7.60 +4.58 −3.02 +1.03 0.10 8

Al I +6.45 +2.05 −4.40 −0.26 0.10 1

Si I +7.51 +4.36 −3.19 +0.90 0.10 1

Ca I +6.34 +2.70 −3.64 +0.40 0.05 4

Sc II +3.15 −0.72 −3.87 +0.18 0.05 3

Ti I +4.95 +1.17 −3.78 +0.27 0.05 4

Ti II +4.95 +1.19 −3.76 +0.28 0.10 11

Cr I +5.64 +1.51 −4.13 −0.09 0.05 5

Mn I +5.43 +1.43 −4.00 +0.05 0.05 4

Fe I +7.50 +3.45 −4.05 −0.00 0.05 77

Fe II +7.50 +3.45 −4.05 −0.00 0.08 3

Co I +4.99 +1.29 −3.70 +0.35 0.05 4

Ni I +6.22 +1.94 −4.28 −0.23 0.05 7

Sr II +2.87 −1.91 −4.78 −0.73 0.07 2

Ba II +2.18 −2.97 −5.15 −1.11 0.05 2

Eu II +0.52 <−3.28 <−3.80 <+0.25 L 1

Pb I +1.75 <−0.25 <−2.00 <+2.05 L 1

Note.
a

[ ]C Fe =+1.74 using corrections of Placco et al. (2014c).

Table 3

Derived Stellar Parameters for HE0020–1741

Instrument Teff (K) glog (cgs) [ ]Fe H ξ(km s−1)

RAVE 4974 (101) 0.95 (0.35) −3.20 (0.10) L

ESO/NTT 4792 (150) 0.98 (0.35) −4.06 (0.20) L

Magellan 4765 (100) 1.55 (0.20) −4.05 (0.05) 1.50 (0.20)
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3.2.1. Carbon and Nitrogen

Carbon abundance was derived from CH molecular features
at 4246 Å ( ( )log C =5.83) and 4313 Å ( ( )log C =5.73),
with an average value of ( )log C =5.78 ([ ]C Fe = +1.40).
The left panels of Figure 2 show the spectral synthesis of the
CH G band for HE0020–1741. The filled circles represent the
observed spectra, the solid line is the best abundance fit, and
the dotted and dashed lines are the lower and upper
abundances, respectively, used to estimate the uncertainty.
The gray line shows the synthesized spectrum in the absence of
carbon. The lower panel shows the residuals (in %) between the
observed data and the best abundance fit, which are all below
3% for the synthesized region. Since HE0020–1741 is on the

upper red giant branch, the observed carbon abundance does
not reflect the chemical composition of its natal gas cloud. By
using the procedure described in Placco et al. (2014b), which
interpolates the observed glog , [ ]Fe H , and [ ]C Fe of
HE0020–1741 with a grid of theoretical stellar evolution
models for low-mass stars, we determine the carbon depletion
due to CN processing for HE0020–1741 to be 0.34 dex.
The 12C/13C isotopic ratio is a sensitive indicator of the

extent of mixing processes in stars on the red giant branch.
Using a fixed elemental carbon abundance ( ( )log C =5.78)
for the CH features around 4217Å, we derived 12C/13C=4,
which suggests that substantial processing of 12C into 13C has
taken place in the star. We note that this ratio also indicates that
considerable processing of carbon into nitrogen has occured in
HE0020–1741. The right panels of Figure 2 show the
determination of the 12C/13C isotopic ratio. The filled circles
represent the observed spectrum, and the solid gray line is the
best fit, with the two other values taken to be lower and upper
limits. The lower panel shows that the residuals between the
observed data and 12C/13C=4 are all below 2%.
The nitrogen abundance was determined from spectral

synthesis of the CN band at 3883Å. The NH band at 3360Å
did not have sufficiently high S/N to allow for a proper spectral
synthesis. For the CN band, we used a fixed carbon abundance
of ( )log C =5.78 (average of carbon abundances determined
from the CH band) and derived a value of ( )log N =6.13,
with an uncertainty of±0.2 dex.

3.2.2. From Na to Ni

Abundances of Na, Sc, Ti, Cr, Co, and Ni were determined
by equivalent width analysis only. For Ti, where transitions
from two different ionization stages were measured, the
abundances agree within 0.02 dex. Spectral synthesis was used
to determine abundances for Mg, Al, Si, Ca, and Mn

Table 5

Example Systematic Abundance Uncertainties for HE0020–1741

Elem ΔTeff Δ glog xD s n stot
+150 K +0.3 dex +0.3 km s−1

Na I 0.14 −0.04 −0.11 0.07 0.20

Mg I 0.13 −0.12 −0.07 0.04 0.19

Al I 0.11 −0.07 −0.11 0.10 0.20

Si I 0.14 −0.02 −0.01 0.10 0.17

Ca I 0.10 −0.02 −0.01 0.05 0.11

Sc II 0.09 0.07 −0.04 0.06 0.13

Ti I 0.17 −0.03 −0.01 0.05 0.18

Ti II 0.06 0.06 −0.08 0.03 0.12

Cr I 0.17 −0.04 −0.06 0.04 0.19

Mn I 0.19 −0.05 −0.07 0.07 0.22

Fe I 0.16 −0.05 −0.09 0.01 0.19

Fe II 0.01 0.09 −0.02 0.08 0.12

Co I 0.18 −0.03 −0.02 0.05 0.19

Ni I 0.17 −0.07 −0.09 0.04 0.21

Sr II 0.09 0.06 −0.10 0.07 0.16

Ba II 0.12 0.08 −0.01 0.07 0.16

Figure 2. Left panel: spectral synthesis of the CH G band for HE0020–1741. The filled circles represent the observed high-resolution spectrum, the solid line is the
best abundance fit, and the dotted and dashed lines are the lower and upper abundances, respectively, used to estimate the abundance uncertainty. The gray shaded area
encompasses a 0.2 dex difference in ( )log C . The light-gray line shows the synthesized spectrum in the absence of carbon. Right panel: determination of the carbon
isotopic ratio, 12C/13C. The filled circles represent the observed spectrum, the solid gray line is the best fit, and the colored lines are the lower and upper abundances,
used to estimate the uncertainty. The lower panels show the residuals (in %) between the observed data and the best abundance fit.
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(accounting for hyperfine splitting from the line lists from Den
Hartog et al. 2011).

3.2.3. Neutron-capture Elements

The chemical abundances for Sr and Ba, as well as upper
limits for Eu and Pb, were determined via spectral synthesis.
We used the compilation of line lists by Frebel et al. (2014),
based on lines from Aoki et al. (2002), Barklem et al. (2005),
Lawler et al. (2009), and the VALD database (Kupka
et al. 1999). The neutron-capture absorption lines in the blue
spectral region, particularly close to strong CH or CN features,
need to be carefully synthesized, since these are intrinsically
weak in CEMP-no stars. Because of that, we included the
observed carbon and nitrogen abundances for all the syntheses,
as well as the 12C/13C isotope ratio.

The Sr abundance was determined from the λ4077
( ( )log Sr =−1.93) and λ4215 ( ( )log Sr =−1.88) lines,
with an average value of [ ]Sr Fe =−0.73. For Ba, both
λ4554 and λ4934 features were successfully synthesized with

( )log Ba =−2.97 ([ ]Ba Fe =−1.11). Both Sr and Ba
abundances are within typical ranges for CEMP-no stars
(Placco et al. 2014b).

Upper limits were determined for Eu (λ4129) and Pb
(λ4057). The Pb upper limit ([ ]Pb Fe < + 2.05) is similar to
the one for the CEMP-no BD +44°493 (Placco et al. 2014a),
and it adds further evidence that the origin of the neutron-
capture abundances in HE0020–1741 is unlikely to be from an
unseen evolved companion. The [ ]Pb Fe should be higher by at
least a factor of 10 to agree with theoretical predictions for the
s-process (Bisterzo et al. 2010). Furthermore, the radial
velocity monitoring of HE0020–1741 reported by Hansen

et al. (2016) revealed no significant variation (s = 0.212
km s−1) over a temporal window of 1066 days.

3.3. Uncertainties

Uncertainties in the elemental abundance determinations, as
well as the systematic uncertainties due to changes in the
atmospheric parameters, were treated in the same way as
described in Placco et al. (2013, 2015a). Table 5 shows how
variations within the quoted uncertainties in each atmospheric
parameter affect the derived chemical abundances. Also listed
is the total uncertainty for each element, which is calculated
from the quadratic sum of the individual error estimates. Even
though Teff , glog , and ξ are correlated, we assume complete
knowledge of two of them to assess how changes in the third
parameter would affect the abundance calculation. For
example, a change of +150K in Teff for HE0020–1741
requires a change of about 0.1 dex in glog to maintain the
balance between Fe I and Fe II. However, this change in glog
translates to a 0.01 dex change in abundance, which is 16 times
smaller than the change due to Teff . Then, for simplicity, we
assume that the variables are independent, and we use the
quadratic sum. For this calculation, we used spectral features
with abundances determined by equivalent width analysis only.
The variations for the parameters are +150K for Teff , +0.3 dex
for glog , and +0.3 km s−1 for ξ.

4. DISCUSSION

4.1. Model Predictions for UMP Progenitors

In this section, we assess the main properties of the possible
stellar progenitors of selected UMP stars from the literature, by

Table 6

Literature Data ( ( )log X Abundances)

Star Name C N Na Mg Al Si Ca Sc Ti Cr Mn Fe Co Ni Ref. Note

CEMP-no Group II

BD +44°493 5.83 4.40 2.71 4.23 2.06 3.78 2.82 −0.39 1.37 1.99 0.97 3.62 1.76 2.21 1 L

CS22949−037 5.66 6.01 4.07 5.06 2.93 4.13 2.70 −0.62 1.33 1.18 0.78 3.57 1.50 2.00 2 a

HE0020−1741 6.12 5.79 2.78 4.58 2.05 4.36 2.70 −0.72 1.18 1.51 1.43 3.45 1.29 1.94 3 b

HE0057−5959 5.21 5.90 4.14 4.03 L L 2.91 −0.76 1.27 1.06 L 3.42 L 2.30 4 L

CEMP-no Group III

G77−61 7.00 6.40 2.90 4.00 L L 2.90 L L 2.00 1.30 3.42 L L 5 L

HE0107−5240 6.96 5.57 1.86 2.41 L L 0.99 L −0.62 L L 2.06 L 0.60 6 c

HE1310−0536 6.64 6.88 2.28 3.87 1.91 L 2.19 −1.07 1.15 1.00 0.49 3.35 1.12 1.95 7 d

HE1327−2326 6.90 6.79 2.99 3.54 1.90 L 1.34 L −0.09 L L 1.79 L 0.73 8 L

HE2139−5432 7.00 5.89 4.37 5.19 2.79 4.49 L L 1.24 1.96 L 3.48 1.59 2.37 9 L

SDSSJ1313−0019 6.39 6.34 1.61 3.04 1.34 L 1.59 −1.54 0.33 L L 2.50 L 1.65 10 L

Carbon-normal Stars

CD −38°245 4.48 4.76 2.19 3.85 1.63 3.65 2.56 −0.82 1.19 1.25 0.31 3.43 1.25 2.05 11 e

CS30336−049 4.40 4.56 2.13 3.64 1.58 3.66 2.39 −0.83 1.06 0.86 0.57 3.46 1.42 2.13 12 f

Notes.
a
Δ ( )log C =+0.15, Δ ( )log N =−0.09.

b
Δ ( )log C =+0.34, Δ ( )log N =−0.34.

c
Average of C and N values.

d
Δ ( )log C =+0.07, Δ ( )log N =0.00.

e
( )log C from McWilliam et al. (1995), ( )log N from Spite et al. (2006), Δ ( )log C =+0.07, Δ ( )log N =−0.04.

f
Δ ( )log C =+0.29, Δ ( )log N =−0.15.

References. (1) Ito et al. 2013; (2) Cohen et al. 2013; (3) this work; (4) Yong et al. 2013a; (5) Plez & Cohen 2005; (6) Christlieb et al. 2004; (7) Hansen et al. 2015; (8)

Frebel et al. 2008; (9) Yong et al. 2013a; (10) Frebel et al. 2015; (11) François et al. 2003; (12) Lai et al. 2008.
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comparing their abundance patterns with theoretical model
predictions for Pop III stars. We employ the nonrotating
massive-star models from Heger & Woosley (2010), for which
the free parameters are the mass ( – M10 100 ), explosion

energies ( – ) ´0.3 10 10 erg51 ), and the amount of mixing in the
SN ejecta. The grid used in the work has 16,800 models, and
the c2 matching algorithm is described in Heger & Woosley
(2010). An online tool with the model database can be accessed
at starfit.12 For the present application, we adopt a similar
procedure to the one described in Placco et al. (2015b) and
Roederer et al. (2016), as described below.

We collected UMP stars from the literature for which at least
carbon, nitrogen, sodium, magnesium, calcium, and iron were
measured. With [ ]Fe H < -4.0, only 11 stars have abun-
dances for these elements determined from high-resolution
spectroscopy (including HE0020–1741). We also added BD
+44°493 to the sample, since its metallicity is [ ]Fe H =−3.8,
and it has a number of abundances measured with small
uncertainties. Table 6 lists the abundances and references for
the literature sample. The stars are divided according to the
CEMP-no Groups II and III from Yoon et al. (2016); two of our
sample stars are classified as carbon-normal stars. The carbon
abundances were corrected for the C depleted by CN
processing, following the procedures described in Placco
et al. (2014c) and briefly summarized in Section 3.2.1. In
addition, we calculated the inverse corrections for the nitrogen
abundances, by imposing that the [(C+N)/Fe] ratio remains
constant throughout the evolution of the star on the giant
branch. The model grid we employed is the same as that in
Placco et al. (2014c). Even though there may also be ON
processing that occurs in the star, the effect is expected to be
negligible compared to the CN processing (see bottom panel of
Figure 2 in Placco et al. 2014c).

For the model matching, we have used the following
abundances (where available): C, N, Na, Mg, Al, Si, Ca, Sc, Ti,
V, Cr, Mn, Fe, Co, and Ni. For consistency, no upper limits
were used. For each star, we assembled 104 unique abundance
patterns, based on the observed values from the literature. For
each element, we generated 104 random numbers from a
normal distribution, with the measured abundances as the
central value and the uncertainties as the dispersion. Then, we
randomly selected individual abundances from each distribu-
tion and generated new abundance patterns. For each of these,
we found the progenitor mass, explosion energy, and the mean
squared residuals from the starfit code.

Figure 3 shows the results of this exercise for the 12 stars in
Table 6. For each star, the left panel shows the best model fits
for the 104 abundance patterns. The masses and explosion
energies of the models are given in the legend at the upper right
in each panel, color-coded by their fractional occurence. The
right-hand panel for each star shows the distribution of the
mean squared residuals for the simulations. The colored bars
overlaying the upper density distributions in the right panels
mark the median residual value, and its value is shown in the
legend of these panels at the top right, along with the mad
(median absolute deviation), a robust estimator of the
dispersion. The stars are ordered by increasing median values.

As an example, consider the top left panel of Figure 3, for
the star HE0020–1741. We first ran the starfit code to find
the best model fit for each of the 104 abundance patterns

generated from the observed abundances (blue filled circles). In
about 70% (7041) of the resampled abundance patterns, the
best fit was the model with M21.5 and ´0.3 10 erg51 (black
solid line). In 2849 (28%) of the patterns, the model with

M27.0 and ´0.3 10 erg51 gave the best fit (dark gray solid
line), and for the remaining 110 abundance patterns (light-gray
solid lines), the best-fit models had masses between 20.5 and
28.0 M and explosion energies between 0.3 and
0.6 × 1051 erg. In total, six unique models (out of the 16,800
models on the grid) were able to account for the best fits for the
104 resampled abundance patterns. For each best fit, the
starfit code calculates the mean squared residual, and the
distribution of these values is given in the panel to the right side
of the abundance patterns. Above the distribution is the density
plot (black stripes), with the median value (blue stripe) shown
in the upper right part of the panel, together with the mad.
For the first five stars in the left column of Figure 3, the mass

and explosion energy of the progenitor are within
– M20.5 28.0 and ( – ) ´0.3 0.6 10 erg51 , respectively. These

values are consistent with predictions from Nomoto et al.
(2006) for the faint SN progenitor scenario. Considering the
two most frequent models for each star, the C–N abundances
are well reproduced in most cases, within s2 of the theoretical
values. The Na–Si abundances agree within s2 with the best
model fits (except for Al in HE0020–1741 and Mg in
G77–61). The Ca and Ti abundances also agree within s2 ,
except for Ti in HE1327–2326. The large overabundances of
Sc for HE0020–1741 and BD +44°493 are expected, since Sc
may have contributions from other nucleosynthesis processes
(see Heger & Woosley 2010, for further details). Among the
Cr–Fe abundances, there is also overall good agreement, with
Fe values agreeing within s1 with the best model fits. The
enhanced cobalt abundances for HE0020–1741, BD +44°493,
and HE2139–5432 cannot be accounted for by the models, but
we note that ( )log Co is often underpredicted by theoretical
models (e.g., Tominaga et al. 2014; Roederer et al. 2016).
For stars in the right column of Figure 3 (red filled squares),

the progenitor masses range from M12.6 for HE0107–5240
to M41.0 for SDSSJ1313–0019, all with explosion energies

of ´0.3 10 erg51 . For these stars, as reflected by their residual
distributions, there is a clear mismatch between the model
predictions and the observed abundances. The stars
CS22949–037, CD –38°245, and CS30336–049 all have best
fits with a M21.5 and ´0.3 10 erg51 model. This is likely a
numerical artifact, since the C and N abundances for these three
stars are in complete disagreement with the models. For
HE0057–5959, only the Ca abundance matches the best model
yields, and most values are at least 0.5 dex away from the
theoretical values. For HE1310–0536, the only observed
abundance within 1σ of the model is Fe. In this case, it is clear
that no models can reproduce the large difference between the
C–N and Na–Al abundances. For HE0107–5240 and
SDSSJ1313–0019, the models are not able to simultaneously
predict the C–N abundances and the Na–Mg or Ca–Ti
abundances.
Based on these results, we infer that the first five stars shown

in the left column of Figure 3 have abundance patterns that are
consistent with the progenitor stellar population described by
the models of Heger & Woosley (2010). For the remaining
seven stars, the poor agreement between observations and
models suggests the presence of at least one additional class of
stellar progenitors for UMP stars.12

http://starfit.org
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Figure 3. Best model fits for HE0020–1741 and the 11 other UMP stars from the literature, ordered by increasing median residuals. For each star, the left panel shows
the simulated abundance patterns and models, where the masses and explosion energies are provided in the legend at the upper right of each panel, color-coded by
their fractional occurence. The right panel shows the distribution of the residuals for the 10,000 simulations for each star. The colored bar overlaying the upper density
distributions in the right panels marks the median value, which is shown in the legend of each panel at the top right, along with the mad (median absolute deviation).
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Figure 4 shows the behavior of the median residual values
for HE0020–1741 and the data for other UMP stars from the
literature, where the stars are ordered by increasing median
values (panel (a)), and as a function of [ ]Fe H (panel (b)),

( )log Na (panel (c)), and ( )log Mg (panel (d)). In panel(a),
the gray shaded areas encompass  ´1 mad and  ´2 mad
for the five stars (blue filled circles) in the left column of
Figure 3. The numbers shown in the legend are the progenitor
masses (in M ) and the explosion energy (́ 10 erg51 ) from the
best model fit for each star. The gray regions highlighted on
panels(c) and (d) are explained below.

Distinctions between the stars with low (blue symbols) and
high (red symbols) residuals become more evident when
inspecting the median residuals in Figure 4. Even though this
separation does not appear to be correlated with [ ]Fe H (panel
(b)), observations of additional stars are needed to cover the
gap between -5.0 [ ]Fe H -4.0, in order to uncover any
possible trend. Nevertheless, HE1327–2326 ([ ]Fe H =−5.71)
has a median residual value consistent with that of other stars at
[ ]Fe H ~ -4.0, and it does not agree with the values for
HE0107–5240 ([ ]Fe H =−5.44) and SDSSJ1313–0019
([ ]Fe H =−5.00). From inspection of panel(c), it can be seen
that the low-residual stars exhibit ( )log Na  2.5 and are
mostly concentrated at ( )log Na ∼2.8. The only exception is
HE2139–5432, with ( )log Na = 4.37. The trend for Na can be
an indication that another stellar progenitor, producing (but not
limited to) ( )log Na  2.5 (gray shaded area in panel (c)), is
needed to account for the diferences in the observed
abundances. In panel(d), even though the low-residual stars
exhibit ( )log Mg  3.5, there is no obvious separation between
these and the high-residual stars. The two high-residual stars
with low ( )log Na in panel(c) also have low ( )log Mg .
However, this correlation does not hold for the other stars in the
same group.

4.2. Abundance Comparison between UMP Stars and Yields
from Massive Metal-free Stars

To further investigate the differences among the 12 UMP
stars, we compared the individual abundances as a function of

[ ]Fe H , ( )log Na , and ( )log Mg with the yields from the
16,800 models used for the matching procedure. Figure 5
shows the result of this exercise. The colored symbols are the
observed abundances from the literature sample (including
HE0020–1741), and the gray symbols are yields from the SN
models. The open symbols show the CEMP-no groups
proposed in Paper I. For the theoretical values, the progenitor
mass is proportional to the size of the symbol. Models with
abundance values outside the ranges shown in Figure 5 were
suppressed for simplicity.
Overall, the 12 stars have abundances consistent with the

models for the elements Ca, Ti, and Ni. This also holds true for
other elements not shown in Figure 5, such as Cr, Mn, and Co.
Abundances for the five low-residual stars (blue filled circles)
present, in general, good agreement with the values predicted
by models with <M M30 . Some exceptions include

( )log N for G77–61 and HE1327–2326 (however,
( ) +log C N agrees well in both cases) and ( )log Al for

HE0020–1741 and BD +44°493, which is about 0.5 dex lower
than the model values. Even though the Al abundance was

determined from spectral synthesis, that region (3961Å)

presents strong CH and CN absorption features, which could
compromise the determination. For the seven stars with higher
median residual values, there are clear mismatches between the
observations and the theoretical predictions. For CD –38°245
and CS30336–049, carbon and nitrogen are at least 1 dex
lower than the model values, and Na, Mg, and Al are also
below the model ranges. Even though CS22949–037 exhibits
better agreement for C and N, the two bottom panels show that
four stars are below the model expectations for ( )log C versus

( )log Na and ( )log C versus ( )log Mg . There is also no
agreement for Na, Mg, and Al (HE0107–5240 and
SDSSJ1313–0019) as a function of metallicity.
Inspection of the two bottom panels of Figure 5 reveals that

C, Na, and Mg abundances may suggest some deficiencies in
the current models, which could exclude these as possible
progenitors for four of the seven high-residual stars. In both
cases, the carbon abundances are overpredicted by the models
when compared to the observations. This suggests that the

Figure 4. Median residuals for HE0020–1741 and 11 other UMP stars from the literature, color-coded by the division proposed in Figure 3. The stars are ordered by
increasing median values (panel (a)). The solid horizontal line shows the median for the five stars with low residuals, and the gray shaded areas encompass ´1 mad

and ´2 mad. The numbers on the top are the progenitor masses (in M ) and explosion energy (́ 10 erg51 ) from the best model fit for each star. Panels(b), (c), and
(d) show the residuals as a function of [ ]Fe H , ( )log Na , and ( )log Mg , respectively.
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current models do not adequately capture the progenitors of the
full set of UMP stars. The combination of carbon, sodium, and
magnesium was used in PaperI as part of the justification for
the division of the CEMP-no stars in GroupsII and III. When
comparing the low- and high-residual stars with their CEMP-no
group classifications, it can be seen that half of the GroupII
stars (HE0107–5240 and SDSSJ1313–0019) are outside the
model ranges for ( )log C versus ( )log Na and ( )log C

versus ( )log Mg . The two other GroupII stars
(HE0020–1741 and BD +44°493) have low median residuals
and are close to the limits explored by the models. Another
interesting case is HE1327–2326 (Group III), which is the
most metal-poor star in this sample; it presents a low median
residual, unlike the other stars with [ ] < -Fe H 5.0. Its
chemical abundances are in regions where the model grid is
sparse, especially for C, N, Na, and Mg. Regardless, the models

Figure 5. Comparison between the chemical abundances of the literature sample of UMP stars (colored symbols) and the predicted yields from the SN models used in
this work (gray symbols). The progenitor mass is proportional to the size of the symbol. The open symbols relate to the CEMP-no classifications proposed by Yoon
et al. (2016).
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used in this work cannot account for the abundance patterns of
HE0107–5240 and SDSSJ1313–0019, which are also
GroupIII stars based on PaperI. This could be further
evidence that at least one additional, different progenitor
population operates at the lowest metallicities, such as the
spinstars described by Meynet et al. (2006).

For completeness, we also tested the robustness of our fitting
results with respect to the recent study of R. Ezzeddine et al.
(2016, in preparation). This study suggests the presence of
large positive corrections to the Fe abundances of the 18 most
iron-poor stars, following line formation computations in a
non-local thermodynamic equilibrium (NLTE). While it would
be inconsistent to mix LTE and NLTE abundances in a given
stellar pattern, we tested how trial corrections for ( )log Fe of
0.75 dex to HE1327–2326, 0.70 dex to HE0107–5240, and
0.3 dex to HE0020–1741 would affect our conclusions. As a
result, no significant changes in the progenitor mass, explosion
energy, and mean squared residuals were found. To properly
interpret these new NLTE Fe abundances, we thus have to
await the full NLTE abundance patterns and compare those
with the SN yields, once available.

5. CONCLUSIONS

We have presented the first high-resolution spectroscopic
study of the UMP, CEMP-no star HE0020–1741. This star
adds to the small number of stars with [ ]Fe H < -4.0
identified to date and presents the same behavior as most (more
than 80%) of the UMP stars: [ ]C Fe > +1.0 and [ ]Ba Fe
< 0.0. We have attempted to characterize the progenitor stellar
population of UMP stars by comparing the yields from a grid of
metal-free, massive-star models with the observed elemental
abundances for HE0020–1741 and 11 other UMP stars from
the literature for which at least abundances of C, N, Na, Mg,
Al, and Fe have been reported.

Based on our residual analysis, we find that 42% (5 of 12) of
the sample stars have elemental abundance patterns that are
well reproduced by the SN models of Heger & Woosley
(2010). We conclude that this class of SN explosions and their
associated nucleosynthesis cannot alone account for the
observed abundance patterns of the entire set of UMP stars
we have considered. In particular, Pop III, massive metal-free
star models cannot reproduce abundance patterns of stars with

( )log C  5.0, ( )log Na  2.5, and ( )log Mg  3.2. Carbon
and sodium could potentially be used as tracers of the stellar
progenitor, in addition to the metallicity. This could be
evidence of different progenitor signatures, such as fast-
rotating massive Pop III stars from Meynet et al. (2006), or
the faint SNe from Nomoto et al. (2006). If we assume that the
models used in this work are a viable candidate for the stellar
progenitors of UMP stars, there must exist at least one
additional class of progenitor operating at [ ]Fe H < -4.0, or a
single process, yet to be identified, that could account for the
abundances of all UMP stars. We should also acknowledge the
possibility that more than one progenitor could contribute to
the observed abundance patterns of the high-residual stars
presented in this work.

Recent evidence presented by Yoon et al. (2016) suggests
that the carbon abundance may be key to differentiating
between different stellar progenitors of UMP stars. The
classifications based on absolute carbon abundances, A(C),
are further confirmed when looking at the sodium and
magnesium abundances. The analysis presented in this paper

supports this hypothesis and suggests that the progenitor
population(s) for UMP stars may be even more rich and
complex than previously thought. We emphasize that abun-
dances for additional UMP stars, in particular those in the
metallicity regime- <5.0 [Fe/H]< -4.0, are needed to better
constrain the nature of the possible stellar progenitors. Nitrogen
abundances are an important constraint to the theoretical
models, and currently more than half of the observed UMP
stars have only limits for this element reported.
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lists used for the spectral synthesis, Nozomu Tominaga, for
clarifying specific characteristics of the faint SN models,
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Astronomy Observatories, which are operated by AURA,
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