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The cosmological constant �, i.e., the energy density stored in the true vacuum state of all existing
fields in the Universe, is the simplest and the most natural possibility to describe the current cosmic
acceleration. However, despite its observational successes, such a possibility exacerbates the well-known
� problem, requiring a natural explanation for its small, but nonzero, value. In this paper we study
cosmological consequences of a scenario driven by a varying cosmological term, in which the vacuum
energy density decays linearly with the Hubble parameter, � / H. We test the viability of this scenario
and study a possible way to distinguish it from the current standard cosmological model by using recent
observations of type Ia supernova (Supernova Legacy Survey Collaboration), measurements of the
baryonic acoustic oscillation from the Sloan Digital Sky Survey, and the position of the first peak of
the cosmic microwave background angular spectrum from the three-year Wilkinson Microwave
Anisotropy Probe.
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I. INTRODUCTION

The nature of the mechanism behind the current cosmic
acceleration constitutes a major problem nowadays in
cosmology [1]. Even though almost all observational data
available so far are in good agreement with the simplest
possibility, i.e., a vacuum energy plus cold dark matter
(�CDM) scenario, it is becoming rather consensual that
in order to better understand the nature of the dark compo-
nents of matter and energy, one must also consider more
complex models as, for instance, scenarios with interaction
in the dark sector [2].

In this regard, the simplest examples of interacting dark
matter/dark energy models are scenarios with vacuum
decay [��t�CDM]. In reality, ��t�CDM cosmologies con-
stitute the special case in which the ratio of the dark energy
pressure to its energy density, !, is exactly �1 [3,4]. This
kind of model may be based on the idea that dark energy is
the manifestation of vacuum quantum fluctuations in the
curved space-time, after a renormalization in which the
divergent vacuum contribution in the flat space-time is
subtracted. The resulting effective vacuum energy density
will depend on the space-time curvature, decaying from
high initial values to smaller ones as the Universe expands
[5]. As a result of conservation of total energy, implied by
Bianchi identities, the variation of vacuum density leads
either to particle production or to an increasing in the mass
of dark matter particles, two general features of decaying
vacuum or, more generally, of interacting dark energy
models [6].

Naturally, the precise law of vacuum density variation
depends on a suitable derivation of the vacuum contribu-
tion in the curved background, which is in general a
difficult task. In this regard, however, a viable possibility
is initially to consider a de Sitter space-time and estimate
the renormalized vacuum contribution with help of ther-
modynamic reasonings as, e.g., those in line with the holo-
graphic conjecture [7]. The resulting ansatz is
� � �H �m�4 �m4, where H is the Hubble parameter
and m is a cutoff imposed to regularize the vacuum con-
tribution in flat space-time. (The next step is to consider a
quasi-de Sitter background, with a slowly decreasing H. In
this case, the above ansatz may be considered a good
approximation, but with the vacuum density decaying
with time.) In the early-time limit, with H� m, we have
� � H4. By using this scaling law for the vacuum density
and introducing a relativistic matter component, some of us
have obtained from the Einstein equations an interesting
solution with the following features [8]. First, the Universe
undergoes an empty, quasi-de Sitter phase, with H � 1,
which in the asymptotic limit of infinite past tends to
de Sitter solution with H � 1 (in Planck units). However,
at a given time, the vacuum undertakes a fast phase tran-
sition, with � decreasing to nearly zero in a few Planck
times, producing a considerable amount of radiation. In
this sense, this can be understood as a nonsingular infla-
tionary scenario, with a semieternal quasi-de Sitter phase
originating a radiation-dominated universe.

The subsequent evolution of vacuum energy essentially
depends on the masses of the produced particles. If we
apply the energy-time uncertainty relation to the process of
matter production, we will conclude that massive particles
can be produced only at very early times, when H is very
high. Therefore, baryonic particles and massive dark mat-
ter (as supersymmetric particles and axions) stopped being
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produced before the time of electroweak phase transition.
On the other hand, the late-time production of photons and
massless neutrinos must be forbidden by some selection
rule; otherwise the Universe would be completely different
from the one observed today. Thus, if no other particle is
produced, the vacuum density stops decaying at very early
times, and for late times we have a standard universe, with
the presence of a genuine cosmological constant (some
thermodynamic considerations, in line with the holo-
graphic principle, permit to infer the value of this constant,
leading to � � m6 [5,8]).

In order to have a decaying vacuum density at the
present time, the produced dark particles should have a
mass as small as 10�65 g.1 Here, we have considered the
possibility of a late-time decaying �, and compared the
consequent cosmological scenario with the constraints im-
posed by current observations [10,11]. In such a limit,
H� m and � � m3H, leading again to � � m6 in the
de Sitter limit. From a qualitative point of view, we have
found no important difference between this ��t� scenario
and the flat �CDM model [10]. After the phase transition
described above the Universe enters a radiation-dominated
phase, followed by a matter-dominated era long enough for
structure formation, which tends asymptotically to a
de Sitter universe with vacuum dominating again. The
only important novelty, related to matter production, is a
late-time suppression of the density contrast of matter,
which may constitute a potential solution to the cosmic
coincidence problem [12]. Moreover, the analysis of the
redshift-distance relation for supernovae of type Ia, par-
ticularly with the Supernova Legacy Survey (SNLS) data
set, has shown a good fit, with present values of H and the
relative density of matter in accordance with other obser-
vations [11].

In this paper, we go a little further in our investigation
and study new observational consequences of the
��t�CDM scenario described above. We use to this end
distance measurements from type Ia supernovae (SNe Ia),
measurements of the baryonic acoustic oscillations
(BAOs), and the position of the first peak of the cosmic
microwave background (CMB). We show that, besides the
interesting cosmic history of this class of ��t�CDM mod-
els, a conventional, spatially flat �CDM model is only
slightly favored over them by the current observational
data.

II. THE MODEL

In a spatially flat Friedmann-Lemaitre-Robertson-
Walker space-time the Friedmann and the conservation
equations can be written, respectively, as2

 �T � 3H2; (1)

and

 _� T � 3H��T � pT� � 0; (2)

where �T and pT are the total energy density and pressure,
respectively. If we consider that the cosmic fluid is com-
posed of matter with energy density �m and pressure pm,
and of a time-dependent vacuum term with energy density
�� � � and pressure p� � ��, we obtain

 _�m � 3H��m � pm� � � _�; (3)

which shows that matter is not independently conserved,
with the decaying vacuum playing the role of a matter
source. Throughout our analysis we assume that baryons
are independently conserved at late times, being not pro-
duced at the expenses of the decaying vacuum. This
amounts to saying that we will postulate, in addition to
Eq. (3), a conservation equation for baryons, i.e., _�b �
3H��b � pb� � 0, where �b and pb refer to baryon density
and pressure.

From the above equations and considering our late-time
ansatz � � �H (� is a positive constant of the order of
m3), the evolution equation reads

 2 _H � 3H2 � �H � 0: (4)

Now, with the conditions H > 0 and �m > 0, the inte-
gration of the above equation leads to the following ex-
pression for the scale factor,

 a�t� � C	exp��t=2� � 1
2=3; (5)

where C is the first integration constant and the second one
was chosen so that a � 0 at t � 0. From these equations, it
is straightforward to show that at early times the above
expression reduces to the Einstein-de Sitter solution
whereas at late times it tends to the de Sitter universe.

As stated earlier, � � �H and, therefore, �m � 3H2 �
�H. By using solution (5), one can also show that

 �m �
�2C3

3a3 �
�2C3=2

3a3=2
; (6)

and

 � �
�2

3
�
�2C3=2

3a3=2
: (7)

The above expressions can be easily understood as
follows. The first terms in the right-hand side are the
expected scaling laws for matter density and the cosmo-
logical constant in the case of a nondecaying vacuum while
the second ones are related to the time variation of the
vacuum density and the concomitant matter production. As
expected, at early times matter dominates, with its density
scaling with a�3, and the matter production process is
negligible. On the other hand, at late times the vacuum
term dominates, as should be in a de Sitter universe.

1Some authors associate this mass to the graviton in a de Sitter
background with H and � of the orders currently observed [9].

2We work in units where MPlanck � �8�G�
�1=2 � c � 1.
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From Eqs. (1), (6), and (7), the evolution of the Hubble
parameter as a function of the redshift can be written as

 H�z� � H0	1��m ��m�1� z�
3=2
; (8)

where H0 and �m are, respectively, the present values of
the Hubble parameter and of the relative energy density of
matter. Note that, due to the matter production, this ex-
pression is rather different from that found in the context of
the standard �CDM case. In particular, if � � 0 and
�m � 1, we obtain H�z� � H0�1� z�

3=2, leading to �m �
3H2

0�1� z�
3, as expected for the Einstein-de Sitter

scenario.

III. OBSERVATIONAL CONSTRAINTS

Extending and updating previous results [11], we study
in this section some observational consequences of the
class of ��t�CDM scenarios discussed above. Note that,
similarly to the standard �CDM case, this class of models
has only two independent parameters, H0 and �m [see
Eq. (8)]. The best-fit values for these quantities will be
determined on the basis of a statistical analysis of recent
type Ia supernovae measurements, as given by the SNLS
Collaboration [13], the distance to the baryonic acoustic
oscillations from the Sloan Digital Sky Survey [14], and
the position of the first peak in the spectrum of anisotropies
of CMB radiation from the three-year Wilkinson
Microwave Anisotropy Probe [15] (for more details on
the statistical analysis discussed below we refer the reader
to Ref. [16]).

A. SNe Ia observations

The predicted distance modulus for a supernova at red-
shift z, given a set of parameters s, is

 �p�zjs� � m�M � 5 logdL � 25; (9)

wherem andM are, respectively, the apparent and absolute
magnitudes, the complete set of parameters is s �
�H0;�m�, and dL stands for the luminosity distance (in
units of megaparsecs),

 dL � c�1� z�
Z 1

x0

dx

x2H�x; s�
; (10)

with x0 � a�t�
a0
� �1� z��1 being a convenient integration

variable, and H�x; s� the expression given by Eq. (8).
We estimated the best fit to the set of parameters s by

using a �2 statistics, with

 �2 �
XN
i�1

	�i
p�zjs� ��i

o�z�
2

�2
i

; (11)

where �i
p�zjs� is given by Eq. (9), �i

o�z� is the extinction
corrected distance modulus for a given SNe Ia at zi, and
�2
i � �2

��B�
� �2

int, where �2
��B�

is the variance in the indi-
vidual observations and �2

int stands for the intrinsic disper-

sion for each SNe Ia absolute magnitude. Since we use in
our analysis the SNLS Collaboration sample [13], N �
115. As discussed in Ref. [11], the best-fit values for this
analysis are obtained for h � 0:70 and �m � 0:33, with
reduced �2

r � 1:01. At 95% of confidence level, we also
find 0:69< h< 0:71 and 0:28<�m < 0:37. The 2-
dimensional contours shown in the figures are obtained
from the traditional frequentist confidence intervals (based
on the ��2 approach and assuming that errors are normally
distributed).

B. Baryonic acoustic oscillations

The use of BAO to test dark energy models is usually
made by means of the parameter A, i.e., [14]

 A � DV

��������������
�mH

2
0

q
zc

; (12)

where z � 0:35 is the typical redshift of the sample andDV
is the dilation scale, defined as

 DV�z� �
�
DM�z�2

zc
H�z�

�
1=3
; (13)

with the comoving distance DM given by

 DM�z� � c
Z z

0

dz0

H�z0�
: (14)

An important aspect worth emphasizing at this point is
that the value of A is obtained from the data in the context
of a �CDM model, and can be considered a good approxi-
mation only for some class of dark energy models [17]. In
particular, two conditions are implicitly assumed to be
valid [14]. First, the evolution of matter density perturba-
tions during the matter-dominated era must be similar to
the �CDM case, at least until the characteristic redshift
z � 0:35. Second, the comoving distance to the horizon at
the time of equilibrium between matter and radiation must
scale with ��mH2

0�
�1. However, none of the above con-

ditions are satisfied in the present model because of the
matter production associated to the vacuum decay. As will
be shown in a forthcoming publication [12], if matter is
homogeneously produced there is a suppression in its
density contrast for z < 5, that is, after the period of galaxy
formation (this will eventually imply a higher value of �m
in order to fit the observed mass power spectrum).

On the other hand, as radiation is independently con-
served, its relative energy density for z� 1 is given by
�rz4, where �r is its present value. With the help of (8) we
can see that, in the same limit z� 1, the relative density of
matter is �2

mz
3 (with the extra factor �m being due to the

matter production between t�z� and the present time). By
equating the two densities, we obtain the redshift of equi-
librium between matter and radiation, given by zrm �
�2
m=�r. Therefore, after including conserved radiation

into (8) [see Eq. (17) below] and taking z� 1, we have
rH�zrm� � c

����������
�r=6

p
��mH0�

�2, where �r is the present

OBSERVATIONAL CONSTRAINTS ON LATE-TIME . . . PHYSICAL REVIEW D 77, 083504 (2008)

083504-3



value of the radiation density [while in the �CDM case we
would obtain rH�zrm� � c

����������
�r=6

p
��mH2

0�
�1, as stated

above]. Thus, one can see that the parameter A is not
appropriate to test the model, and we will use instead the
dilation scale DV , which is weakly sensitive to the cosmo-
logical evolution before z � 0:35. By combining our func-
tion H�z�, given by (8), into (13) and (14) we can find the
region in the �m �H0 plane which gives the observed
value DV � �1370� 64� Mpc (1�) [14]. The BAO bands
in the �m �H0 parametric space are shown in Fig. 1.

C. The first peak of CMB

The two tests we have previously described depend on
the physics at low and intermediate redshifts (until z
 1)
and will lead, as we will see, to very similar results. As a
complementary test, involving high-zmeasurements, let us
consider the position of the first peak in the spectrum of
CMB anisotropies. Since in the present model there is no
production of baryonic matter or radiation and the spatial
curvature is null, we expect that a correct position of the
first peak is enough to guarantee a spectral profile similar
to the �CDM one, provided the spectrum of primordial
fluctuations is the same.

In the context of a large class of dark energy models this
test is performed by comparing the predicted shift parame-
ter with the �CDM value. However, this is only valid if the
acoustic horizon at the time of last scattering is the same
[18]. This is not true in the present model because, as we
have already shown, for the same values of H0 and �m we
have different expressions for cosmological parameters at
high redshifts, due to the process of matter production.
Therefore, in order to perform a correct test, we have to
explicitly calculate the acoustic scale in the model and then
compare with the measured position of the peak.

The acoustic scale, defined as the ratio between the
comoving distance to the surface of last scattering and
the radius of the acoustic horizon at that time, is then given
by

 lA �
�
Rzls

0
dz
H�z�R

1
zls

cs
c

dz
H�z�

; (15)

where zls is the redshift of last scattering, and

 cs � c
�

3�
9

4

�b

��z

�
�1=2

(16)

is the sound velocity. Here, �b and �� are, respectively,
the present relative energy densities of baryons and
photons.

The function H�z� to be used in Eq. (15) must now
include radiation. As this component is independently
conserved, scaling with a�4, the appropriate generalization
of Eq. (8) is given by3

 

H�z�
H0

� f	1��m ��m�1� z�3=2
2 ��r�1� z�4g1=2:

(17)

Therefore, apart from our two free parameters H0 and
�m, in order to determine the acoustic scale we need the
present values of the energy densities of radiation, photons,
and baryons, as well as an expression for zls. Since radia-
tion and baryons are independently conserved, and we
want to preserve the spectrum profile as well as the nu-
cleosynthesis constraints, we will take for these densities
the same values obtained from CMB observations in the
context of the �CDM model [19]: ��h2 � 2:45� 10�5,
�rh

2 � 4:1� 10�5, and �bh
2 � 0:02.

FIG. 1. Left) Superposition of the confidence regions in the �m � h plane for our analysis of SNe Ia, BAO, and CMB. Right) The
same for a spatially flat �CDM model.

3The inclusion of a conserved component of radiation changes
the dynamics and, consequently, the evolution of ��z� and
�m�z�. Thus, rigorously speaking the generalization of H�z�
would require a reanalysis of the dynamics. Nevertheless, as
�r � 10�4, when the decaying vacuum and matter production
begin to be important, the radiation term is negligible. For this
reason, Eq. (17) can be considered a good approximation.
Indeed, a numerical analysis in the range 0< z< 104 showed
a difference between Eq. (17) and the exact H�z� as small as
0.01%.

CARNEIRO, DANTAS, PIGOZZO, AND ALCANIZ PHYSICAL REVIEW D 77, 083504 (2008)

083504-4



Concerning zls, its value is not in principle the same as in
the �CDM case. To determine its value for a given pair
(�m, H0) we will proceed as follows. First, we obtain the
redshift of last scattering z�ls in the �CDM model by means
of the current fitting formula [18], and then we impose that
the optical depth has to be the same in both models, that is,

 

Z zls

0

��z�
H�z�

dz
1� z

�
Z z�ls

0

��z�
H��z�

dz
1� z

; (18)

where � is the rate of photon scattering and H� is the
Hubble parameter in the �CDM context. For the current
intervals ofH0 and �m, the relative differences between zls
and z�ls are typically as small as 1%.

For a scale invariant �CDM model with spectral index
n � 1, the position of the first peak after including the
effect of plasma driving is given by the fitting expression
[20]

 l1 � lA�1� �1�; (19)

where

 �1 � 0:267
�
r

0:3

�
0:1
; (20)

with r � ���zls�=�m�zls�. Since the plasma driving de-
pends essentially on prerecombination physics, we will
therefore assume that the above fitting formulae are a
good approximation to the present ��t� model. In our
case, the parameter r is given by

 r �
��

�2
m
zls: (21)

Finally, from the above results we can determine the
region of the �m �H0 plane for which the first peak has
the position currently observed by the Wilkinson
Microwave Anisotropy Probe, i.e., l1 � 220:8� 0:7 (1�)
[15]. As in the case of BAO, the CMB bands in the �m �
H0 parametric space are shown in Fig. 1.

D. Results and discussions

The superposition of the confidence regions and bands
corresponding to our analysis of SNe Ia, BAO, and CMB
observations is shown in Fig. 1. For the sake of compari-
son, the right panel shows the same analysis for the stan-
dard �CDM model. From these analyses, we note that,
although not very restrictive and parallel to the SNe Ia
contours, the BAO bands can be statistically combined
with SNe Ia data providing constraints on the �m �H0

plane. At 2� level, we find h � 0:70� 0:01 and �m �
0:32� 0:05, with reduced �2

r ’ 1:00. The inclusion of
CMB data into our analysis in turn makes the complete
joint analysis more restrictive but also shows that the
concordance is as good as in the standard �CDM case,
and that the ��t�CDM model discussed here cannot be
ruled out. It can be anticipated from Fig. 1 that the data
will prefer higher values of the matter density parameter,
while the Hubble parameter is expected to be slightly
smaller than the current accepted values. In order to con-
firm this qualitative discussion, Fig. 2 shows the results of
our joint statistical analysis (SNe Ia� BAO� CMB). At
2� level, we find h � 0:69� 0:01 and �m � 0:36� 0:01,
with reduced �2

r � 1:01. For the sake of comparison, the
same analysis for the �CDM case is also shown in the right
panel of Fig. 2.

Finally, with the above best-fit values for the parameters,
we can calculate the total expanding age for this class of
��t�CDM models, given by [10,11]

 t0 � H�1
0

2
3 ln��m�

�m � 1
’ 15:0 Gyr; (22)

as well as the redshift of transition from a decelerated
expansion to the current accelerating phase, i.e., zT �
1:3. Note that both values are slightly higher than, but of
the same order of, the standard ones.

FIG. 2. Left) Confidence regions (68.3%, 95.4%, and 99.7%) in the �m � h plane for a joint analysis involving SNe Ia, BAO, and
CMB data. As indicated, the dashed lines stand for the SNe Ia results of Ref. [11]. In both panels, the largest contours represent the
joint analysis of SNe Ia plus BAO measurements whereas the smallest ones arises when the CMB data are included in the analysis.
Right) The same for a spatially flat �CDM model.
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IV. FINAL REMARKS

By using the most recent cosmological observations, we
have discussed the observational viability of a class of
��t�CDM scenarios in which � / H, as well as a possible
way to distinguish it from the standard �CDM model in
what concerns the general characteristics of the predicted
cosmic evolution. As discussed earlier, these ��t�CDM
models have some interesting features as, e.g., the associa-
tion of dark energy with vacuum fluctuations, the circum-
vention of the cosmological constant problem by subtract-
ing the flat space-time contribution from the curved space-
time vacuum density, and the possible (but not necessary)
link between dark matter and massive gravitons.

We have presented some quantitative results which
clearly show that, even in the current stage of the
Universe evolution, our decaying vacuum scenario is
very similar to the standard one. We have statistically
tested the viability of the model by using recent SNe Ia
observations and measurements of the BAO and the first
peak of the CMB spectrum. At 95.4% C.L., a joint analysis
involving SNe Ia� BAO provides the intervals 0:69 �
h � 0:71 and 0:28 � �m � 0:37, which are in good agree-
ment with the values of the Hubble and the matter density
parameters obtained from independent analysis [21,22].
When the position of the first peak of CMB anisotropies
is included in the analysis, the best-fit value for the relative
matter density is increased, �m ’ 0:36. This result cannot
rule out the model, and it may be indicating that, besides
the interesting cosmic history of this class of ��t�CDM
models, a conventional, spatially flat �CDM model is only
slightly favored over them by the current observational
data. Still on the best fit for �m, we note that such a higher
matter density is something to be more investigated by
means of other cosmological or dynamical tests as, e.g., the

predicted mass power spectrum in the context of the model.
As we have discussed earlier, a higher matter density is
necessary to compensate the late-time suppression of the
density contrast owing to matter production [12]. Another
possibility will be provided by future supernovae observa-
tions, since the present model starts to diverge from the
standard one for higher redshifts [11].

Finally, we should also emphasize two aspects to be
considered before a definite conclusion about the compari-
son between the present model and the flat standard sce-
nario. First, that in our study of CMB we have used
parameter values and fitting formulae that are strictly
correct for the �CDM case, particularly the expression
giving the position of the first peak for a given acoustic
scale [Eq. (19)]. In spite of our reasons to consider that use
as a good approximation, it can lead to bias in our results. If
that is the case, only a more complete analysis of CMB
would rule out or corroborate the model. The second aspect
is of theoretical character. As discussed in the Introduction,
our ansatz for the variation of �, if genuine, is a good
approximation only for quasi-de Sitter backgrounds.
Naturally, our Universe, although dominated by a cosmo-
logical term, is far away from the asymptotic de Sitter
state, with matter still giving an important contribution to
the cosmic fluid. Only a more profound theoretical study,
on the basis of quantum field theories in the expanding
background, could establish the degree of applicability and
limits of that approximation.
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