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Abstract

Linear logic Concurrent Constraint programming (LCC) is an extension of concurrent
constraint programming (CC), where the constraint system is based on Girard’s linear logic
instead of the classical logic. In this paper, we address the problem of program equivalence for
this programming framework. For this purpose, we present a structural operational semantics
for LCC based on a label transition system and investigate different notions of observational
equivalences inspired by the state of art of process algebras. Then, we demonstrate that the
asynchronous π-calculus can be viewed as simple syntactical restrictions of LCC. Finally, we
show that LCC observational equivalences can be transposed straightforwardly to classical
Concurrent Constraint languages and Constraint Handling Rules, and investigate the resulting
equivalences.
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1 Introduction

The class of Concurrent Constraint (CC) languages (Saraswat and Rinard 1990)

was introduced as a generalization of concurrent logic programming (Maher 1987)

with constraint logic programming (Jaffar and Lassez 1987). Nonetheless, it has

strong similarities with more classical models of concurrency such as the Calculus of

Communicating Systems (CCS), the Chemical Abstract Machine (CHAM), or the π-

calculus. For example, its semantics has been originally expressed by process algebras

similar to CSS (Saraswat and Rinard 1990) or later in the style of the CHAM (Fages

et al. 2001). Furthermore, it generalizes Actor model (Kahn and Saraswat 1990)

and possesses the phenomenon of channel mobility of the π-calculus (Laneve and

Montanari 1992).

Nonetheless, any CC language differs from the usual models of concurrency

because it relies on a constraint system for specifying relationship (entailment)

between messages (constraints), which confers to it a “monotonic” essence. Indeed,

in CC, processes can only add information by posting constraints or checking

that enough information is available to entail a guard. Linear logic CC languages

! A version of the paper including the proofs is available as technical report (Haemmerlé 2011).
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(LCC) (Saraswat and Lincoln 1992) have been introduced as a generalization of CC,

in which processes can consume information by means of the ask operation, hence,

breaking the monotonicity of CC. The main idea of this extension is to view the

constraint system as Girard’s linear logic (Girard 1987) theory instead of classical

logic theory. It results in a simple framework that unifies constraint programming

and asynchronous process algebras.

Since the beginning of the nineties, the semantics foundation of LCC has been

well studied (see for instance Best et al. (1997); Ruet and Fages (1997); Fages

et al. (2001); Hammerlé et al. (2007)), but surprisingly, the formal comparison with

classical models of concurrency has received little attention. Indeed, during the same

period, the use of constraints in the context of concurrency seems to have received

more than a little attention. For instance, the fusion calculus (Parrow and Victor

1998) introduced at the end of the nineties can be viewed as a generalization of

the π-calculus with unification constraints. Several hybrid process algebras with

constraint mechanisms have also been proposed (see for example Dı́az et al. (1998);

Glibert and Palamidessi (2000); Buscemi and Montanari (2007)).

In this paper, we investigate observational equivalence for LCC. Here, we under-

stand observational equivalence in a broad sense: two processes are observationally

equivalent if, in any environment, an external observer cannot possibly tell the

difference when one process is unplugged and the other one plugged in. In order to

provide a relevant instantiation for this intuitive definition, it is necessary to take into

account the execution paradigm, in which the processes will be considered. Indeed,

in CC frameworks, there typically exist two possible execution paradigms: the

“backtracking” paradigm (from logic programs), which allows reversible executions,

and the “committed choice” paradigm (from process algebras), which does not. In

the following, we propose the may-testing equivalence and the barbed congruence

as natural instances of observable equivalence for LCC when considered in these

respective paradigms. We also propose the logical equivalence and the labelled

bisimulation that will provides simpler characterization for the two former notions.

In order to define such equivalences, we will look at LCC from a point of view

slightly different from the classical one: here constraints are not posted into a central

blackboard anymore, but they are processes that can migrate, merge, and emit as

message a part of the information they represent; meanwhile, ask processes just wait

for messages that “logically” match their guards. Hence, it is possible to express the

operational semantics of LCC by an elegant labeled transition system. We then show

that the asynchronous π-calculus can be viewed as a subcalculus of LCC, and that

the usual π-calculus observational equivalences are particular instances of the ones of

LCC. Finally, we investigate particular properties of LCC observational equivalences

when they are transposed into classical CC and Constraint Handling Rules (CHR).

2 A process calculi semantics for LCC

In this paper, we assume given a denumerable set V of variables, a denumerable

set Σc of predicate symbols (denoted by γ), and a denumerable set Σf of function

and constant symbols. First-order terms built from V and Σf will be denoted by t.
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Sequences of variables or terms will be denoted by bold face letters such as x or t.

For an arbitrary formula A, fv(A) denotes the set of free variables occurring in A,

and A[x\t] represents A, in which the occurrences of variables x have been replaced

by terms t (with the usual renaming of bound variables, avoiding variable clashes).

2.1 Syntax

In this section, we give a presentation of LCC languages, where declarations are

replaced by replication of guarded processes. Indeed, replicated asks generalize usual

declarations to closures with environment represented by the free variables in the

ask (Haemmerlé et al. 2007). In LCC, we distinguish four syntactical categories, as

specified by the following grammar:

c ::= 1 | 0 | γ(t) | c⊗ c | ∃x.c | !c (constraints)
α ::= τ | c | (x)c (LCC-actions)
G ::= ∀x(c→ P ) | G + G (LCC-guards)
P ::= c | P |P | ∃xP | !G | G (LCC-processes)

Constraints are formulas built from terms, constraint symbols, and the logical

operators: 1 (true), 0 (false), the conjunction (⊗), the existential quantifier (∃), and

the modality (!). The three kinds of actions are the silent action τ, the input action

c, which represents a constraint for which a process waits, and the output action

(x)c (x being the variables extruded by the action), which represents the constraint

posted by a process. The order of the extruded variables in an output message is

irrelevant; hence, if y is a permutation of the sequence x, we will consider (x)c equal

to (y)c. In LCC processes, an overlined constraint c stands for asynchronous tell, | for

parallel composition, ∃ for variable hiding, → for blocking ask, + for guarded choice,

and ! for replication. As one can see, the syntax for LCC processes does not include

specific construction for the null process. Indeed, this latter can be emulated by the

trivial constraint 1, which represents no information.

For convenience, if x is empty, we will abbreviate ∀x(c→ P ) and (x)c as c→ P

and c, respectively. ∃xA will be a notation for ∃x1. . . ∃xnA if A is a constraint or an

LCC process, and x is the sequence of variables x1, . . . , xn. Moreover, for any finite

multiset of processes {P1, . . . , Pn}, we will use Πn
i=1Pi as abbreviations for P1| · · · |Pn.

As usual, the existential and universal quantifiers in constraints and LCC processes

are considered as variable binders. Conventionally, we consider the variables x as

free in any action of the form (x)c. We use ev(α) as an abbreviation for the extruded

variables of α (i.e., ev(α) = x, if α is an action of the form (x)c, ev(α) = ∅ otherwise).

LCC languages are parametrized by a (linear) constraint system, which is a pair

(C,!C), where C is the set of all constraints and !C is a subset of C×C, which

defines the nonlogical axioms of the system. For a given constraint system (C,!C),

the entailment relation (C is the smallest relation containing !C and closed by the

rules of intuitionistic linear logic. We will use the notation A)(CB to mean that

both sequents A (C B and B (C A hold.

In this paper, we are interested in studying classes of LCC processes obtained by

syntactical restrictions on the constraints that they can use. These restrictions will

simulate the power of the observer in LCC subcalculi and/or the visibility limitations
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Table 1. Labeled transition system for LCC

P ≡P ′ P ′ α−→Q′ Q′ ≡Q

P
α−→ Q

(cong)
P |G α−→ Q

P |(G+G′)
α−→ Q

(sum)

P
α−→C P ′ ev(α) ∩ fv(Q)=∅

P |Q α−→C P ′|Q
(C-comp)

P
α−→C Q y /∈ fv(α)

∃yP α−→C ∃yQ
(C-rest)

c (C ∃x(d⊗ e) ∃xd (C ∃x′d′ xx′ ∩ fv(c) = ∅
c′ (C ∃x(d′ ⊗ e) is a most general choice

c
(x′)d′−−→C e

(C-out)
P

(x)c−−→C Q

∃yP (yx)c−−→C Q
(C-ext)

c (C ∃y(d[x\t]⊗ e) y ∩ fv(c, d, A) = ∅
∃y(d[x\t]⊗ e) is a most general choice

c|∀x(d→ A)
τ−→C ∃y.(A[x\t]|e)

(C-sync) 1
c−→C c (C-in)

imposed by ad hoc scope mechanisms such as module systems. In practice, they will

be specified by means of two subsets of C that will limit the possible constraints a

process can respectively ask or tell. Formally, for all subsets D and E, we say that

a process P is D-ask restricted (respectively, E-tell restricted) if it is obtained by the

grammar for processes, where any ask ∀x(c→ P ) (respectively, any tell c) satisfies

(∃x.c) ∈ D (respectively, c ∈ E). More generally, we say that P is a DE-process if P

is both D-ask and E-tell restricted.

2.2 Operational semantics

In Table 1, we define, for a given constraint system (C,!C), the operational semantics

of LCC by means of a labeled transition system. As usual, in process algebras, this

semantics uses a structural congruence. This congruence, noted ≡C, is defined as the

smallest equivalence satisfying α-renaming of bound variables, commutativity, and

associativity for parallel composition, summation, and the following identities:

P |1 ≡C P ∃z1 ≡C 1 ∃x∃yP ≡C ∃y∃xP !P ≡C P |!P
c⊗ d)(Ce

c|d ≡C e

P ≡C P ′

P |Q ≡C P ′|Q
z /∈ fv(P )

P |∃zQ ≡C ∃z(P |Q)

P ≡C P ′

∃x.P ≡C ∃x.P ′

The side condition “c (C ∃y(d[x\t]⊗ e) is a most general choice” is a reasonable

restriction, which guarantees that the transition does not weaken constraints within a

process, as can do the logical entailment (for instance, we want to avoid entailment

such as !c (C c ⊗ 1). It can be defined as: for any constraint e′, all terms t′

and all variables y′ if c (C ∃y′(d[x\t′] ⊗ e′) and ∃y′e′ (C ∃ye hold, then so do

∃yd[x\t] (C ∃y′d[x\t′] and ∃ye (C ∃y′e′. In the constraint systems, we will consider

in this paper, such a deduction is always possible.

The notion of weak transition is defined classically:

(P
τ

=⇒C Q)
def⇐⇒ (P

τ−→
∗
C Q) (P

α
=⇒C Q)

def⇐⇒ (P
τ−→
∗
C

α−→C
τ−→
∗
C Q) (for α 2= τ)
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In the asynchronous context of this paper, it seems natural to restrict the

observation to outputs. As argued by Amadio et al. (1998), the intuition is that

an observer cannot know that a message he has sent has been actually received.

Moreover, since an observer has no way of knowing if the execution of a particular

process is terminated unless he receives a programmed acknowledgment, we will

disregard classical (L)CC observables, which deal with termination such as success

stores (Saraswat et al. 1991; Fages et al. 2001), and consider only accessible

constraints (Haemmerlé et al. 2007). Formally, for any set D ⊂ C, the set of

D-accessible constraints for a process P is defined as follows:

OD(P ) =
{

(∃x.c) ∈ D | there exists P ′ such that P
τ

=⇒C ∃x.(P ′|c)
}

The semantics we propose has important links with the one defined by Best

et al. (1997) but it is in some important aspects more general. In particular, the

language we consider provides replication and explicit operators for both universal

and existential quantifications, all of which are important features. Indeed, on the one

hand, replication and existential quantification are crucial to internalize declarations

and closures in processes (Haemmerlé et al. 2007); while, on the other hand, universal

quantification cannot be emulated by tell processes in every constraint system,

especially linear ones (Fages et al. 2001). Another difference is that our system uses

the asynchronous input rule as initially proposed by Honda and Yoshida (1995) for

the π-calculus. This rule, which allows an observer to do any input action at any

time, is not designed to be observed directly but rather to simplify bisimulation-based

definitions within asynchronous frameworks (Amadio et al. 1998).

Example 2.1 (Dining philosophers)

As suggested by Best et al. (1997), the dining philosophers problem has an extremely

simple solution in LCC. Here is an adaptation of the solution proposed by Ruet and

Fages (1997). The atomic constraints are frk(i) and eat(j) for i, j ∈ !, and (C is the

trivial entailment relation. Assuming the following encoding for the i th philosopher

among n, a solution for the problem consists of the process Πn−1
i=0

(
Pn
i |frk(i)

)
.

Pn
i = !

(
frk(i)⊗ frk(i+1 mod n) →

(
eat(i)|eat(i)→

(
frk(i)|frk(i+1)

)))

This solution suffers neither deadlock nor starvation problems: the system can

always advance to a different state, and at least one philosopher will eventually eat.

2.3 Logical semantics

In this section, we show that the results of logical semantics from LCC (Fages et al.

2001; Haemmerlé et al. 2007) can be shifted to the version of LCC we propose in this

paper. It will provide us with a powerful tool to reason about processes. It is worth

noting that the logical semantics proposed here is slightly different from the usual

one since it uses an additional conjunction with 4. As shown by the next theorem,

this modification is harmless when regarding accessible constraints, but yields a more

relevant notion of equivalence. (Refer to the discussion in Section 3.1.) Note that the

conjunction with 4 is not necessary in case of translation of a parallel composition
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and hiding since it commutes with ⊗ and ∃ (i.e., (A⊗4)⊗ (B ⊗4))(CA⊗ B ⊗4 and

∃x(A⊗4))(C∃x(A)⊗4).

Definition 2.2

Processes are translated into linear logic formulas as follows:

c† = c⊗4 (P |Q)† = P † ⊗ Q† (P + Q)† = (P † & Q†)⊗4
(!P )† = !(P †)⊗4 (∃xP )† = ∃xP † (∀x(c→ P ))† = ∀x(c " P †)⊗4

Theorem 2.3 (Logical semantics)

For any process P and any set D of linear constraints, OD(P ) =
{
d ∈ D | P † (C d†} .

3 Observational equivalence relations for LCC

In this section, we propose some equivalence relations for LCC processes.

An important property of processes related by equivalences is their dependence on

the environment. More precisely, two equivalent processes must be indistinguishable

by an observer in any context (i.e., equivalences must be congruences). Formal

contexts, written C[ ], are processes with a special constant [ ], the hole. Putting a

term P into the holes of a context C[ ] gives the term noted C[P ]. In practice, we

define all our congruences for evaluation contexts (Fournet and Gonthier 2005), a

particular class of contexts , where the hole occurs exactly once and not under a

guard nor a replication. These contexts, also called static contexts (Milner 1989),

describe environments that can communicate with an observed process and filter its

messages but can neither substitute variables of the process nor replicate it. In this

paper, without explicit statement of the contrary, all congruence properties will refer

to these contexts only. In particular, we will use the terminology “full congruence” to

refer to the congruence with respect to arbitrary contexts. In the framework of LCC,

DE-contexts and DE-congruence will refer to evaluation contexts and congruence

built from DE-processes.

3.1 Logical equivalence

Strictly speaking, the first notion of equivalence we consider is not observational,

but stems naturally from the logical semantics of the language. Indeed, the logical

semantics ensures that processes with logically equivalent translations have the same

accessible constraints. This notion of equivalence is specially interesting since it can

be proved using automated theorem provers such as llprover (Tamura 1998).

Definition 3.1 (Logical equivalence)

The (weak) logical equivalence on LCC-processes is defined as follows:

P ◦"C Q
def⇐⇒ P †)(CQ

†

We call this equivalence “weak” because it is strictly less discriminating than

the one we would obtain using usual logical semantics of LCC. Nonetheless, the

present definition is more relevant since it does not distinguish Girard’s exponential

connective, noted ! in Linear logic, from Milner’s replication, noted also ! in process
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algebras. Indeed, for any linear logic formula A, !A⊗A⊗4)(!A⊗4 holds, whereas

!A ⊗ A)(!A does not. The proposition we give next states that the use of 4 does

not break the congruence property of logical equivalence.

Proposition 3.2
Weak logical equivalence is a full congruence.

3.2 May-testing equivalence

The following equivalence relates to testing semantics (Nicola and Hennessy 1984).

We argue that this relation provides a canonical notion of observational equivalence

for LCC if considered within the “backtracking” execution paradigm. Indeed, it is

defined as the largest congruence that respects accessible constraints. For the sake

of generality, we defined may testing in a parametric way according to input/output

filters.

Definition 3.3 (May-testing equivalence)
Let D and E be two subsets of C. The may DE-testing 6DE is the largest DE-

congruence that respects D-accessible constraints, formally:

P 6DE Q
def⇐⇒ for any evaluation DE-context C[ ], OD(C[P ]) = OD(C[Q]).

Quite naturally, logical equivalence implies any may-testing equivalence relation.

One can use logical semantics and Proposition 3.2 to demonstrate it. It is worth not-

ing that the inclusion is strict. For instance, the processes c→ ∃x.P and ∃x.(c→ P ),

where x is free in P and not in c, are clearly equivalent with respect to any

may-testing equivalence but are not logically equivalent in linear logic.

Example 3.4
Contrary to the processes in Example 2.1, the following implementation for the ith

dining philosopher does not use atomic consumptions of constraint conjunctions:

Qn
i = !

(
frk(i)→

(
frk(i+1 mod n)→

(
eat(i)|eat(i)→

(
frk(i)|frk(i+1 mod n)

))))

Although the solutions built with such philosophers face deadlock and starvation

problems, the two implementations of philosopher cannot be distinguished by may

testing (i.e., for all i, n ∈ !, Pn
i 6CC Qn

i ). Note that in the “backtracking” execution

paradigm, there is no reason to distinguish such processes. Indeed, the possibility of

reversing executions makes deadlocks invisible from an external point of view.

3.3 Labeled bisimulation

In the framework of process algebra, bisimulation-based equivalence relations are the

most commonly used notion of equivalence. Contrary to the may-testing equivalences

and the barbed congruences presented in the following, the labeled bisimulation

proofs do not require explicit context closure. Indeed, as shown in Theorem 3.6,

congruence is not a requirement, but a derived property. Hence, the proofs can be

established by coinduction, by considering only few steps. As we have done for may

testing, our definition of bisimulation is parametrized by input/output filters.
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Definition 3.5 (Labeled bisimulation)
Let D and E be two subsets of C. An action is DE-relevant for a process Q if it is

either a silent action, or an input action in E, or an output action of the form (x)c

with (∃x.c) ∈ D and x ∩ fv(Q) = ∅. A symmetrical relation R is a DE-bisimulation

if for all P , P ′, Q, α such that PRQ, P
α−→C P ′, and α is DE-relevant for Q, there

exists Q′ such that Q
α
=⇒C Q′ and P ′RQ′. The largest DE-bisimulation is called

DE-bisimilarity and is denoted with ≈DE.

Theorem 3.6
For all sets of constraints D and E, the DE-bisimilarity is a DE-congruence.

3.4 Barbed congruence

Barbed bisimulation has been introduced by Milner and Sangiorgi (1992) as a

uniform way to describe bisimulation-based equivalences for any calculus. From

the definition of observables we give in Section 2.2, we derive a notion of barbed

bisimulation in the standard way. As with many other barbed bisimulations, the

obtained equivalence is too rough. For example, no barbed bisimulation distinguishes

between processes 1 and c→ P (with "C c), which exhibit clearly different behaviors

when they are put in parallel with a constraint stronger than c. For this reason,

we refine our bisimulation by enforcing congruence property following Fournet and

Gonthier (2005). The resulting relation yields an instance of the intuitive notion

of observational equivalence for LCC considered within the “committed-choice”

paradigm.

Definition 3.7 (Barbed congruence)
Let D and E be two subsets of C. A symmetrical relation R is a DE-barbed

bisimulation if for all P , P ′, Q such that PRQ, and P
τ−→C P ′, then there exists Q′

such that OD(P ) ⊆ OD(Q), Q
τ

=⇒C Q′ and P ′RQ′. The barbed DE-congruence, written
∼=DE, is the largest DE-congruence that is a DE-barbed bisimulation.

Clearly, barbed DE-congruence is more precise than may DE-testing equivalence.

It is worth noting that it is in general strictly distinct from logical equivalence.

For instance, c→ ∃x.P and ∃x.(c→ P ) are CC-barbed congruent but not logically

equivalent, while c→ d→ 1 and c⊗ d→ 1 are logically equivalent but not barbed

congruent. In general, direct proofs of barbed congruence are tedious since they

require explicit context closure. Fortunately, the barbed congruence coincides with

labeled bisimulation. Barbed congruence can therefore be established by simpler

proofs based on the coinductive principle of labeled bisimulation.

Theorem 3.8
For all sets of constraints D and E, ∼=DE and ≈DE coincide.

Example 3.9
The encoding of philosophers proposed in the two previous examples cannot be

distinguished by may testing. Nonetheless, their behavior can be separated by

barbed congruence. For instance, one can disprove P 3
1
∼=CC Q3

1. The following

implementation refines the one of Example 3.4 by allowing a philosopher to put

back the first fork he takes:
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Rn
i =!

(
frk(i)→

(
frk(i)+frk(i+1 mod n)→

(
eat(i)|eat(i)→

(
frk(i)|frk(i+1 mod n)

))))

Although, solutions built with this latter implementation of philosophers still

face starvation problems, the external behavior of these philosophers cannot be

distinguished anymore from the ones of Example 2.1, i.e., Pn
i
∼=CC Rn

i for any

i, n ∈ !.

4 LCC: a natural generalization of asynchronous calculi

In this section, we show that LCC language generalizes asynchronous π-calculus.

The asynchronous π-calculus is a variant of the π-calculus, where the emission is

nonblocking. In practice, it is obtained by a simple syntactical restriction prohibiting

output prefixing.

We briefly recall the syntax of the asynchronous π-calculus. Our notations and

definitions are mostly standard. For convenience, we will use a denumerable subset

of LCC variables as channel names. In this language, three syntactical categories

are distinguished, as specified by the following grammar:

α ::= τ | x̄y | x̄(y) | (y)x(y) (π-actions)
G ::= τ.P | x(y).P | !P (π-guards)
P ::= 0 | x̄y | P |P | νxP | G (π-processes)

A π-calculus process (or π-process for short) is one of the following: the null process

0, the silent prefix τ.P , the message reception x(y).P , the asynchronous emission x̄y,

the parallel composition of processes P |Q, the replication of processes !P , or the

scope restriction νyP .

In this section, we assume the notion of reduction, which we write −→π , the

may-testing equivalence, which we write 6π , the labeled bisimulation, which we

write ≈π , and the barbed congruence, which we write ∼=π , as defined by Fournet and

Gonthier (2005). We propose now a very simple interpretation of the asynchronous

π-calculus into LCC following the preliminary ideas of Soliman (2003).

Definition 4.1 (LCC interpretation of the asynchronous π-calculus)
Let Cπ be the trivial constraint system (i.e., a constraint system without nonlogical

axioms), based on the predicate alphabet Σc = {γ}. The LCC interpretation ! "π of

π-actions and π-processes is defined recursively as follows:

!τ"π = τ !xy"π = γ(x, y) !x̄(y)"π = γ(x, y) !(y)x̄(y)"π = (y)γ(x, y)

!0"π = 1 !x̄z"π = γ(x, z) !τ.P "π = 1→!P "π !x(y).P "π = ∀y(γ(x, y)→!P "π)
!!P "π = !!P "π !νxP "π = ∃x!P "π !P |Q"π = !P "π |!Q"π

It can be noted that this mapping is completely compositional and does not need

fresh names. Furthermore, the replacement of declarations by replicated asks leads to

a translation, where each construct of the π-calculus is mapped to a unique construct

of LCC. In fact, we can consider that this interpretation enforces a syntactical

restriction on LCC processes, by allowing synchronization only on constraints of

the form ∃y.γ(x, y). Formally, assuming Dπ = {1} ∪ {∃y.γ(x, y) | xy ∈ V ∧ x 2= y}
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and Eπ = {1} ∪ {γ(x, y) | xy ∈ V} , the codomain of ! "π is precisely the set of

DπEπ-processes. Furthermore, the following results ensure that there is a one-to-one

correspondence between transitions of the two formalisms.

Theorem 4.2

P
τ−→π Q if and only if !P "π

τ−→Cπ
!Q"π.

The theorem and the simplicity of the interpretation emphasize that the π-calculus

is syntactically and semantically a subcalculus of LCC. The only transition of LCC

that is not captured by the π-calculus semantics is the simultaneous emission of

messages (i.e., a constraint of the form γ(x1, y1) ⊗ · · · ⊗ γ(xn, yn)). We argue that

observing simultaneous emission is not relevant in asynchronous context, where the

observer has no way of knowing the order in which the messages have been emitted.

In fact, the LCC constraint system makes messages behave similarly to molecules

within the CHAM (i.e., messages can combine by “cooling” and dissociate by

“heating” (Berry and Boudol 1992)).

The following theorem states that may-testing equivalence, labeled bisimilarity,

and barbed congruence are instances of equivalence relations we defined for LCC.

Theorem 4.3

Let Dπ = {∃y.γ(x, y) | x ∈ V \ {y}} and D&
π = Dπ ∪ {γ(x, y) | xy ∈ V}. For all

π-processes P and Q, we have:

(i) P 6π Q if and only if !P "π 6DπCπ
!Q"π .

(ii) P ≈π Q if and only if !P "π ≈D&
πCπ

!Q"π .
(iii) P ∼=π Q if and only if !P "π ∼=DπCπ

!Q"π .

5 Observational equivalence relations for CC framework

5.1 Observational equivalence relations for classical CC

LCC languages are refinements of CC languages. Indeed, the monotonicity of the

CC store can simply be restored with the exponential connective ! of linear logic,

allowing duplication of hypotheses and thus avoiding constraint consumption during

synchronization (Fages et al. 2001). Hence, all the observational equivalence relations

we defined for LCC can be transposed effortless to classical CC. This is particularly

interesting since few attempts can be found in the literature to endow CC with

process equivalence techniques.

In order to further discuss properties of the resulting relations, we will not enter

into the details of a particular encoding of CC into LCC, but just assume that the

encoding of classical constraints respects two reasonable properties. We will say that

a linear constraint c is classical within the linear constraint system C (or C-classical

for short), if it can be both logically weakened (i.e., c (C 1), and deduced without

weakening the hypotheses (i.e., for any d, if d (C c ⊗ 4, then d (C c ⊗ d). We note

Cc the set of C-classical constraints. Assuming that processes deal with classical

constraints, we are able to prove some interesting laws. It must be underlined that

in the full generality of LCC none of them holds.
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Proposition 5.1
Let c, c′, d, and d′ be four C-classical constraints satisfying c (C c′ and d (C d′.

For any constraint e, all variables x not free in d, and all processes P and Q, the

following relations hold:

(1) ∀x
(
c→c′

) ∼=CC 1 (2) ∀x (c→e) ∼=CC ∀x
(
c→c⊗ e

)

(3) ∀x (c→e) ∼=CC ∀x
(
c→c⊗ e

)
(4)

((
c′→d

)
|
(
c→d′

)) ∼=CC
(
c′→d

)

(5) (d→∀x (e→P )) ∼=C ∀x (d⊗ e→P ) (6) ! (c→P ) ∼=CC (c→!P )
(7)

(
(c→P ) | (c→Q)

) ∼=CC
(
c→

(
P |Q

))
(8) (c→G + c→H) ∼=CC (c→ (G+H))

The proof of the propositions relies on the following lemma, that states a process

emits classical constraints without weaken itself.

Lemma 5.2
Let D and E be two sets of constraints, P and P ′ two processes, and c a C-classical

constraint. If P
c−→C P ′ then P ≡C P ′.

The may-testing relation 6Cc
coincides with an equivalence used by Saraswat

to connect operational and denotational semantics of CC (Saraswat et al. 1991).

Weaker versions of laws (1)–(6) are proved indirectly for this relation. Saraswat

has also defined a bisimulation semantics for CC (Saraswat and Rinard 1990).

The bisimulation he proposed is strong (i.e., it is based on
α−→C instead of

α
=⇒C),

and is, therefore, maybe too discriminative for an asynchronous framework such as

CC. For instance, none of the above laws, except (2), can hold for any reasonable

notion of strong bisimulation. This difference aside, Saraswat’s bisimulation seems

still too discriminative. Indeed, on contrary to ∼=CcCc
, it distinguishes processes

like (x<1→c) | (x<2→c) and (x<2→c) | (x<2→c) (where x < y is the usual

arithmetic inequality constraint), whereas there is no reasonable justification to do

so (in both strong and weak case).

5.2 Observational equivalence relations for CHR

The CHR programming language (Frühwirth 2009) is a multiset rewriting language

over first-order terms with constraints over arbitrary mathematical structures.

Initially introduced for programming constraint solvers, CHR has evolved since

to a programming language in its own right.

5.2.1 CHR syntax

The formalization of CHR assumes a language of built-in constraints containing the

equality =, false, and true over some theory CT and defines user-defined constraints

using a different set of predicate symbols. We require the nonlogical axioms of

CT to be formulas of the form ∀(# → ∃Z.$), where both # and $ stand for

possibly empty conjunctions of built-in constraints. Constraint theories satisfying

such requirements correspond to Saraswat’s simple constraints systems (1991).

A CHR program is a finite set of eponymous rules of the form (r @ %\& ⇐⇒ ' |
#,(), where %, & are multisets of user-defined constraints, called kept head and

removed head, respectively, ' is a conjunction of built-in constraints called guard, #
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Table 2. Translation from CHR to LCC

Built-in const. (c1 ∧ · · · ∧ cn)× = !c1 ⊗ · · ·⊗!cn
CHR const. (d1, . . . , dn)× = d1 ⊗ · · · ⊗ dn
Rules r @ (%\& ⇐⇒ ' | ()× = !∀(%×⊗&×⊗'× → ∃Y (%×⊗'×⊗(×))
Program {r1, . . . , rn}× = r×1 | · · · |r×n
State 〈); #;X〉◦ = ∃ ()×⊗#×)

where Y =
(
fv(',() \ fv(&,%)

)
and Z =

(
fv(),#) \ X

)
.

is a conjunction of built-in constraints, ( is a multiset of user-defined constraints,

and r is an arbitrary identifier assumed unique in the program called rule name.

Rules, where both heads are empty are prohibited. The empty guard true can be

omitted together with the symbol |. Similarly, empty kept heads can be omitted

together with the symbol \. Propagation rules (i.e., rules with empty removed head)

can be written using the alternative syntax: r @ % =⇒ ' | #,(. A state is a tuple

〈#; );X〉, where # is a multiset of CHR constraints, ) is a conjunction of built-in

constraints, and X is a set of variables.

5.2.2 From constraints handling rules to LCC

In a recent paper, Martinez (2010) has proposed a translation from CHR to a

subset of LCC (and vice versa) that preserves language semantics with strong

bisimilarity. This result allows us to transpose straightforwardly our different notions

of observational equivalence to CHR. To the best of our knowledge, it is the first

attempt to provide CHR with such equivalence techniques.

In Table 2, we recall Martinez’s LCC interpretation of basic CHR constructs. A

CHR state σ together with a CHR program P are interpreted as the process (σ×|P×).

The constraint theory CT is translated using a standard translation of intuitionistic

logic into linear logic. More precisely, in the remainder of this section, (C,!C) is the

constraint system, where C is built from the built-in and CHR constraints and !C
is defined by : (∀(# → ∃$)) ∈ CT if and only #× (C ∃X$×.

Due to space limitation, we do not recall the operational semantics of CHR,

but use translations of CHR as particular instances of LCC processes. Thanks to

Martinez’s semantics preservation theorem (2010), we can do so without loss of

generality as long as the CHR abstract semantics is concerned. In fact, we know

that for any CHR state σ and any CHR program P, (σ×,P×)
τ

=⇒C Q if and only

if σ can be rewritten by P (with respect to CHR abstract semantics) to a state σ′

subject to Q ≡ (σ′×,P×). For the sake of conciseness, we will write σ >→P σ′ for

(σ×|P×)
τ

=⇒C (σ×|P×).

5.2.3 Confluence up to

Confluence is an important property for CHR programs, which ensures that any

computation for a goal results in the same final state (i.e., modulo the structural

equivalence ≡C), no matter which of the applicable rules are used. Here, we propose

a straightforward extension, called confluence up to, where structural equivalence
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is replaced by an observational one. The resulting notion differs from the so-

called observable confluence (Duck et al. 2007) in the following sense: observable

confluence consists of proving that a program is confluent on an interesting subset

of the states, while confluence up to consists of proving that a (possibly nowhere

confluent) program is apparently confluent to an external observer.

Definition 5.2 (Confluence up to)

Let D and E be two sets of linear constraints. A CHR program P is confluent up to
∼=DE if whenever σ >→∗

P σ1 and σ >→∗
P σ2, there exist σ1 and σ2 such that σ1 >→∗

P σ′1,

σ2 >→∗
P σ′2, and (σ′×1 |P×) ∼=DE (σ′×2 |P×).

The following proposition states that CHR transitions with respect to a confluent

program are not observable by any barbed congruences observing only classical

constraints. The choice of limiting observation to classical constraints makes sense

since CHR programs are usually embedded in a (host language) module that

prohibits an external observer synchronizing on internal CHR constraints; the

observer can only post CHR constraints using the module interface. As it is the case

for Proposition 5.1, the proof relies on Lemma 5.2.

Proposition 5.4

Let Cc be a set of C-classical constraints and D a set of linear constraints. If P is

confluent up to ∼=CcD, then (σ×|P×)
τ

=⇒CP implies (σ×|P×)∼=CcDP .

As corollary, we obtain that barbed congruences and may-testing equivalences

coincide when they observe only classical (i.e., built-in) constraints. This supports the

intuitive idea that a confluent program has the same meaning in the “backtracking”

and the “committed choice” execution paradigms—bearing in mind that both

relations are the respective instances of observation equivalences for these paradigms.

Corollary 5.5

Let Cc be a set of C-classical constraints. Let P and P′ be two CHR programs

confluent up to ∼=CcD. For all states σ and σ′, (σ×|P×) 6CcD (σ′×|P′×) if and only if

(σ×|P×) ∼=CcD (σ′×|P′×).

5.2.4 Application

Observational equivalences are commonly used to prove correctness of a realistic

(or efficient) implementation with respect to a given specification. See, for instance,

numerous examples in Milner’s book (1989). Here, we illustrate such a use in

the context of CHR. For instance, let us assume given the following specification

program Ps:

symmetry @ eq(x, y) =⇒ eq(y, x)
transitivity @ eq(x, y), eq(y, z) =⇒ eq(y, z)
decompose @ eq(t(xf, xl , xr), t(yf, yl , yr)) =⇒ xf = yf, eq(xl , yl), eq(xr, yr)

One can be easily convinced that this program specifies a Rational Terms solver

limited to labeled binary trees: a binary node is represented by a term t(xf, xl , xr),

where xf is a label (or functor), and xl , xr are the left and right subtrees, respectively.
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Here, we aim at providing a program observationally equivalent to Ps that is usable

in practice. As argued previously, since a CHR solver is typically isolated in a host

module, it is reasonable to restrict the power of the observer such that it cannot

observe CHR constraints and can post only public (or exported) CHR constraints.

Hence, we choose Cc and Ceq
c = Cc ∪ Ceq (where Ceq is the set of constraints of the

form eq(s, t)) as input and output filters, respectively. Since CHR is a committed

choice language, we have to provide a program CcCeq
c -barbed congruent with Ps.

A possible implementation for the Rational Terms problem has been proposed by

Frühwirth (2009). This program uses extra-logical constraints such as var/1. Here,

we prefer writing pure programs since the status of the extra-logical constraints is not

firmly defined in the theoretical semantics. For this reason, we propose the program

Pi given below. To solve the problem, this program roughly emulates Prolog’s

unification algorithm (Äıt-Kaci 1991)—a constraint eq(t, s) encodes an equations

to be solved, and a constraint x # t encodes the unification (or the binding) of a

variable x with a term t. We argue that Pi is more realistic than Ps since it terminates

under the refined semantics of CHR (Duck et al. 2004)—which selects rules in the

syntactical order—whereas Ps has no terminating derivation.

reflex @ eq(x, x) ⇐⇒ true.
decompose @ eq(t(xf, xl , xr), t(yf, yl , yr)) ⇐⇒ xf = yf, eq(xl , yl), eq(xr, yr).
orient @ eq(t(xf, xl , xr), y) ⇐⇒ eq(y, t(xf, xl , xr)).
deref left @ x # z\eq(x, y) ⇐⇒ eq(z, y)
deref right @ y # z\eq(x, y) ⇐⇒ eq(x, z)
unif @ eq(x, y) ⇐⇒ x # y.

Unfortunately, Pi is not CcCeq
c -barbed congruent with the specification Ps. For

instance, for any σs subject to 〈eq(x, t(a, y, z)), eq(x, t(a, y, z)), true, ∅〉 >→∗
Ps

σs, we have

false ∈ OCc (σ×s |P×
s ), but for σi = 〈x # t(a, y, z)), x # t(a, y, z)), true, ∅〉, we have

〈eq(x, t(a, y, z)), eq(x, t(a, y, z)), true, ∅〉 >→∗
Pi

σi and false /∈ OCc (σ×i |P×
i ). One simple idea to

circumvent this problem is to “complete” Pi (Abdennadher and Frühwirth 1998)

(i.e., to make it confluent by adding new rules). For instance, one can add at the

end of Pi the following rules. Intuitively, these rules “repair” states that do not

respect the binding invariant (i.e., only variables are bound, only once, and not to

themselves), which is normally preserved by the refined semantics—as far as the

observer do not performed built-in unification.

repair1 @ t(xf, xl , xr) # y ⇐⇒ eq(y, t(xf, xl , xr)).
repair2 @ x # y\x # z ⇐⇒ eq(x, z).
repair3 @ x # x ⇐⇒ true.

The resulting program P&
i is confluent up to ∼=CcCeq

c
and CcCeq

c -barbed congruent

with Ps. The proof can be sketched as follows: assume the function ( )eq defined on

atomic constraints as ceq = eq(t, s) if c is of the form (t # s), or ceq = c otherwise.

Consider the relation R = {(P×|c), (P×|ceq)|c ∈ C}, where ()eq is extended to nonatomic

constraints in the straightforward way. First, we prove by coinductive reasoning on

the transition from (P×|c) that R is a CcCeq
c -bismulation, or thanks to Theorem 3.8,

a CcCeq
c -barbed congruence. Then, by using a straightforward extension of strong

confluence for abstract rewriting system (Huet 1980), we show that P&
i is confluent
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up to R, i.e., confluent up to ∼=CcCeq
c
. Finally, we demonstrate by a structural induction

on the CcCeq
c -contexts that P&

i 6CcCeq
c

Ps, or thanks to Corollary 5.5, P&
i
∼=CcCeq

c
Ps.

Therefore, P&
i is a correct implementation of Ps. But, since we have proven

that P&
i is also confluent, we know it can be interpreted under any rule selection

strategy (in particular, under the one of the refined semantics) without loosing

completeness. For this reason, and because the “repair” rules are never called under

the refined semantics as long as the observer does not performed built-in unification,

Pi interpreted in the refined semantics is also a correct implementation of Ps. Note

that Frühwirth’s Rational Terms also cannot deal with built-in unifications because

of the nonmonotonicity of extra-logical constraints, while P&
i can.

To the best of our knowledge, the only existing notion of equivalence for CHR

programs that can be related to observation equivalences is the so-called operational

equivalence (Abdennadher and Frühwirth 1999). This notion means that given two

confluent and terminating programs, the computation of a query in both programs

terminates in the same state. Nonetheless, we argue that observable equivalences

are more general than operational equivalence since they can also be applied to

programs such as P∗
i , which is nonterminating, nonconfluent, and whose final states

contain distinct CHR constraints

6 Conclusion

In the first part of this paper, we have defined and investigated a structural

operational semantics for LCC with quantified ask and replication. In light of

this new semantics, we have proposed and studied several observational equivalence

relations. To the best of our knowledge, it is the first attempt to provide LCC

with such tools, even though it was identified early on as a worthwhile goal of

investigation by Ruet (Ruet and Fages 1997).

In the second part of this paper, we related LCC and its observational equiva-

lence to asynchronous process and CC frameworks. In particular, we have shown

that the asynchronous π-calculi can be viewed as subcalculi of LCC. We have

shown, moreover, that some of the usual observational equivalence relations defined

for this calculus are particular instances of the ones we have defined for LCC.

Finally, we have shown that LCC observational equivalences can be transposed

straightforwardly to classical CC and CHR. We have demonstrated some interesting

properties of the resulting equivalences. In particular, we have studied the relation

between barbed-congruence and confluence of CHR programs. We also illustrated

how barbed congruence can be used to prove realistic implementation constraint

solvers with respect to a simple specification.

An immediate further work could be to investigate the properties of the obser-

vational equivalence relations presented here. For instance, establishing sufficient

conditions to ensure that observational equivalences are full congruences would

be interesting. It should also be worthwhile to formally compare LCC with more

exotic asynchronous calculi, such as hybrid process calculi with constraints (Dı́az

et al. 1998; Parrow and Victor 1998; Gilbert and Palamidessi 2000; Buscemi and

Montanari 2007) or extended calculi with security primitives (Abadi et al. 2000),
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where the linear constraint system would play a more prominent role. Finally, the

further investigation of CHR bisimulation seems promising.
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