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S1 Detailed model explanation and validation

S1.1 Meteorology overview

The WRF meteorological simulations used in this study have been constructed explicitly for
trace gas modeling with STILT, and the same WRF fields have been used in a number of green-
house gas modeling studies (e.g., Kort et al., 2010; Gourdji et al., 2010; Huntzinger et al., 2011;
Gourdji et al., 2012; Miller et al., 2013, 2014; Shiga et al., 2013). Among other features, these
simulations conserve mass by a factor of ten better than other meteorological products like the
NCEP global analysis fields (FNL) (Nehrkorn et al., 2010). Nehrkorn et al. (2010) and Hegarty

et al. (2013) validate the WRF fields generated for STILT against meteorological observations
and controlled tracer release experiments, respectively. The former study compares horizontal
winds in WRF against radiosondes: WRF exhibits a root mean squared error (RMSE) of 2.5
– 4 m/s with no change in error statistics at the top of the planetary boundary layer. The
latter study compares the performance of several particle trajectory models, including STILT,
coupled with a variety of wind fields. WRF fields produce the best results among the examined
wind fields when tested against controlled tracer release experiments (Hegarty et al., 2013).

Section S3 describes the land surface model used in WRF.

S1.2 Nested meteorology setup

The WRF-fields used in this study are nested: 10-km resolution wind fields drive particle tra-
jectories over most of the continental US and much of Canada while 40-km wind fields drive
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Figure S1: The 10-km and 40-km resolution domains used in the WRF model runs.
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Figure S2: A comparison of STILT trajectories run with nested-resolution WRF fields (odd
rows of the figure) and non-nested 40-km fields (even rows). Column (A) shows the trajectories
associated with single methane measurements at East Trout Lake, Saskatchewan, on Jan. 1,
2007, and at Fraserdale, Ontario, on Jan. 21, 2007. Each ensemble of trajectories contains
500 particles that run backward in time along the WRF wind fields. Column (B) displays
the footprints associated with each set of trajectories (used to construct H). Only particles
within the mixed layer have a non-zero footprint, so the footprints have a less dispersed spatial
distribution compared to the trajectories. Column (C) plots dmass, a cumulative metric of mass
conservation (refer to section S1.2). Panels show both the mean and distribution of dmass at
each time step. dmass values reach as high as 50 and as low as zero when STILT is paired with
other meteorological products (section S1.2).
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Figure S3: This figure is identical to Fig. S2 but compares trajectories from Chibougamau,
Quebec, on July 14, 2008.

trajectories in more distant regions (Fig. S1). This nested setup affords a detailed description
of winds within 24–48 hours of the measurement location, and the 40-km resolution at greater
distances allows substantial computational savings. This arrangement makes it computation-
ally feasible to run an ensemble of 500 back-trajectories for each of ∼15,000 hourly methane
measurements. Nested WRF fields have been employed in a number of STILT modeling studies
(e.g. Zhao et al., 2009; Nehrkorn et al., 2010; Kort et al., 2010; Gourdji et al., 2010; Huntzinger
et al., 2011; Pillai et al., 2011; Gourdji et al., 2012; Jeong et al., 2012; McKain et al., 2012;
Pillai et al., 2012; Xiang et al., 2013; Miller et al., 2013, 2014; Hegarty et al., 2013; Newman

et al., 2013; Shiga et al., 2013).
Figures S2 and S3 compare sample STILT trajectories created with the nested WRF fields

against trajectories created with the 40-km fields only. The examples in these figures span winter
to summer seasons and represent different synoptic transport patterns. Individual panels display
the back-trajectories (Figs. S2a and S3a), the influence footprints (used to construct H, Figs.
S2b and S3b), and a metric of mass conservation (dmass, Figs. S2c and S3c). For the nested
WRF setup, transport is continuous and smooth at the 10-km/40-km wind field boundaries.
Furthermore, synoptic-scale transport patterns are consistent in nested and non-nested model
runs.

Both nested and non-nested WRF-STILT setups display favorable mass conservation statis-
tics. The dmass parameter (Figs. S2c and S3c) provides an estimate of cumulative mass creation
or loss in each back-trajectory. A value of one indicates perfect mass conservation while 0.5
indicates 50% loss, and 1.5 indicates 50% mass gain (Nehrkorn et al., 2010). STILT uses the
dmass parameter to correct for mass violation in the footprints. In general, the 40-km wind
fields produce less mass creation/loss compared to the 10-km wind fields. Hegarty et al. (2013)
report that the 10-km resolution fields nonetheless reproduce atmospheric transport better than
coarser-resolution winds. In the nested runs, mass conservation statistics are also continuous
at the wind field boundaries. In comparison, other meteorological products like EDAS-40 (Eta
Data Assimilation System) and FNL (Final) produce dmass values as high as 50 and as low as
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Figure S4: Examples of the methane boundary condition (a) at 50◦N and a variety of dates
and altitudes and (b) on August 1, 2008, and a variety of latitudes and altitudes. Note the
different scales on each panel.

zero (Miller , 2007; Nehrkorn et al., 2010).
Note that we use nested wind fields exclusively for computing the back-trajectories. The

Kaplan wetland flux model uses many inputs from WRF (e.g., soil moisture, soil temperature),
and these inputs are drawn exclusively from the 40-km fields.

S1.3 Boundary condition

WRF-STILT only models methane sources over the North American continent and therefore
requires a methane boundary condition (see sections 2.2 in the main article). The boundary
condition represents the mixing ratio of methane in air masses before they reach the continent,
from both westerly and northerly synoptic air flow.

This study uses an empirical boundary that interpolates a variety of trace gas measurements
from ground-based sites and aircraft in the NOAA ESRL Global Monitoring Division’s Coop-
erative Global Air Sampling Network. The interpolated boundary curtain includes methane
measurements from Greenland, Alaska, California, Hawaii, and from ship tracks in the Pacific
Ocean, among other sites. The measurements are interpolated latitudinally and vertically using
the a curve-fitting procedure (Thoning et al., 1989). Fig. S4 displays example cross-sections of
the boundary condition by date (Fig. S4a) and latitude (Fig. S4b).

The estimated boundary value associated with each trajectory run depends on the ending
latitudes, altitudes, and days of the trajectories.

For most model-data comparisons in the main article, we have subtracted the estimated
boundary value from the measurements to clearly depict the effect of North American methane
sources on the measurement sites (e.g., Figs. 2 and 4 in the main article). The full mixing
ratio measurements show large seasonality (∼40ppb) unrelated to emissions, due to changes
northern hemisphere hydroxyl radical concentrations. A time series plot of full mixing ratio
measurements would visually obscure the effect of North American methane fluxes on the
measurements.

Existing studies validate this empirical boundary condition against methane data from air-
craft in the North American free troposphere. Miller et al. (2013) compare the boundary
condition against NOAA aircraft data over the continental US (which, in some cases, were also
used to construct the boundary condition). They find that the boundary has small regional
and/or seasonal biases of 0.75 to 7ppb compared to this aircraft data. Miller et al. (2013)
further adjust the empirical boundary condition to remove these regional and/or seasonal bi-
ases compared to aircraft data. However, regular methane data from aircraft are sparse over
Canada, so it is not feasible in this study to fit the methane boundary condition to regional
free troposphere values.
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Figure S5: This figure visualizes the sensitivity of the observations to emissions in different
regions. The contour lines indicate the regions that encompass 50, 75, and 90% of the total
sensitivity or footprint of the observations. In other words, the figure provides a measure of
geographic coverage of the inversion.

S1.4 Consistency between WRF-STILT and other atmospheric models

A number of existing STILT studies produce surface flux estimates that are comparable to
studies with different transport models and/or meteorologies. These comparisons support model
transport as represented by WRF-STILT and suggest a lack of overall bias in the WRF-STILT
footprints (H). Miller et al. (2012) use both WRF and the Regional Atmospheric Modeling
System (RAMS) with STILT to estimate US nitrous oxide emissions; the US budgets match
within 12 ± 6%. Furthermore, STILT studies of carbon monoxide and the present methane
study both produce budgets comparable to top-down emissions estimates with the Geos-Chem
model. Constraints on summertime US carbon monoxide emissions with RAMS-STILT and
Geos-Chem match to within 10% (Hudman et al., 2008; Miller et al., 2008), and methane
budgets for the Hudson Bay Lowlands (HBL) in this study match Pickett-Heaps et al. (2011)
to within ∼5%.

S1.5 Geographic coverage and data limitations

Fig. S5 displays the summed footprints (H, units of mixing ratio per flux) for the two year
(2007–2008) study period. The footprints indicate the sensitivity of the measurements to fluxes
in different geographic regions. This figure displays the contour lines of the footprints: the
regions that encompass 50, 75, and 90% of the total sensitivity. The footprints show broad
coverage across Canada. Observations are particularly sensitive to fluxes in the Hudson Bay
and Great Lakes regions as well as fluxes in Saskatchewan and eastern Alberta.

Three additional Canadian measurement sites (Lac Labiche, Alberta; Egbert, Ontario; and
Sable Island, Nova Scotia) are excluded from the analysis. The Lac Labiche and Egbert sites
lie relatively close to the ground (10m and 6m agl, respectively) and are therefore particularly
sensitive to near-surface mixing or unresolved turbulent eddies. Sable Island lies far from
methane sources and sees mostly marine background air.

Fig. S5 indicates several gaps in the 2007–2008 observation network. The network has
limited coverage across Arctic Canada, in eastern Quebec and maritime Canada, and over the
southern half of Alberta.
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Figure S6: Blue bars illustrate the mean methane signal from North American sources at each
tower site (z, the measured mixing ratio minus the boundary condition). The red bars depict
the estimated model-data mismatch errors (e.g., the square root of the diagonal of R). These
errors encompass uncertainties unrelated to the emissions (e.g., transport, methane boundary
condition, etc.).

S2 Detailed statistical methodology

S2.1 Covariance matrix structure and estimation

We estimate the parameters (θ) that define the covariance matrices (R and Q) using a method
known as restricted maximum likelihood (REML). Maximum likelihood methods are standard
estimation tools for statistical parameters, including variances and covariances (e.g., Devore,
2012, ch. 6.2). Restricted Maximum Likelihood makes it possible to estimate the variance
and/or covariance when the mean, and any other drift coefficients (β), are unknown, by first
removing the effect of these unknown variables (Corbeil and Searle, 1976). REML has been
used for covariance parameter estimation in the solution of a variety of inverse problems (e.g.,
Kitanidis, 1995), including the estimation of atmospheric trace gas sources and sinks (e.g.,
Michalak et al., 2004; Gourdji et al., 2012).

REML will estimate the parameters (θ) that are most likely given both the measurements
(z) and atmospheric model (H) (e.g., Michalak et al., 2004):

Lθ = − ln

∫

β

∫

s

p(s,β,θ|z,H) ds dβ

= 1

2
ln |Ψ|+ 1

2
ln |XTHTΨ−1HX|+ 1

2
zTΞz (S1)

where

Ψ = HQHT +R (S2)

Ξ = Ψ−1 −Ψ−1HX(XTHTΨ−1HX)−1XTHTΨ−1 (S3)

The best estimate of the covariance matrix parameters (θ) is obtained by minimizing the
negative log likelihood of the observations (Lθ in Eq. S1). This is equivalent to maximizing the
probability p(s,β,θ|z,H) after integrating out the unknown fluxes (s) and coefficients (β).

For the inversion setup here, the model-mismatch covariance matrix (R) is diagonal. This
setup is consistent with a number of previous inversion studies that use tower-based trace gas
data (e.g., Zhao et al., 2009; Bergamaschi et al., 2010; Jeong et al., 2013; Gourdji et al., 2012).
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Figure S7: The estimated standard deviation of the difference between the deterministic model
and the true unknown fluxes (σ̂Q). This is synonymous with the standard deviation of the
stochastic component, all fluxes not described by the deterministic model. We estimate these
quantities using REML (section S2.1).

We use REML to estimate a different model-data mismatch variance (σ2

R) for the eastern (LEF,
CHM, FSD) and western (CDL, ETL) tower sites. Furthermore, we model this variance to be
constant across all seasons. Fig. S6 compares the estimated model-data mismatch values at
each measurement site against the average measured signal from North American sources (z).

The a priori covariance matrix (Q) describes the differences between the deterministic model
and the true fluxes. It requires a more complex structure for several reasons. First, the de-
terministic model may be a better (or worse) fit over wetland flux regions than in regions
dominated by anthropogenic emissions. Second, the deterministic model fits wetland fluxes in
eastern Canada better than in western Canada (see Fig. 4 in the main article). Finally, the
deterministic model may describe wetland fluxes more adeptly in some seasons than in others
(e.g., Fig. 4 in the main article). For these three reasons, the inversion problem requires a co-
variance function that is both spatially and temporally non-stationary. To this end, we model
the diagonal elements of Q, denoted σ2

Q, as follows:

σQ = α1 + α2[monthlyKaplanHBLbudget]+

α3[smooth functions over anthropogenic regions] (S4)

where α1, α2, and α3 are constants estimated by REML. In other words, the covariance function
has a component that is spatially and temporally constant (α1), that varies seasonally with
the magnitude of wetland fluxes (α2[monthlyKaplanHBLbudget]), and that varies spatially
(α3[smooth functions...]). Figure S7 displays the annual mean σQ as estimated by REML.

The covariances decay exponentially with distance:

Qij(hij |σQi, σQj , l) = σQiσQj exp

(

−
hij

l

)

(S5)

where hij is the great circle distance between locations i and j, l is the decorrelation lengthscale,
and σQi and σQj are the standard deviations given in Eq. S4 at locations i and j.

REML estimates a total decorrelation length (3l) of 381 ± 36km. REML did not converge
on temporal decorrelation length, and we omit temporal correlations in Q.

In summary, we implement REML to estimate six parameters (θ) that help define the
covariance matrices (R and Q): α1, α2, α3, l, and two values of σR.
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S2.2 The Bayesian Information Criterion

This study uses the Bayesian Information Criterion (BIC) to select predictors for the deter-
ministic model. We calculate BIC scores using the following equations (as presented in Gourdji

et al., 2012):
BIC = ln |Ψ|+ zTΞz + p lnn (S6)

The final BIC score for each candidate model is unit-less. This score increases with the mag-
nitude of the combined covariance matrices (Ψ), with the weighted sum of squared residuals
(zTΞz), and with the complexity of the deterministic model (p lnn).

We add a further constraint that none of the environmental datasets in X can contribute
negatively to the methane fluxes. In other words, it would be illogical for either an anthro-
pogenic or wetland emissions model to have a net negative flux. Therefore, we check the
estimated coefficients β̂ on the selected model to ensure they are positive:

β̂ = (XTHTΨ−1HX)−1XTHTΨ−1z (S7)

This equation calculates the coefficients that are most likely given the atmospheric data z and
H, analogous to a weighted least squares regression.

S2.3 Estimation of the posterior fluxes

A standard atmospheric inversion setup will minimize the cost function but is oblivious to any
known physical bounds on the emissions. However, large negative methane fluxes would be
unrealistic; methane has a small soil sink (∼4% of the global sink), and only ∼0.5% of the
global atmospheric methane loss occurs in boreal soils (Dutaur and Verchot , 2007). Hence, we
assume that all fluxes estimated by the inversion should be nonnegative. Of further concern,
unrealistic negative fluxes can exaggerate source strength in adjacent, high emissions regions
(Miller et al., 2014). We implement nonnegativity in the inversion with Lagrange multipliers
via an iterative trust region algorithm. The companion paper Miller et al. (2014) describes this
approach in detail.

S2.4 Uncertainties in the flux estimate

The posterior error covariance matrices provides a measure of uncertainty in both the estimated
fluxes (ŝ) and coefficients (β̂) (e.g., Michalak et al., 2004):

[

Vŝ V
ŝβ̂

V
β̂ŝ

V
β̂

]

=

[

Q−1 +HTR−1H Q−1X

XTQ−1 XTQ−1X

]

−1

(S8)

Michalak et al. (2004) and Miller et al. (2014) discusses posterior covariances in greater detail,
and the former paper includes an alternative formulation of Eq. S8 that does not require
calculating the inverse of Q.

In this paper, we use the posterior covariance matrices to calculate all uncertainty estimates.
The variances and covariances of the estimated fluxes (ŝ) account for uncertainties in the drift
coefficients and in the stochastic component of the emissions, and they account for uncertainty
due to randomly-distributed model-data mismatch errors. Note that the uncertainties listed
for the coefficients and posterior fluxes in this study are 2σ, unless otherwise noted.

Of note, existing statistical inversions cannot explicitly account for model-data mismatch
errors that produce overall bias (e.g., biased mixed layer heights or biased boundary condition
estimates). The consistency between STILT-based flux estimates and other model studies
(Section S1.4) implies an absence of large or flagrant systematic errors in WRF-STILT.
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Figure S8: (a) Uncertainty in the posterior estimate (σŝ). (b) The reduction in uncertainty
relative to the prior estimate (σQ − σŝ). Note that these uncertainties decrease over increasing
spatial scales. Mathematically, this decrease is due to negative covariances in the posterior
covariance matrix.

Furthermore, the posterior covariances do not account for any uncertainty in the choice
of covariates for the deterministic model. If there were many plausible candidate models for
X, all with similar BIC scores, this could be an important component of the uncertainty in
the flux estimate. In this study, most candidate models have BIC scores that are more than
10 points above the optimal model. This indicates a ‘very strong’ level of evidence against
those models (see section 3.2.2 in the main article and Kass and Raftery (1995)). A notable
exception is the decision to exclude soil carbon from the deterministic model. The evidence
against including soil carbon is ‘positive’ but not ‘strong’ or ‘very strong.’ In other words, the
possibility of including soil carbon within X and its effect on the final flux estimate (ŝ) is a
source of uncertainty not explicitly reflected in the posterior covariance matrices. The choice
of covariate over Alberta represents an additional possible uncertainty. We use a set of smooth
functions to describe anthropogenic emissions over Alberta (Section S4). We could not find a
spatial pattern that fit the atmospheric methane data more adeptly. However, a better spatial
predictor of Alberta emissions could exist.

Figure S8a displays a map of the posterior uncertainty, denoted σŝ, and Fig. S8b displays
the corresponding decline from the prior uncertainties. It is important to note that the pos-
terior uncertainties often decrease exponentially at increasing spatial scales (e.g. Miller et al.,
2013). This decrease occurs because of negative posterior covariances among emissions points
distributed geographically. In other words, the atmospheric data data may provide a weak con-
straint on the exact distribution of emissions between any two adjacent grid boxes. However,
the data may nonetheless constrain regional and national methane budgets with high relative
confidence. For example, the uncertainties in Fig. S8a relative to the flux estimate can be
100%, but the relative uncertainty in the total Canadian methane budget (Fig. 7 of the main
article) is far smaller.
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The posterior uncertainties indicate key information about methane emissions in Alberta.
These uncertainties at grid-scale are comparable to the magnitude of emissions. This result
indicates that the precise spatial distribution of the posterior emissions over Alberta is highly
uncertain. The inversion places large emissions in Northern Alberta and near the Rocky Moun-
tain Front Range, but this assignment is poorly constrained by the available methane data.
As explained above, the atmospheric methane data better constrain regional-scale totals. For
example, the inversion estimates a budget for western Canada of 11.3 ± 2.4 (west of -100◦ lon.).
The uncertainties in this regional-scale total are small relative to uncertainties at grid-scale.

The spatial distribution of emissions over Alberta remains an important, open question.
Two efforts, in particular, could reduce these uncertainties in future estimates. First, expan-
sion of the Environment Canada measurement network will provide stronger constraints on
both the magnitude and spatial distribution of emissions. The 2014 network includes methane
measurements at Abbotsford, British Columbia; Esther, Alberta; Fort McKay, Alberta, and
Bratt’s Lake, Saskatchewan (in addition to the sites used in this study). Second, top-down
emissions estimates would benefit from accurate, detailed maps of spatial processes related
to methane emissions. These maps could be used to construct a more capable deterministic
model. The better the deterministic model describes the atmospheric methane measurements,
the smaller the variance of the stochastic component, and the smaller the posterior variances
and uncertainties.

S3 Detailed comparison of biogeochemical model drivers

This section provides visual comparison of the wetland-related environmental datasets that are
used in Kaplan, DLEM, and the deterministic model.

Figure S9 compares all of the wetland-related variables that are listed in Table 1 of the main
article. The top panels display soil moisture and temperature estimates from WRF and NARR.
These meteorologies are similar for two reasons; NARR serves as the initial condition for the
WRF runs, and both NARR and WRF use the Noah land surface model. The Noah model is
described in a multitude of publications, and a list of relevant references is available in Ek et al.

(2003) and Niu et al. (2011). Fig. S10 further illustrates the soil variables by season, in this
case for NARR. Total soil moisture peaks in spring and declines into the summer. Temporal
patterns in unfrozen soil moisture, by contrast, are dominated by the seasonal freeze-thaw cycle.

It is important to note that the NARR and WRF outputs used here are constrained by me-
teorological observations. For example, the NARR model-data assimilation framework adjusts
land surface model output at each time step to match available meteorological observations,
including temperature and precipitation. Mesinger et al. (2006) provide a succinct overview of
NARR and visually compare precipitation measurements against NARR estimates. The WRF
runs, in contrast, are re-initiated at regular intervals with initial conditions from NARR. The
WRF runs do not assimilate meteorological observations directly, but this setup ensures that
the WRF runs cannot stray far from the available meteorological data.

Subsequent panels of Fig. S9 display the wetland and soil carbon estimates. Wetland
estimates include output from the LPJ model and GIEMS. GIEMS is a monthly-resolution
satellite product that estimates global surface water (Prigent et al., 2007; Papa et al., 2010). In
this study, we use long term, summer-averaged surface water from GIEMS as a wetland proxy
(1993–2007, averaged over July–September). As discussed in Melton et al. (2013), surface
water may not necessarily be an ideal proxy for wetlands. Among other issues, this proxy
would underestimate wetlands that hold the majority of water in the subsurface. For this and
other possible reasons, GIEMS and the LPJ model have different spatial distributions. For
example, GIEMS estimates high surface water over northern Quebec while the LPJ wetland
estimate is largely restricted to the HBL and Great Slave Lake regions.
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Figure S9: Environmental datasets tested for the deterministic model (Table 1 in the main
article). NARR and WRF plots are annual averages.
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Figure S10: Soil variables from NARR for selected months of the year (averaged over 2007 –
2008).
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Figure S11: The EDGAR v4.2 anthropogenic methane emissions inventory.

The bottom panels of Fig. S9 visualize the soil carbon estimates, and these estimates
exhibit very different spatial distributions. The LPJ soil carbon estimate correlates closely
with latitude. Note that this estimate is multiplied by a factor of 4.15 before it is used in the
Kaplan model in order to match the LPJ inputs used in Pickett-Heaps et al. (2011) (refer to
section 2.4.1 of the main article). The NCSCD soil carbon estimate (Tarnocai et al., 2009;
Hugelius et al., 2013), in contrast, has a spatial distribution more similar to the LPJ wetland
estimate. NCSCD notably only estimates soil carbon in permafrost regions.

The deterministic model, described in the main article (section 4.2), excludes any estimate
of soil carbon. This feature may be reconcilable with existing methane models. One might
expect wetland location to correlate with soil carbon, so both environmental datasets may not
be strictly necessary in a wetland flux model. In the Northern Circumpolar Carbon Database
(Tarnocai et al., 2009), for example, wet peatland soils (histels and histosols) have the highest
carbon density of any soil type by a factor of 2 – 20. Other environmental factors may complicate
this correlation between the wetland distribution and soil carbon; both the type of plant carbon
and age since deposition can affect the rate of methane production (Chanton et al., 2008;
Bridgham et al., 2013). However, existing soil carbon datasets disagree even on the continental-
scale distribution of soil carbon, so it is doubtful that an existing dataset would capture more
subtle features or effects. Furthermore, several chamber studies argue that methane fluxes
correlate more strongly with other environmental factors than with soil carbon (Prater et al.,
2007; Olefeldt et al., 2013).

S4 Anthropogenic methane estimates

Figure S11 displays the EDGAR version 4.2 inventory over Canada. In the figure, the inventory
is regridded to a 1◦ lat. by 1◦ lon. resolution for easier visual comparison with the inversion
results in this study.

We use an alternative formulation of anthropogenic sources in the deterministic model.
Specifically, we place smooth tricube functions over anthropogenic source regions (Fig S12):

f(di, r) =

(

1−

(

di

r

)3
)3

(S9)

di =
√

(latitudei − latitudec)2 + (longitudei − longitudec)
2 (S10)

where f() is the tricube function. di is the latitude-longitude distance between location i and the
center c of the function. Both the function center (c) and radius (r) are defined by the modeler.
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Figure S12: The set of smooth, tri-cube functions used as a component of the deterministic
model (Xβ). In this plot, the functions are scaled by a coefficient estimated from the atmo-
spheric methane data (β̂1, section 4.2 of the main article). Note that the Canadian observation
network is not sensitive to methane emissions over most of the continental US (e.g., Fig. S5).
Instead, refer to Kort et al. (2008, 2010) or Miller et al. (2013) for top-down analysis of US
methane emissions.

We define the distance di in terms of latitude and longitude instead of great circle distance
in order to better fit the shape of anthropogenic source regions. Most large anthropogenic
source regions in North America span longer north-south distances than east-west (e.g., the
US Eastern Seaboard, California Central Valley, and resource extraction regions of Alberta).
To this end, Eq. S10 approximates anthropogenic source regions over North America with an
ellipse that has been elongated in the north-south direction.

We test multiple tricube functions with different centers (c) and radii (r) and choose the
combination of functions that produce the lowest BIC score. The functions chosen for use in
the deterministic model are centered over Alberta (52◦ lat., -115◦ lon.), the southern Great
Plains (35◦ lat., -100◦ lon.), the US East Coast (38◦ lat., -78◦ lon.), and California (35◦ lat.,
-122◦ lon.) (Fig. S12).

S5 Comparison with previous observational studies

The HBL methane budget estimated in this paper is higher than two previous observational
studies: Roulet et al. (1992) and Worthy et al. (2000). Several factors may explain this differ-
ence. Roulet et al. (1992) extrapolated a flux estimate using ground-based measurement sites
at the north and south ends of the HBL. The authors may have missed larger emissions in the
central HBL, leading to a possible underestimate for the region. This point is also discussed in
Pickett-Heaps et al. (2011). Worthy et al. (2000) used Fraserdale (FSD) observations and a box
model with spatially-uniform flux to estimate an HBL budget. Their budget estimated using
atmospheric data depends on the presumed distribution of the fluxes. For example, a modest
source near the tower site or a much larger source in more distant regions could produce similar
modeled concentrations at Fraserdale. Our study overcomes this distributional challenge by
using multiple tower sites and by leveraging existing environmental datasets relevant to the
distribution of wetland fluxes.
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B. Neininger, and J. V. Lavrié (2011), High-resolution simulations of atmospheric CO2 over
complex terrain representing the Ochsenkopf mountain tall tower, Atmos. Chem. Phys.,
11 (15), 7445–7464, doi:10.5194/acp-11-7445-2011.

Pillai, D., C. Gerbig, R. Kretschmer, V. Beck, U. Karstens, B. Neininger, and M. Heimann
(2012), Comparing Lagrangian and Eulerian models for CO2 transport – a step towards
Bayesian inverse modeling using WRF/STILT-VPRM, Atmos. Chem. Phys., 12 (19), 8979–
8991, doi:10.5194/acp-12-8979-2012.

Prater, J. L., J. P. Chanton, and G. J. Whiting (2007), Variation in methane production
pathways associated with permafrost decomposition in collapse scar bogs of Alberta, Canada,
Global Biogeochem. Cycles, 21 (4), doi:10.1029/2006GB002866.

Prigent, C., F. Papa, F. Aires, W. B. Rossow, and E. Matthews (2007), Global inundation
dynamics inferred from multiple satellite observations, 1993–2000, J. Geophys. Res.: Atmos.,
112 (D12), doi:10.1029/2006JD007847.

Roulet, N. T., R. Ash, and T. R. Moore (1992), Low boreal wetlands as a source of atmospheric
methane, J. Geophys. Res., 97 (D4), 3739–3749, doi:10.1029/91JD03109.

Shiga, Y. P., A. M. Michalak, S. Randolph Kawa, and R. J. Engelen (2013), In-situ CO2

monitoring network evaluation and design: A criterion based on atmospheric CO2 variability,
J. Geophys. Res.: Atmos., 118 (4), 2007–2018, doi:10.1002/jgrd.50168.

Tarnocai, C., J. G. Canadell, E. A. G. Schuur, P. Kuhry, G. Mazhitova, and S. Zimov (2009),
Soil organic carbon pools in the northern circumpolar permafrost region, Global Biogeochem.

Cycles, 23, doi:10.1029/2008GB003327.

Thoning, K., P. Tans, W. Komhyr, et al. (1989), Atmospheric carbon dioxide at Mauna Loa
Observatory 2. analysis of the NOAA GMCC data, 1974–1985, J. Geophys. Res, 94 (06),
8549–8565.

Worthy, D., I. Levin, F. Hopper, M. Ernst, and N. Trivett (2000), Evidence for a link between
climate and northern wetland methane emissions, J. Geophys. Res.: Atmos., 105, 4031–4038.

16



Xiang, B., et al. (2013), Nitrous oxide (N2O) emissions from California based on 2010 Cal-
Nex airborne measurements, J. Geophys. Res.: Atmos., 118 (7), 2809–2820, doi:10.1002/
jgrd.50189.

Zhao, C., A. E. Andrews, L. Bianco, J. Eluszkiewicz, A. Hirsch, C. MacDonald, T. Nehrkorn,
and M. L. Fischer (2009), Atmospheric inverse estimates of methane emissions from central
California, J. Geophys. Res.: Atmos., 114, doi:{10.1029/2008JD011671}.

17


