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Abstract We study the accelerated expansion phase of

the universe by using the kinematic approach. In particu-

lar, the deceleration parameter q is parametrized in a model-

independent way. Considering a generalized parametrization

for q, we first obtain the jerk parameter j (a dimensionless

third time derivative of the scale factor) and then confront

it with cosmic observations. We use the latest observational

dataset of the Hubble parameter H(z) consisting of 41 data

points in the redshift range of 0.07 ≤ z ≤ 2.36, larger than

the redshift range that covered by the Type Ia supernova. We

also acquire the current values of the deceleration parameter

q0, jerk parameter j0 and transition redshift zt (at which the

expansion of the universe switches from being decelerated to

accelerated) with 1σ errors (68.3% confidence level). As a

result, it is demonstrate that the universe is indeed undergo-

ing an accelerated expansion phase following the decelerated

one. This is consistent with the present observations. More-

over, we find the departure for the present model from the

standard �CDM model according to the evolution of j . Fur-

thermore, the evolution of the normalized Hubble parameter

is shown for the present model and it is compared with the

dataset of H(z).

1 Introduction

Since the end of last century, various independent observa-

tions [1–11] have strongly suggested that the expansion of the

universe is speeding up. But, understanding the fundamen-

tal physics behind this accelerated expansion is still an open

question in modern cosmology. In order to give a reasonable

explanation to this accelerating scenario, a large variety of

attempts have been done. These attempts include the modified

gravity models which relates to the changes of the geometry
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of the spacetime, and the dark energy models which involve

the introduction of exotic matter sources (for a review, one

can look into Refs. [12–19]). In general, these models corre-

spond to the dynamics of the universe. Although these models

fit the observational data, but they also have their own demer-

its. For example, the �CDM model is the most natural one

which shows very well consistence with the various observa-

tional data, however, it can not escape from the fine tuning and

cosmological coincidence problems [20,21]. So, the study of

explaining the cosmic acceleration is still continued.

In cosmology, another way to understand the cosmic

acceleration is to analyze kinematic variables like the Hub-

ble parameter (H ), the deceleration parameter (q), or the

jerk parameter ( j), which are all derived from the derivatives

of the scale factor (for details, see Sect. 2). The kinematic

approach is advantageous since it does not need any model

specific assumptions like the composition of the universe. It

is described by a metric theory of gravity and is assumed

that the universe is homogeneous and isotropic at cosmo-

logical scales (for review on this topic, see [22–31]). In the

literature, there have been many attempts to constrain the

present values of H , q and j by parametrizing q or j [31–

42]. For example, Rapetti et al. [29] performed a systematic

study of jerk parameter as the way towards building up a

model in order to examine the expansion history of the uni-

verse. On the other hand, by setting the �CDM model as the

fiducial model and using the Type Ia Supernova and observa-

tional Hubble parameter data, recently Zhai et al. [41] con-

strained four jerk models through different parametrizations

of j ( j = �CDM value + departure), as a function of the

redshift z. In a pioneering work, Riess et al. [43] measured

a transition from an early decelerating to present accelerat-

ing phase using a simple linear redshift parameterization of

q (q(z) = q0 + q1z). However, this model is not reliable

at high redshift. In a recent work, Xu et al. [39] studied few

kinematic models by considering the linear first order expan-

sion of q (q(z) = q0 +
q1z
1+z

), constant jerk parameter and
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third order expansion of luminosity distance. Following the

same line of thought, our main goal in this paper is to exam-

ine some simple kinematic model for the cosmic expansion

based on a general parameterization for q. The features of

this parametrization have been discussed in the next section.

We have then derived the expression of j (z) for this specific

choice of q. However, our work is more general and also

different from other similar works [39,43] in different ways.

Firstly, similar to the work of Zhai et al. [41], we do not

assume here a flat �CDM model for the present universe a

priori, but rather allow our model to behave in a more general

way. Additionally, the present value of the jerk parameter is

allowed to be fixed by the observational data. Secondly, in

this work, we go one step further by studying the evolution

of jerk parameter for a general deceleration parameter, which

is independent of the matter content of the universe. Lastly,

here, we employ the latest H(z) dataset as useful cosmic

constraints.

The paper is organized as the following. In Sect. 2, we have

described the phenomenological model considered here. In

Sect. 3, we have described the observational data used in the

present work along with the statistical analysis and discussed

the results in Sect. 4. Finally, we have summarized the main

conclusions in Sect. 5.

2 The Kinematic model

In what follows, we have assumed a homogeneous and

spatially flat Friedmann-Robertson-Walker (FRW) metric

described by the line element:

ds2 = dt2 − a2(t)
[

dr2 + r2d�2
]

, (1)

where a(t) is the cosmic scale factor (which is scaled to be

unity at the current epoch, i.e., a0 = 1) and t is the cosmic

time.

As discussed in the previous section, the Hubble param-

eter, deceleration parameter and jerk parameter are purely

kinematical, since they are independent of any gravity theory,

and all of them are only related to scale factor a or redshift z

(since, a = 1
1+z

). In particular, the jerk parameter, a dimen-

sionless third derivative of the scale factor a(t) with respect

to cosmic time t , can provide us the simplest approach to

search for departures from the concordance �CDM model.

It is defined as [28,29,44–46].

j (a) =

d3a
dt3

aH3
, (2)

where H = ȧ
a

is the Hubble parameter and the “dot” implies

derivative with respect to t . In terms of the deceleration

parameter q (a dimensionless second derivative of a(t) with

respect to t), the jerk parameter j can be written as

j (q) =

[

q(2q + 1) + (1 + z)
dq

dz

]

, (3)

where q = − ä
a H2 . Blandford et al. [28] described how the

jerk parameterization provides an alternative and a conve-

nient method to describe cosmological models close to con-

cordance �CDM model. A powerful feature of j is that for

the�CDM model j = 1 (constant) always. It should be noted

here that Sahni et al. [47,48] drew attention to the importance

of j for discriminating different dark energy models, because

any deviation from the value of j = 1 (just as deviations

from the equation of state parameter ω� = −1 do in more

standard dynamical approaches) would favor a non-�CDM

model. The simplicity of the jerk formalism thus enables us to

constrain the departure from the �CDM value in an effective

manner. Also, the Eq. (3) is useful when the parametric form

of the deceleration parameter q(z) is given. In fact, a variety

of q-paramertized models have been proposed in the litera-

ture (for details see [30,31,43,49–60]). Following this line of

thought, in the present work, we are interested to investigate

the evolution of j for a general q-parametrized model given

in [55]. It is given by

q(z) = q0 − q1

[

(1 + z)−α − 1

α

]

, (4)

where q0, q1 and α are arbitrary model parameters. In Eq.

(4), q0 indicates the present value of q, and q1 indicates the

derivative of q(z) with respect to the redshift z. From Eq. (4),

one can easily recover few popular q-parametrized models

in the following limits [43,49,50]:

q(z) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

q0 + q1z, for α = −1

q0 + q1 ln(1 + z), for α → 0

q0 + q1

(

z
1+z

)

, for α = +1

. (5)

It is worth noting here that the generalized parametrization is

not valid at α = 0. The interesting cosmological characteris-

tics of the parametrization, as given in Eq. (4), are extensively

discussed in [55]. Our main goal in this paper is to examine

some simple kinematic model for the cosmic expansion based

on the parameterization for q(z) in Eq. (4). With this choice

of q(z), the expression for the Hubble parameter is obtained

as

H(z) = H0exp
[

∫ z

0

1 + q(x)

1 + x
dx

]

= H0(1 + z)
(

1+q0+
q1
α

)

exp
[q1

{

(1 + z)−α − 1
}

α2

]

, (6)
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where H0 denotes the present value of the Hubble parameter.

In this case, the transition redshift (where ä(t) vanishes) can

be obtained as

zt =

( q1

αq0 + q1

)
1
α

− 1, (7)

With the corresponding q-parametrization, the jerk parame-

ter j (z), defined in Eq. (3), is obtained as

j (z) = q1(1 + z)−α + α−2(αq0 + q1 − q1(1 + z)−α)(α

+ 2αq0 + 2q1 − 2q1(1 + z)−α), (8)

with j0 = j (z = 0) = q1+q0(1+2q0). Since the expression

for the jerk parameter is explicit, so we can think that we are

actually parameterizing j (z) instead of q(z). The advantage

of this type of jerk parametrization is that it incorporates a

wide class of viable models of cosmic evolution based on

the choice of the parameter α. Similar to the generalized q-

parametrization, the above jerk parametrization is also not

valid at α = 0. As mentioned in the previous section, Zhai

et al. [41] parameterized j (z) phenomenologically aiming

at measuring the departure of j from the �CDM value. An

important difference with the work of Zhai et al. [41] is that

we do not assume a flat�CDM model for the present universe

a priori, but rather allow our model to behave in a more

general way. Also, the value of j0 is allowed to be fixed

by the observational dataset.

Obviously, the cosmological characteristics of the model

given in Eq. (4) (or Eq. (8)) strongly depend on values of the

parameters q0, q1 and α. Using the latest H(z) data, in the

next section, we have constrained the parameters q0 and q1

for some specific values of α.

3 Observational constraints on the model parameters

In this section, we have described the latest observational

data used in our analysis and the method used to analyze

them.

It is known that the Type Ia Supernova or CMB or BAO

dataset is powerful in constraining the cosmological mod-

els. However, the integration in its formula makes it hard

to reflect the precise measurement of the expansion rate of

the universe as a function of redshift, i.e., H(z) [61]. This

is the most direct and model independent observable of the

dynamics of the universe. Therefore, the fine structure of the

expansion history of the universe can be well indicated by

the H(z) dataset. From the observational point of view, the

ages of the most massive and passively evolving galaxies

will provide direct measurements of H(z) at different red-

shifts, which develop another type of standard probe (namely,

standard clocks) in cosmology [62]. It should be noted that

H(z) measurements are always obtained from two differ-

ent techniques: galaxy differential age (also known as cos-

mic chronometer) and radial BAO size methods. The Hubble

parameter depending on the differential ages as a function of

redshift z can be written in the form of

H(z) = −
1

(1 + z)

dz

dt
. (9)

So, H(z) can be obtained directly if dz
dt

is known [63]. Also,

the apparently small uncertainty of this measurement natu-

rally increases its weight in the χ2 statistics. For this dataset,

the χ2 is defined as

χ2
H =

41
∑

i=1

[Hobs(zi ) − H th(zi , H0, θ)]2

σ 2
H (zi )

, (10)

where Hobs is the observed Hubble parameter at zi and H th

is the corresponding theoretical value given by Eq. (6). Also,

σH (zi ) represents the uncertainty for the i th data point in the

sample and θ denotes the model parameter. In this work, we

have used the latest observational H(z) dataset consisting of

41 data points in the redshift range, 0.07 ≤ z ≤ 2.36, larger

than the redshift range that covered by the Type Ia supernova.

Among them, 5 new data points of H(z) are obtained from

the differential age method by Moresco et al. [64] and 36 data

points (10 data points are deduced from the radial BAO size

method and 26 data points are obtained from the galaxy dif-

ferential age method) are compiled by Meng et al. [65], Cao

et al. [66] and Zhang et al. [67]. In our analysis, we have also

used the present value of Hubble parameter H0, determined

from the combined analysis with Planck+highL+WP+BAO

[68].

The best fit values of the model parameters (say, θ∗) from

the Hubble data are estimated by minimizing the χ2 function

in equation (10). It should be noted that the confidence levels

1σ(68.3%) and 2σ(95.4%) are taken proportional to △χ2 =

2.3 and 6.17 respectively, where △χ2 = χ2(θ)−χ2(θ∗) and

χ2
m is the minimum value of χ2. An important quantity which

is used for data fitting process is

χ̄2 =
χ2

m

dof
, (11)

where subscript “dof” is the abbreviation of degree of free-

dom, and it is defined as the difference between all obser-

vational data points and the number of free parameters. If
χ2

m

dof
≤ 1, then the fit is good and the observed data are con-

sistent with the considered model.
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Fig. 1 This figure shows the 1σ (yellow region) and 2σ (red region) confidence contours in the q0-q1 plane using the latest H(z) dataset and for

different choices of α, as indicated in each panel. In each panel, the black dot represents the best-fit values of the pair (q0, q1)

Table 1 Best fit values of q0

and q1 with 1σ error bars

obtained via χ2 minimization

method. Also, the values of zt

and j0 are given for the best fit

model

α q0 (1σ ) q1 (1σ ) χ2
m zt (1σ) j0 (1σ) χ̄2

1 −0.537+0.109
−0.11 1.276+0.276

−0.281 32.768 0.726+0.036
−0.041 1.315+0.175

−0.184 0.819

0.5 −0.503+0.103
−0.096 1.008+0.214

−0.225 32.435 0.775+0.038
−0.039 1.011+0.131

−0.135 0.811

0.3 −0.489+0.102
−0.092 0.911+0.191

−0.207 32.334 0.795+0.031
−0.046 0.9+0.114

−0.105 0.808

0.007 −0.466+0.093
−0.096 0.774+0.169

−0.165 32.219 0.828+0.037
−0.053 0.742+0.106

−0.094 0.805

−0.5 −0.433+0.086
−0.088 0.581+0.132

−0.125 32.139 0.884+0.061
−0.01 0.522+0.084

−0.081 0.803

−1 −0.410+0.085
−0.08 0.437+0.093

−0.098 32.113 0.938+0.036
−0.05 0.363+0.053

−0.049 0.802

4 Results

Following the χ2 analysis (as described in the previous sec-

tion), we have obtained the constraints on the model param-

eters q0 and q1 by fixing the parameter α to some constant

values (1, 0.5, 0.3, 0.007, − 0.5 and − 1) for the latest H(z)

dataset. The 1σ and 2σ contours in q0 − q1 plane for the

proposed model is shown in Fig. 1. The best fit values with

1σ errors of the parameters q0, q1, zt and j0 are displayed

in Table 1. It is clear from Table 1 that the model has almost

same goodness in the viewpoint of χ̄2 for different values of

α. But, there the values of q0, zt and j0 are different.

The plot of the deceleration parameter q(z), as given in

Fig. 2, clearly shows that our model successfully generates

late time cosmic acceleration along with a decelerated expan-

sion in the past for all values of α. Figure 2 also shows that the

transition from decelerated to accelerated expansion phase

took place in the redshift range 0.685 ≤ z ≤ 0.974 within

1σ errors for different values ofα (for details, see fifth column

of Table 1). This range is well consistent with those previous
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Fig. 2 Plots of the deceleration parameter q(z) as a function of redshift z are shown in 1σ error regions by considering different values of α. In

each panel, the central dark line denotes the best fit curve, while the horizontal line denotes q(z) = 0
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Fig. 3 Plots of the jerk parameter j (z) as a function of redshift z are shown in 1σ error regions by considering different values of α. In each panel,

the central dark line denotes the best fit curve, while the horizontal dashed line represents the concordance �CDM ( j = 1) model

results given in [29,31,53,54,69–73], though the transition

redshift zt slightly increases as the value of α decreases.

Similarly, the evolutions of the jerk parameter j (z) within

1σ error regions are shown in Fig. 3 for different values of α.

It has been found from Fig. 3 that the concordance �CDM

model (dashed line) is not compatible within 1σ confidence

level at the present epoch (i.e., z = 0) for α = 1, 0.007,

−0.5 and −1. It has also been found that the model (for

α = 1, 0.007, −0.5 and −1) does not deviate very far from

the �CDM model at the current epoch. These deviations

of j0 from the �CDM value also need attention as the real

cause behind the cosmic acceleration is still unknown. How-

ever, it is also observed from Fig. 3 that for α = 0.3, the

�CDM model is just marginally consistent within 1σ confi-
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Fig. 4 Figure shows the evolution of the normalized Hubble parameter h(z) =
H(z)
H0

, as a function of z, for the present model. We have also plotted

h(z) data (red dots) with 1σ error bars calculated from the compilation of 41 points H(z) data [64,65]. In each panel, the central dark line denotes

the best fit curve

dence level at z = 0. On the other hand, the �CDM model

is well consistent within 1σ confidence level at the present

epoch for α = 0.5. Hence, our results (for α = 0.5 and 0.3)

also incorporate the flat �CDM model well within the 1σ

error region like the work on the reconstruction of j (z) by

Zhai et al. [41]. The main difference is that Zhai et al. [41]

imposed the jerk parameter to mimic as the flat �CDM model

via their parametrization at z = 0, but our work relaxes that

requirement. In a word, the constraint results of j0 tend to

favor the dynamical jerk parameter.

In Fig. 4, we have shown the evolution of the normalized

Hubble parameter h(z) =
H(z)
H0

for our model and have com-

pared that with the latest 41 points of H(z) dataset [64,65].

We have also plotted data points for h(z) with 1σ error bars

which have been obtained from the H(z) dataset using the

current value of H(z) given by Planck observations [68]. The

corresponding error in h can be estimated as [53]

σh = h

√

√

√

√

σ 2
H0

H2
0

+
σ 2

H

H2
, (12)

where σH0 and σH are the errors in H0 and H measurements

respectively. We have observed from Fig. 4 that the our model

is well consistent with the H(z) data against redshift parame-

ter for different values of α (except α = −1 case). The reason

is simple that the model with α = −1 [i.e., q(z) = q0 + q1z,

see Eq. (5)] is not reliable at high redshift.

5 Conclusions

In this paper, we have studied the accelerated expansion

phase of the universe by using the kinematic approach. In

this context, we have parameterized the deceleration param-

eter q in a model independent manner. The functional form

of q is chosen in such a way that it reproduces three popular

q-parametrized models, such as q ∝ z, q ∝ ln(1 + z) and

q ∝ z
1+z

for α = −1, α → 0 and α = 1 respectively. Conse-

quently, the jerk parameter j also incorporates a wide class of

viable models of cosmic evolution based on the choice of the

parameter α. We have also constrained the model parameters

123



Eur. Phys. J. C (2018) 78 :862 Page 7 of 8 862

by χ2 minimization technique using the latest 41 points of

H(z) dataset. Figure 1 shows the 1σ and 2σ confidence level

contours in the q0-q1 parametric plane for different choices

of α. The best fit values of the model parameters, transition

redshift zt and j0 within 1σ error regions for different values

of α are displayed in the Table 1. The χ̄2 implies the same

goodness of the model for all the values of α considered here.

We have also shown the evolution of the normalized Hubble

parameter for our model and have compared that with the

latest H(z) dataset. In what follows, we have summarized

our main conclusions in more detail:

For all the values of α considered here, the kinematic

model shows a smooth transition from the deceleration (q >

0) phase to acceleration (q < 0) phase of the universe in the

recent past. It has been found that values of the transition

redshift zt (from decelerated to accelerated expansion) and

q0 depend upon the choice of α . However, the changes in the

values of zt and q0 do not differ by very large values. It has

also been found that the values of zt obtained in this work for

a wide range in the values of α, are in good agreement with

the previous results as reported in [29,31,53,54,69–73]. We

have found from Fig. 3 and Table 1 that the �CDM model is

not well supported within 1σ confidence level at the present

epoch, except for the cases α = 0.5 and 0.3. As discussed

earlier, the present model is allowed to pick up any values of

j depending on the parameters to be fixed by the observed

data as contrary to the work of Zhai et al. [41], where j is

constrained to mimic a flat �CDM model at z = 0. It has also

been found that our model is well consistent with the H(z)

data at the low redshifts for different choices of α (Fig. 4).

Therefore, we conclude the present H(z) data provides well

constrained values of j and our model remains at a very

close proximity of the standard �CDM model. However, it

is natural to extend the present work with addition of Hubble

parameter dataset from the GW standard sirens of neutron

star binary system [74].
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