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Abstract In the past few years, f (Q) theories have drawn
a lot of research attention in replacing Einstein’s theory
of gravity successfully. The current study examines the
novel cosmological possibilities emerging from two spe-
cific classes of f (Q) models using the parametrization
form of the equation of state (EoS) parameter as ω (z) =
− 1

1+3β(1+z)3 , which displays quintessence behavior with the

evolution of the Universe. We do statistical analyses using
the Markov chain Monte Carlo (MCMC) method and back-
ground datasets like Type Ia Supernovae (SNe Ia) luminosi-
ties and direct Hubble datasets (from cosmic clocks), and
Baryon Acoustic Oscillations (BAO) datasets. This lets us
compare these new ideas about the Universe to the �CDM
model in a number of different possible ways. We have come
to the conclusion that, at the current level of accuracy, the
values of their specific parameters are the best fits for our
f (Q) models. To conclude the accelerating behavior of the
Universe, we further study the evolution of energy density,
pressure, and deceleration parameter for these f (Q) models.

1 Introduction

Despite the undeniable success of the ‘standard model of
cosmology’, governed by general relativity (GR), there are
atleast two motivations behind the popularity of the modi-
fied theories of gravity in modern research. The first being to
alleviate the requirement of dark sector to reason the present
acceleration of the Universe. The other is purely theoreti-
cal, towards the renormalizability of GR and to extend it to
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an ultimate theories of quantum gravity. Teleparallel grav-
ity has been extensively researched in this regard in the past
few years. To be specific, the Levi-Civita connection, which
serves as the foundation of GR, may be replaced by a general
affine connection on spatially flat spacetime with vanish-
ing torsion, allowing its non-metricity to assume complete
responsibility for defining gravity. ‘Symmetric teleparallel
gravity’ is the name given to this particular theory. Long
back, in order to unify gravity with electromagnetism, Ein-
stein [1] attributed gravity to the torsion of spacetime in a
more developed ‘metric teleparallel theory’, which is based
on an affine connection with vanishing curvature and non-
metricity both. Under teleparallel theories, one can construct
either the so-called torsion scalarT from this torsion tensor in
the metric teleparallel branch or the non-metricity scalar Q in
its symmetric counterpart. Thereafter, in the Einstein-Hilbert
action term of GR, one can replace the Ricci scalar byT in the
metric teleparallel theory and by Q in the symmetric telepar-
allel theory to obtain the respective field equations. However,
other than a total divergence term, the theories are actually
equivalent to GR and thus also rely on dark components of the
Universe as GR does. To address this dark sector issue of the
Universe, without inviting a scalar field, natural extensions
in terms of f (T) and f (Q)-theories were motivated. While
these three theories of gravity (often referred to as the geo-
metrical trinity of gravity) are regarded to be entirely equiva-
lent, these two counterparts of GR nearly went ignored until
recently, when the extension in these two theories, respec-
tively f (T) and f (Q) theories of gravity in line with the
f (R) extension of GR were studied as a possible alternate
source of dark energy to beautifully explain the present accel-
erating Universe [2–11]. The foremost advantage of these two
theories are their second order field equations, as in GR, and
unlike in the modified f (R) gravity theory where the field
equation is of the fourth order [12]. However, the older and
much matured f (T) formulation displays certain issues as
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addressed in an array of publications [13–16] which the f (Q)

theory is free from. On generic FLRW backgrounds, the sig-
nificant coupling difficulties that may be observed in f (T)

theories are absent in f (Q) models. Also, the predictions
of the f (Q) and f (T) models correspond in the small-scale
quasi-static limit, but that at higher scales the f (Q) mod-
els generically transmit 2 scalar degrees of freedom that are
absent in the case of f (T). These two degrees of freedom
vanish around maximally symmetric backgrounds, result-
ing in the strong coupling problem that has been explored
[17]. In addition, one can investigate the fascinating work
[18], in which the formalism of f (T) gravity was created
in agreement with GR. In a further serious scrutiny of the
field equations of f (T) theories we can observe an unusual
presence of anti-symmetric elements, which is not the case
in f (Q) or f (R) or most other theories of gravity. This anti-
symmetric part of the field equation of f (T) obtained from
the variation of the action term with respect to the metric
tensor actually equals the field equation obtained from the
variation of the same action by the affine connection [19].
As a result, f (T) theories (except f (T) = T) are also not
locally Lorentz invariant and possess extra degrees of free-
dom which remain absent from GR. This is a devastating
blow, as the absence of Lorentz invariance necessitates the
implementation of a system of 16 equations in f (T) theories
instead of 10 equations in GR. On a side by side compar-
ison, the f (T) connections must comply with Qμνγ = 0,
which are 40 independent equations due to the symmetry
of the non-metricity tensor Qμνγ in the second and third
indices. Whereas, the f (Q) connections must obey the van-
ishing torsion tensor criteria, Tγ

μν = 0; only 24 independent
equations since the μ = ν case is trivially satisfied, making
f (T) connections much more restrictive than f (Q). Conse-
quently, in a spatially flat FLRW spacetime, there are in total
3 classes of f (Q) formulations possible, yielding 3 different
aspects of cosmology under the umbrella of the same f (Q)

theory [20]. Whereas, there is only a single class of f (T) for-
mulation in that spacetime, and this class is predominantly
equivalent to the one obtained using the diagonal tetrad in
the Cartesian coordinates [21]. For an in depth comparison
of these two theories, one can further look into [22–27]. How-
ever, as mentioned earlier, the modified f (Q) theory under
the symmetric teleparallelism is merely at its infancy; a lot of
theoretical investigation is still due before we can vouch for
its robustness. Specially, the newly discovered f (Q) con-
structions arising from the non-vanishing classes of affine
connections in both isotropic and homogeneous spacetimes
[20] and static spherically symmetric spacetimes [28] are yet
to be tested.

On the other hand, the ability to formulate practical guide-
lines for cosmological applications gives birth to the relation-
ship between theory and observational datasets. For a certain
class of f (Q) gravity theories under symmetric teleparal-

lelism, the Hubble parameter may be computed analytically
by simply adhering to some partial extensions of generally
accepted conventional approaches. In this regard, we should
mention some of the introductory data analysis works con-
ducted in f (Q) theory. In [29], f (Q) theory challenged the
�CDM model for the first time, in the sense that the new grav-
ity theory despite having the same number of free parameters
as in �CDM, at a cosmological framework it possibly can
avoid �CDM as a limit and thus can alleviate the cosmolog-
ical constant problem. Moreover, contact with observations
at both background and perturbation levels reveals that the
model, in some datasets is slightly preferred than�CDM cos-
mology, although in all cases the two models are statistically
indiscriminate. The f (Q) model also does not exhibit early
dark energy features, and thus it immediately passes BBN
constraints. Within few weeks of this work, support in the
form of [30] appeared. Modern cosmology probes are used
in the statistical analysis, and a certain matter-energy com-
position is assumed, such that the candidate models provide
promising modified gravity candidates to represent the cos-
mic backdrop. Starting with an expression for the pressure-
energy density ratio, the so-called equation of state (EoS)
parameter ω, the technique moves on to the derivation and
analysis of other cosmic parameters corresponding to two
particular f (Q) models, namely, f (Q) = −Q + α

Q and
f (Q) = −αQn , both of which demonstrate excellent fit with
the cosmological data. The model parameters α and n can be
easily adjusted to retrieve GR, providing the opportunity for
a clean comparison.

The present paper is organised as follows:
After the brief introductory discussion presented above, in
Sect. 2 the fundamental mathematical formulation of the
modified f (Q) theories is presented, followed by the (effec-
tive) pressure and energy equations in the spatially flat
Friedmann–Lemaître–Robertson–Walker (FLRW) geomet-
ric background in Sect. 3. We consider a form of the EoS
parameter ω(z) as a function of red-shift parameter z in
Sect. 4. Under this section, two separate f (Q) models are
analysed in two separate subsections and the required cosmo-
logical parameters are derived. Section 4.1 assumes f (Q) =
−Q + α

Q and Sect. 4.2 assumes the model f (Q) = −αQn .

Section 5 delivers all the relevant observational data analy-
sis of the above-mentioned models. A detailed concluding
remarks on all the acquired findings in Sect. 7 is preceded by
Sect. 6 discussing briefly the behavior of the cosmological
parameters.

2 Basic concepts of f (Q) gravity

In this section We discuss the detailed formulation of the
symmetric teleparallelism, specially its extension the modi-
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fied f (Q) theory. We begin with a 4-dimensional Lorentzian
manifold M4, a line element governed by the metric ten-
sor gμν in certain coordinate system {x0, x1, x2, x3} and a
non-tensorial term, the affine connection �α

μν , defining the
covariant derivative ∇ and also taking care of the three main
aspects of the spacetime geometry corresponding to this con-
nection, the curvature, torsion and non-metricity. However,
once we restrict ourselves to specifically consider vanishing
of both the non-metricity and the torsion tensors correspons-
ing to the connection, we can assert that there is only a unique
connection available, the Levi-Civita connection �̊ and it has
a well-known relation with the metric g given by

�̊α
μν = 1

2
gαβ

(
∂νgβμ + ∂μgβν − ∂βgμν

)
. (1)

So, the Levi-Civita connection is basically a function of
the metric g and not an independent player in the spacetime
geometry. Here, instead we consider a torsion-free affine con-
nection � on a flat spacetime which is not metric-compatible,
the incompatibility is characterised by the non-metricity ten-
sor

Qλμν = ∇λgμν = ∂λgμν − �
β
λμgβν − �

β
λνgβμ �= 0, (2)

We can always express

�λ
μν = �̊λ

μν + Lλ
μν (3)

where Lλ
μν is the disformation tensor. It follows that

Lλ
μν = 1

2
(Qλ

μν − Qμ
λ
ν − Qν

λ
μ). (4)

We can construct two different types of non-metricity vec-
tors,

Qμ = gνλQμνλ = Qμ
ν
ν, Q̃μ = gνλQνμλ = Qνμ

ν.

(5)

The non-metricity conjugate tensor Pλ
μν is given by

Pλ
μν = 1

4

×
(

−2Lλ
μν + Qλgμν − Q̃λgμν − 1

2
δλ
μQν − 1

2
δλ
ν Qμ

)
.

(6)

Finally, one can define the non-metricity scalar

Q = −Qλμν P
λμν = 1

2
QλμνL

λμν + 1

2
Qλ Q̃

λ − 1

4
QλQ

λ.

(7)

By varying the action term

S =
∫ [

1

2κ
f (Q) + LM

] √−g d4x (8)

with respect to the metric tensor gμν , we obtain the field
equation [31]

2√−g
∇λ(

√−g fQ Pλ
μν) + 1

2
f gμν

+ fQ(Pνρσ Qμ
ρσ − 2PρσμQ

ρσ
ν) = −κTμν. (9)

Tμν is the energy-momentum tensor generated from the mat-
ter Lagrangian LM . We assume a barotropic perfect fluid
given by

Tμν = (p + ρ)uμuν + pgμν,

with isotropic pressure p, energy-density ρ and the four-
velocity vector uμ. Recently, the covariant representation of
the field equation (9) was derived [32]

fQ G̊μν + 1

2
gμν( f − Q fQ) + 2 fQQ∇̊λQPλ

μν = −κTμν,

(10)

where G̊μν = R̊μν − 1
2gμν R̊, is the Einstein tensor corre-

sponding to the Levi-Civita connection. The field equations
(10) can be equivalently written in the effective form

G̊μν = − κ

fQ
T ef f

μν = − κ

fQ
Tμν + T DE

μν , (11)

where −κ
fQ

is the effective gravitational constant and for its
positivity in our construction, we assume fQ < 0. The
dark energy component emerged from this modification of
STEGR is given by

T DE
μν = −1

fQ

[
1

2
gμν( f − Q fQ) + 2 fQQ∇̊λQPλ

μν

]
. (12)

On the other hand, since the affine connection is an inde-
pendent entity in the symmetric teleparallel theory, we vary
the action (8) with regard to the affine connection � to obtain
the connection field equation as [32]

∇μ∇ν(
√−g fQ Pμν

γ ) = 0, (13)

on the basis of the assumption that the matter LagrangianLM

is not a function of the affine connection. Moreover, it has
been showed that [19] this second field equation (13) is triv-
ially satisfied in a model-independent manner in the space-
time geometry we are going to consider in the Sect. 3. So in
the present article our sole attention is devoted to the metric
field equation (10). It should be mentioned that Rρ

σμν = 0
is one of the restrictions that was utilised when developing
the f (Q)-theory. This indicates that there is a unique coordi-
nate system that can be chosen to make the affine connection
disappears, denoted by the expression �λ

μν = 0. The term
“coincident gauge” refers to this kind of circumstance. For
more details of the f (Q) theory and its cosmological appli-
cations, one can see [29,33–42] and the references therein.
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3 f (Q) cosmology in isotropic and homogeneous
Universe

The “cosmological principle” states that on a large enough
scale our Universe is homogenous and isotropic, that is, it is
the same at every point and in every direction. Based on this,
the most reasonable and theoretically and observationally
supported model of the present Universe is the spatially flat
Friedmann–Lemaitree–Robertson–Walker (FLRW) space-
time given by the line element in Cartesian coordinates

ds2 = −dt2 + a2(t)[dx2 + dy2 + dz2], (14)

where a(t) is the scale factor of the Universe. We proceed
with the coincident gauge choice as discussed above and
obtain the non-metricity scalar as Q = 6H2, where H = .

a
a

is the Hubble parameter, which measures the expansion rate
of the Universe, and (̇) indicates a derivative with regard to
cosmic time t .

In this context, the field equations (10) give the following
expressions of the energy density ρ and the isotropic pressure
p [32,37]

ρ = f

2
− 6H2 fQ, (15)

p =
(

.

H +
.

fQ
fQ

H

)
(
2 fQ

) −
(

f

2
− 6H2 fQ

)
, (16)

Furthermore, to explain cosmic history and the possible
transition to an accelerated phase, we use the equation of
state (EoS) parameter ω, given by

ω = p

ρ
= −1 +

(
.

H +
.
fQ
fQ
H

)
(
2 fQ

)

(
f
2 − 6H2 fQ

) . (17)

On the other hand, using (11) the effective energy density
ρe f f and effective pressure pef f of the cosmic fluid can be
written as [37]

3H2 = − 1

fQ
ρe f f = − 1

fQ

(
ρ + 6H2 fQ − f

2

)
, (18)

−(2Ḣ + 3H2) = − 1

fQ
pef f

= − 1

fQ

(

p + f − 6H2 fQ − 4
.

f Q H

2

)

. (19)

Further, in the limiting situation f (Q) = −Q = −6H2,
the gravitational action (8) is reduced to the standard Hilbert-
Einstein form and Eqs. (18) and (19) reduce to the standard
Friedmann equations of GR, 3H2 = ρ, and 2Ḣ + 3H2 =
−p, respectively. Thus, the effective EoS parameter ωe f f is

ωe f f = pef f
ρe f f

= 2p + f − 6H2 fQ − 4
.

f QH

2ρ + 6H2 fQ − f
. (20)

To describe the accelerated/decelerated aspect of the cos-
mic expansion, we consider the deceleration parameter q,
expressed as,

q = −
.

H

H2 − 1, (21)

4 Cosmological models with specific form of EoS

In this section, we examine dark energy parametrization,
which displays quintessence behavior with the evolution
of the cosmos. Our principal objective is to study this
parametrization using existing cosmological data. For sim-
plicity, we will adopt the red-shift as the independent vari-
able, expressed as z = a0

a − 1, with the current scale fac-
tor a0 fixed to 1. In general, there is no theoretical method
for selecting the optimal ω (z), but by utilizing observa-
tional data, suitable parametrizations can be found. In liter-
ature, several EoS dark energy parametrization models were
proposed and fitted with observational data. Ref. [43] pro-
posed an one-parameter family of EoS dark energy model.
Two-parameters family of EoS dark energy parametriza-
tions, especially the Chevallier-Polarski-Linder parametriza-
tion [44,45], the Linear parametrization [45–48], the Loga-
rithmic parametrization [49], the Jassal-Bagla-Padmanabhan
parametrization [50], and the Barboza-Alcaniz parametriza-
tion [51], were also investigated. Further, in [52–54] three
and four parameters family of EoS dark energy parametriza-
tions are examined. Here, we assume that the EoS parameter
is parametrized as a function of red-shift z,

ω (z) = − 1

1 + 3β (1 + z)3 , (22)

where β is the only free parameter. The purpose of choosing
this parametrization for ω (z) is that for very large red-shift
z � 1, i.e., at the early phases of cosmological evolution,
ω is approximately zero, representing the behavior of the
EoS parameter for a pressureless fluid (ordinary matter), but
it gradually decreases to negative values at the present i.e.
z = 0, leads to negative pressure and ω = − 1

1+3β
. This

last equation clearly shows that for an accelerated Universe
scenario: ω ≤ − 1

3 , resulting in a constraint of the value
of β as β ≤ 2

3 . In addition, we can see that at later times
z → −1, ω tends to −1, which is similar to the behavior of
the cosmological constant �. Also, for β = 0, ω reduces to
−1. These situations are summarized below,

• ω −→ −1, as z −→ −1,
• ω −→ 0, for z � 1,
• ω = − 1

1+3β
, for z = 0.
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To make comparisons of theoretical results with cosmo-
logical data simple, we utilize the red-shift z instead of the
usual time variable t . As a result, we can change the deriva-
tives with regard to time with the derivatives with regard to
red-shift using the relationship,

d

dt
= dz

dt

d

dz
= −(1 + z)H(z)

d

dz
. (23)

The deceleration parameter q can be calculated as a func-
tion of cosmic red-shift,

q (z) = (1 + z)
1

H (z)

dH (z)

dz
− 1. (24)

Also, the derivative of the Hubble parameter can be
expressed as,

Ḣ = −(1 + z)H(z)
dH

dz
. (25)

Now, we examine several specific cosmological models
in f (Q) gravity theory, models that correspond to different
classes of the function f (Q). We also analyze the behavior
of geometric and physical cosmological parameters in f (Q)

gravity such as energy density, pressure, and deceleration
parameter.

4.1 f (Q) = −Q + α
Q

For a first case of a cosmological model in f (Q) gravity, con-
sider the scenario where the function f (Q) can be expressed
as, f (Q) = −Q + α

Q , where α is a constant. So, we get

fQ = −1 − α
Q2 and fQQ = 2α

Q3 . The Friedmann equations
(15) and (16) for this particular f (Q) model, reduce to

ρ = α

4H2 + 3H2, (26)

and

p = α
.

H

6H4 − 2
.

H − α

4H2 − 3H2. (27)

Using (17), we obtain the EoS parameter in terms of Hub-
ble parameter as

ω = 2
.

H

3H2 − 16
.

HH2

α + 12H4 − 1. (28)

The differential equation for H (z) is obtained by (34) the
presumed ansatz of ω as indicated in (22),

2
.

H
(
α − 12H4

)

3H2
(
α + 12H4

) − 3β(z + 1)3

3β(z + 1)3 + 1
= 0. (29)

Therefore, the solution obtained for the Hubble parameter
H (z) as a function of red-shift z is

H (z)

=

√√(
α+12H4

0

)2
(3β(z+1)3+1)

2

(3β+1)2H4
0

− 48α+
(
α+12H4

0

)
(3β(z+1)3+1)

(3β+1)H2
0

2
√

6
,

(30)

where H0 represents the current value (i.e. at z = 0) of the
Hubble parameter.

For this specific case, the expression of the deceleration
parameter obtained by including (1) into (24) as

q (z) = 9β(z + 1)3
(
α + 12H4

0

)

2(3β+1)H2
0

√(
α+12H4

0

)2
(3β(z+1)3+1)

2

(3β+1)2H4
0

−48α

− 1.

(31)

4.2 f (Q) = −αQn

For a second case of a cosmological model in f (Q) gravity,
we assume the scenario where the function f (Q) can be
expressed as a power-law form, f (Q) = −αQn , where α

and n are model parameters. So, we get fQ = −αnQn−1

and fQQ = − (n − 1) αnQn−2. The Friedmann equations
(15) and (16) for this particular f (Q) model, reduce to

ρ = α2n−13n(2n − 1)
(
H2

)n
, (32)

and

p = α
(
−6n−1

)
(2n − 1)

(
H2

)n−1 (
2

.

Hn + 3H2
)

. (33)

Using (17), we obtain the EoS parameter in terms of Hub-
ble parameter as

ω = −2
.

Hn

3H2 − 1. (34)

The differential equation for H (z) is obtained by Eq. (34)
the presumed ansatz of ω as indicated in Eq. (22),

2
.

Hn

3H2 + 3β(1 + z)3

3β(1 + z)3 + 1
= 0. (35)

Therefore, the solution obtained for the Hubble parameter
H (z) as a function of red-shift z is,

H (z) = H0

[
3β(1 + z)3 + 1

3β + 1

] 1
2n

, (36)

where H0 represents the current value (i.e. at z = 0) of the
Hubble parameter. The previous equation can be rewritten
as,

H (z) = H0

[
(1 − γ ) (1 + z)3 + γ

] 1
2n

, (37)

For reasons of simplicity, we have introducedγ = 1
1+3β

. It
should be observed that the standard �CDM model is equiv-
alent to the scenario n = 1, with the current cold dark matter
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density parameter �0
m = (1 − γ ). As a result, the model

parameter n is an excellent indicator of the current model’s
deviation from the �CDM model.

For this specific case, the expression of the deceleration
parameter obtained by including Eq. (2) into Eq. (24) as,

q (z) = 9β(1 + z)3

6βn(1 + z)3 + 2n
− 1. (38)

In the next section, we will attempt to estimate the values
of H0, n, α, and β using Hubble, SNe Ia, and BAO datasets.
The behavior of cosmological parameters such as density,
pressure, and deceleration parameter can be examined for
each model (Models 1 and 2) using the values of H0, n, α,
and β.

5 Observational constraints from Hubble, SNe Ia and
BAO

This section is involved with the different observational
datasets used to restrict the parameters α, β, n and H0. To
get the posterior distributions of the parameters, we use the
usual Bayesian algorithms and a Markov Chain Monte Carlo
(MCMC) approach with the emcee python package [55]. This
stimulation is accomplished by the use of Hubble measure-
ments (i.e., Hubble datasets), Type Ia supernovae (SNe Ia)
datasets, and BAO datasets. The probability function is used
to maximize the best fits of the parameters

L ∝ exp(−χ2/2), (39)

where χ2 is the chi-square function. The χ2 functions are
explained below for different datasets.

5.1 Hubble datasets

The Hubble results are the first observational data sample
used during our research. The Hubble parameter is written
as H(z) = −dz/[dt (1 + z)]. Given that dz is determined
via a spectroscopic survey, the model-independent value of
the H(z) can be estimated by measuring dt . It is commonly
known that the Hubble parameter can directly estimate the
rate of cosmological expansion. In principle, two methods
for calculating the Hubble parameter at various red-shifts
are widely used: the differential ages �t of galaxies and the
line of sight BAO technique. In this work, we restrict the
model using a collection of 57 Hubble parameter data points
in the red-shift range 0.07 ≤ z ≤ 2.41 published by Sharov
and Vasiliev [56]. For Hubble datasets, the χ2

Hubble function
is given respectively for the two models

χ2
Hubble_1 (H0, α, β)

=
57∑

k=1

[Hth(zk, H0, α, β) − Hobs(zk)]2

σ 2
H(zk )

, (40)

and

χ2
Hubble_2 (H0, n, β)

=
57∑

k=1

[Hth(zk, H0, n, β) − Hobs(zk)]2

σ 2
H(zk )

. (41)

Here, Hobs is the Hubble parameter value recovered
from cosmic observations, Hth is its theoretical value esti-
mated, and σH is the standard deviation in the observed
value of H (z). The 1 − σ and 2 − σ contour graphs in
Figs. 1 and 2 show the best fit values for the parameters of
both models obtained from the Hubble datasets. The like-
lihoods are extremely closely adapted to Gaussian distri-
butions. The best-fit values of the model parameters found
are: H0 = 69.3+2.4

−2.2, α = 3.9+5.2
−4.0, and β = 0.129+0.027

−0.024

for the first model, and H0 = 65.5+4.5
−4.6, n = 1.16+0.14

−0.15, and

β = 0.33+0.39
−0.24 for the second model. Also, Figs. 3 and 4 show

the error bar plots for both models and the �CDM, with the
cosmological constant density parameter �0

� = 0.7, the mat-
ter density parameter �0

m = 0.3 and H0 = 69 km/s/Mpc. It
is shown that the f (Q) models completely suit the observa-
tional data while deviating somewhat from the �CDM.

5.2 SNe Ia datasets

Type Ia Supernovae (SNe Ia) are a strong distance indicator
that can be employed to investigate the background expan-
sion of the cosmos. To restrict the aforementioned param-
eters, we use the latest Pantheon SNe Ia collection, which
consists of 1048 SNe Ia data points collected from several
SNe Ia samples in the red-shift range z ∈ [0.01, 2.3] such
as SDSS, SNLS, Pan-STARRS1, low-red-shift survey, and
HST surveys [57]. For SNe Ia datasets, the χ2

SNe function is
given as

χ2
SNe_1 =

1048∑

i, j=1

�μi

(
C−1
SNe

)

i j
�μ j , (42)

where CSNe represents the covariance matrix [57], and

�μi = μth(zi , H0, α, β) − μobs
i , (43)

is the difference between the observable distance modulus
value from astronomical data and the theoretical values cal-
culated from the model with the given parameter α, β, n
and H0. Furthermore, the distance modulus is derived as,
μ = mB − MB , where mB and MB signify the measured
apparent magnitude and absolute magnitude at a given red-
shift z (Trying to retrieve the nuisance parameter using the
new BEAMS with Bias Correction technique (BBC) [58]).
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Fig. 1 Constraints on the model parameters at 1 − σ and 2 − σ confidence interval using the Hubble datasets (Model 1)

Its theoretical value is also given by

μ(z) = 5log10

[
DL(z)

1Mpc

]
+ 25, (44)

where

DL(z) = c(1 + z)
∫ z

0

dz′

H(z′, H0, α, β)
. (45)

The 1−σ and 2−σ contour graphs in Fig. 5 show the best-
fit values for the parameters of model 1 obtained from the SNe
Ia datasets. The best-fit values of the model parameters found
are: H0 = 67.9+2.5

−2.6, α = 4.0+5.3
−4.1, and β = 0.160+0.095

−0.074. Fur-
thermore, Fig. 7 shows the error bar plots for the model and
the �CDM, with the cosmological constant density param-
eter �0

� = 0.7, the matter density parameter �0
m = 0.3 and

H0 = 69 km/s/Mpc. The graphic also displays the SNe Ia

findings, 1048 data points, with their errors, allowing for a
direct comparison of the two models.

5.3 BAO datasets

The last restrictions in this study are obtained by BAO obser-
vation. BAO studies oscillations in the early cosmos gener-
ated by cosmic perturbations in a fluid composed of pho-
tons, baryons, and dark matter and connected via Thomp-
son scattering. BAO observations include the Sloan Digital
Sky Survey (SDSS), the Six Degree Field Galaxy Survey
(6dFGS), and the Baryon Oscillation Spectroscopy Survey
(BOSS) [59,60]. The equations employed in BAO analysis
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Fig. 2 Constraints on the model parameters at 1 − σ and 2 − σ confidence interval using the Hubble datasets (Model 2)

are (Table 1)

dA(z) = c
∫ z

0

dz′

H(z′)
, (46)

DV (z) =
[
d2
A(z)cz

H(z)

] 1
3

, (47)

and

χ2
BAO_1 = XTC−1

BAO X, (48)

X =

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

dA(z�)
DV (0.106)

− 30.95

dA(z�)
DV (0.2)

− 17.55

dA(z�)
DV (0.35)

− 10.11

dA(z�)
DV (0.44)

− 8.44

dA(z�)
DV (0.6)

− 6.69

dA(z�)
DV (0.73)

− 5.45

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

,

where dA(z) represents the angular diameter distance, DV (z)
represents the dilation scale, andCBAO represents the covari-
ance matrix defined as [61],

123



Eur. Phys. J. C (2023) 83 :400 Page 9 of 15 400

Fig. 3 The plot of H(z) vs the red-shift z for our f (Q) model 1, which is shown in red, and �CDM, which is shown in black dashed lines, shows
an excellent match to the 57 points of the Hubble datasets

Fig. 4 The plot of H(z) vs the red-shift z for our f (Q) model 2, which is shown in red, and �CDM, which is shown in black dashed lines, shows
an excellent match to the 57 points of the Hubble datasets

Table 1 Values of dA(z∗)/DV (zBAO ) for various values of zBAO [61]

zBAO 0.106 0.2 0.35 0.44 0.6 0.73
dA(z∗)

DV (zBAO )
30.95 ± 1.46 17.55 ± 0.60 10.11 ± 0.37 8.44 ± 0.67 6.69 ± 0.33 5.45 ± 0.31
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Fig. 5 Constraints on the model parameters at 1 − σ and 2 − σ confidence interval using the SNe Ia datasets (Model 1)

C−1
BAO =

⎛

⎜⎜
⎜⎜⎜⎜
⎝

0.48435 −0.101383 −0.164945 −0.0305703 −0.097874 −0.106738
−0.101383 3.2882 −2.45497 −0.0787898 −0.252254 −0.2751
−0.164945 −2.454987 9.55916 −0.128187 −0.410404 −0.447574
−0.0305703 −0.0787898 −0.128187 2.78728 −2.75632 1.16437
−0.097874 −0.252254 −0.410404 −2.75632 14.9245 −7.32441
−0.106738 −0.2751 −0.447574 1.16437 −7.32441 14.5022

⎞

⎟⎟
⎟⎟⎟⎟
⎠

.

The 1 − σ and 2 − σ contour graphs in Fig. 6 shows
the best-fit values for the parameters of model 2 obtained
from the BAO datasets. The model parameter constraints are
derived by minimizing the associated χ2 using MCMC and

the emcee library. The best-fit values of the model parameters
found are: H0 = 69+10

−9 , α = 3.7+5.2
−3.9, and β = 0.148+0.037

−0.035
(Fig. 7).
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Fig. 6 Constraints on the model parameters at 1 − σ and 2 − σ confidence interval using the BAO datasets (Model 1)

6 Behavior of cosmological parameters

The behavior of cosmological parameters is determined by
the underlying cosmological model. Several parameters are
used to characterize the current state and evolution of the
Universe in the classic �CDM model, which defines the
Universe as spatially flat, homogeneous and isotropic, and
composed of baryonic matter, dark matter, and dark energy
such as the deceleration parameter, energy density, and EoS
parameter. In this work, we study two cosmological models
in f (Q) gravity. Now, we discuss the behavior of some of
the previously mentioned cosmological parameters.

The deceleration parameter is a measure that estimates the
rate of cosmic expansion. It is obtained as shown in (21). The
deceleration parameter’s value can be positive, zero, or neg-

ative, and it is determined by the density of matter and the
cosmological constant in the Universe. A positive value of q
suggests that the expansion of the Universe is decelerating,
whereas a negative value of q indicates that the expansion
is accelerating. From Figs. 8 and 12, we can observe that the
deceleration parameter of our models is positive (q > 0) in
the early Universe and negative (q < 0) in the late cosmos. As
a result, it shows that the cosmos is transitioning from decel-
eration to acceleration after a transition red-shift zt . Also,
the Universe achieves the exponentially accelerating de Sit-
ter stage with q = −1 in the enormous time limit, a finding
that is independent of the model parameters, q decreases as
cosmic time increases or vice versa in terms of red-shift. This
evolution is compatible with the recent Universe’s behavior,
which passed through three phases: decelerating dominated,
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Fig. 7 The plot of μ(z) vs the red-shift z for our f (Q) model 1, which is shown in red, and �CDM, which is shown in black dashed lines, shows
an excellent match to the 1048 points of the Pantheon datasets

accelerating expansion, and late-time acceleration. Finally,
we observe that the current values of the deceleration param-
eter q0 (z = 0) and zt (q = 0) agree with the Hubble, SNe
Ia, and BAO datasets.

Figures 9 and 13 show that the energy density of the cos-
mos remains positive all through the Universe’s history and
decreases as cosmic time t increases in both models. It starts
as positive and decreases to a small value as t → ∞ (or
z → −1). Another attempt to understand the presence of
dark energy is to determine the equation of state (EoS) value
and its evolution. Figures 10 and 14 show the behavior of the
EoS parameter for two models. So, the EoS parameter is a
dimensionless quantity that represents the pressure-to-energy
density ratio in a cosmic fluid i.e. ω = p

ρ
. It is frequently used

in cosmology to explain the behavior of dark energy and dark
matter, which are considered to make up the majority of the
Universe. The EoS parameter can also have values varying
from −1 to 1. A fluid with a value of ω = −1 behaves like a
cosmological constant, such as dark energy, whereas a fluid
with a value of ω = 0 behaves like non-relativistic matter,
such as dark matter. The effective EoS parameter in Figs. 11
and 15 appears to be similar, takes negative values for all val-
ues of z. As a result, both EoS are in the quintessence region
( −1 < ω < − 1

3 ), approaching the cosmological constant at
high red-shifts. Finally, we observe that the current values of
the EoS parameter ω0 (z = 0) agree with the Hubble, SNe
Ia, and BAO datasets (Figs. 12, 13, 14, 15).

Fig. 8 Evolution of the deceleration parameter vs red-shift z (Model 1)

Fig. 9 Evolution of the energy density vs red-shift z (Model 1)
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Fig. 10 Evolution of the EoS parameter vs red-shift z (Model 1)

Fig. 11 Evolution of the effective EoS parameter vs red-shift z
(Model 1)

Fig. 12 Evolution of the deceleration parameter vs red-shift z
(Model 2)

7 Concluding remarks

The present era of accelerating Universe has gotten increas-
ingly intriguing over time. To develop a proper description of
the accelerating Universe, a variety of dynamical DE mod-
els and modified gravity models have been used in differ-
ent ways. We have investigated the accelerated expansion

Fig. 13 Evolution of the energy density vs red-shift z (Model 2)

Fig. 14 Evolution of the EoS parameter vs red-shift z (Model 2)

Fig. 15 Evolution of the effective EoS parameter vs red-shift z
(Model 2)

of the Universe in this paper by using the parametric form
of the equation of state parameter in the context of f (Q)

gravity, where the gravitational interaction is represented
by the non-metricity scalar Q. We have studied two func-
tional forms of f (Q), specifically f (Q) = −Q + α

Q and
f (Q) = −αQn , where α and n are model parameters, and
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the parametrization form of the equation of state parameter
as ω (z) = − 1

1+3β(1+z)3 , where β is a constant parameter.

Using the aforementioned parametric form, we can derive
the Hubble parameter as shown in (1) and (2). In addition,
we have utilized Hubble datasets with 57 data points, SNe
Ia datasets with 1048 data points, and BAO datasets with six
data points to find the best-fit values for the model parame-
ter. The values for the first model are as: H0 = 69.3+2.4

−2.2,

α = 3.9+5.2
−4.0, and β = 0.129+0.027

−0.024 for Hubble datasets,

H0 = 67.9+2.5
−2.6, α = 4.0+5.3

−4.1, and β = 0.160+0.095
−0.074 for

SNe Ia datasets, and H0 = 69+10
−9 , α = 3.7+5.2

−3.9, and

β = 0.148+0.037
−0.035 for BAO datasets. In the case of the second

model: H0 = 65.5+4.5
−4.6, n = 1.16+0.14

−0.15, and β = 0.33+0.39
−0.24

for Hubble datasets. We have examined the behavior of
several cosmological parameters for both models according
to these best-fit model parameter values. The deceleration
parameter behavior of both models has predicted the phase
transition from deceleration (q > 0) to acceleration (q < 0).
This shows that the current expansion of the Universe is
accelerating. Furthermore, the effective EoS parameter in
both models presently behaves in the same method as the
quintessence behavior, i.e.−1 < ω < − 1

3 , with the current
values in the negative range and close to the observed value.
It shows that the current Universe is accelerating. Finally, we
have concluded that the proposed parameterization form of
the EoS parameter in the context of f (Q) gravity theory plays
a significant role in demonstrating the late-time accelerated
expansion of the Universe.
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