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Abstract 

Land-atmosphere feedback, by which precipitation-induced soil moisture anomalies affect 

subsequent precipitation, may be an important element of Earth's climate system, but its 

very existence has never been demonstrated conclusively at regional to continental scales. 

Evidence for the feedback is sought in a 50-year observational precipitation dataset covering 

the United States. The precipitation variance and autocorrelation fields are characterized 

by features that agree (in structure, though not in magnitude) with those produced by 

an atmospheric general circulation model ( AGCM) . Because the model-generated features 

are known to result from land-atmosphere feedback alone, the observed features are highly 

suggestive of the existence of feedback in nature. 

1 Introduction 

Climate scientists have long speculated that anomalous wet periods may sustain themselves 

through land-atmosphere feedback, by which wetter-than-normal soil from a precipitation 

event maintains higher-than-normal evaporation in subsequent weeks, which in turn in- 
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duces additional precipitation. Similarly, through feedback, an anomalous lack of rain may 

induce lower evaporation rates, which in turn may reduce subsequent precipitation. Land- 

atmosphere feedback, if it exists and is well understood, could contribute to the skill of 

long-term weather forecasts, including forecasts of droughts or floods. 

The full feedback cycle (for convenience, discussed here in terms of wet anomalies) can be 

split into three parts: the wetting of the soil by precipitation, the enhancement of subsequent 

evaporation by the wetted soil, and the enhancement of precipitation by the evaporation. 

The first part is straightforward and intuitive; that it occurs in nature is indisputable. The 

second part, the increase of evaporation following a soil wetting, is also intuitive and is 

directly supported by various local evaporation meaurements (e.g., Cahill et al, 1999). It 

is indirectly supported by the presence of negative precipitation-temperature correlations 

that span much of the United States (Huang and Van den Do01 [1993]), the argument being 

that wet soil induced by high precipitation leads to a higher surface latent heat flux at the 

expense of the surface sensible heat flux. The lower sensible heat flux in turn induces cooler 

near-surface air temperatures. 

The third part of the cycle, the impact of evaporation (and thus soil moisture) on pre- 

cipitation, is by far the most difficult to demonstrate with data. Observational evidence 

at the local scale is highly limited (e.g., Barnston and Schickedanz’s (1984) study of irri- 

gation effects), and it can be subject to contradictory interpretation (Findell and Eltahir, 

1997; Salvucci et al., in press). Observational evidence at the regional to continental scale 

simply does not exist. Although soil wetness anomalies definitely affect precipitation in 

atmospheric general circulation models (AGCMs) (Shukla and Mintz, 1982; Oglesby and 

Erickson, 1989; Koster and Suarez, 2000; Dirmeyer et al., 2000), these studies beg an ob- 

vious question: does the simulated responsiveness of the atmosphere reflect reality, or is it 

just an artifact of model deficiencies? 

Because of the third part of the feedback cycle, definitive proof that the full cycle occurs 
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in nature is still lacking. We are limited by a paucity of long-term, spatially extensive soil 

moisture and evaporation data and by the difficulty of identifying causality in a highly inter- 

connected system. (Note that isolating the impact of feedback from background noise would 

be especially difficult if any existing feedback is inherently weak.) Providing such definitive 

proof is beyond the scope of this paper. Instead, we use AGCM results in conjunction with 

observations to provide some new, indirect evidence that the full feedback cycle occurs in 

nature. The approach, reminiscent of that used by Huang and Van den Do01 (1993) to study 

relationships between precipitation and surface temperature, is simple. Data from a pair of 

AGCM experiments, one in which feedback is allowed and one in which it is disabled, are 

compared to isolate a unique signature of feedback on the AGCM's long-term precipitation 

record (section 2). The signature is then sought within a recently compiled comprehensive 

50-year dataset of precipitation measurements over the United States (section 3). 

2 Analysis of AGCM Precipitation 

2.1 Structure of Correlation Fields 

Statistics from four parallel global simulations with the NASA Seasonal-to-Interannual Pre- 

diction Project AGCM, each simulation spanning the period 1948-1997, were averaged to 

produce the plots shown in Figure la. (The four simulations differed only in their ini- 

tial conditions.) The first and second plots show respectively the mean (in mm day-') 

and variance (in mm2 day-2) of July precipitation. The third plot shows the mean, for 

July, of the correlations between the precipitation in one pentad (5-day period) with the 

precipitation two pentads later. That is, it shows the average of the correlations between 

precipitation amounts in 1-5 and 11-15 July, between those in 6-10 and 16-20 July, between 

those in 11-15 and 21-25 July, and between those in 15-20 and 26-30 July. Presumably, if 

land-atmosphere feedback contributes to the prolongation of rainy periods and dry periods, 

then this prolongation should be reflected in the temporal correlations (and, as a result, 
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in the monthly variances). We consider correlations between twice-removed pentads rather 

than between consecutive pentads because the latter correlations are overly influenced by 

storms that straddle pentads. 

The AGCM runs examined in this study used a grid resolution of 2"x 2.5". Because 

computed correlations depend in part on the spatial scale considered, each pentad 2" x 2.5" 

precipitation field was smoothed with a three point filter in both the meridional and zonal 

directions prior to computing the correlations - the precipitation examined at each grid 

cell is actually a mix of that grid cell's precipitation and the precipitation in immediately 

adjacent grid cells. If the raw AGCM data were analyzed without aggregation or smoothing, 

an impact of soil moisture on precipitation 300 km away would not be picked up by the 

correlation calculation, even though this remote impact fully constitutes feedback. The 

choice of a 3-point filter (rather than either a 5-point filter or no smoothing at all) was 

a compromise between the desire to maximize the spatial scale considered and the desire 

to identify geographical variations in the structure of the correlation field. For consistency 

between the plots, the monthly mean and variance fields were also computed from the 

smoothed data. Thus, all plotted data have an intrinsic spatial scale of about 500 km. 

The patterns seen in the variance and autocorrelation plots are striking. In the variance 

plot, a strong maximum is seen in the center of the country. In'the correlation plot, a 

wide swath of high correlation begins at the Gulf Coast and continues up the center of 

the country, eventually veering west to the Pacific Northwest. Correlations in the east and 

southwest are very small. 

An additional 50-year simulation was performed with the AGCM in which land-atmosphere 

feedback was artificially disabled. In this simulation, the evaporation efficiency at the 

land surface was prescribed from predetermined climatological seasonal cycles, following 

the approach of Koster et al. (2000). Evaporation efficiency is defined here as the ratio of 

evaporation to potential evaporation, where potential evaporation is the maximum rate at 
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which the atmosphere can receive water (as controlled by near-surface humidity gradients, 

wind speed, etc.). The prescription of evaporation efficiency in this simulation produced the 

same mean seasonal cycles of evaporation as were produced in the four control simulations 

without allowing wetter-than-usual soil to produce higher-than-usual evaporation rates. Sea 

surface temperatures varied interannually, as they did in the control simulations. 

As shown in Figure lb,  this no-feedback simulation failed to produce the strong maximum 

of variance in the central United States, and it produced very low precipitation correlations 

everywhere. A comparison of Figures l a  and b provides proof that in the AGCM, the 

pronounced maximum of variance and the swath of high correlations seen in Figure l a  do 

not result from SST anomalies, internal atmospheric persistence, or other such factors - 

they result from land-atmosphere feedback alone. In other words, at least for the AGCM’s 

climate, these two features constitute a “unique signature” of the feedback. 

2.2 Partial Explanation of Statistical Fields 

The location of the correlation swath can be explained, at least in part, by considering the 

second part of the feedback cycle: the modification of evaporation by soil moisture. Here 

we employ a technique described by Koster and Suarez (2001). For every July in a multi- 

decade simulation with the same modeling system, we compute the ratio XE/R,,t, where E 

is monthly evaporation, R n e t  is the net radiation, and X is the latent heat of vaporization. 

We then regress this ratio (a surrogate for evaporation efficiency) against the concurrent 

monthly soil water content (averaged over the soil column, and expressed as a degree of 

saturation) to obtain a slope c. This slope efficiently, though approximately, characterizes 

the sensitivity of XE/Rnet to soil moisture variations. The product &net, where the overline 

represents a climatological mean, is in turn a measure of the sensitivity of evaporation itself 

to soil moisture variations. 

- 

Clearly, if evaporation does not respond to a change in soil moisture (i.e., if c z  is small), 
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then the feedback cycle would be disrupted. A map of c G ,  as derived from AGCM 

data, shows that evaporation sensitivity is indeed relatively small in both the eastern and 

southwestern United States, fully consistent with the low correlations seen in these two 

regions in Figure la. Indeed, the spatial pattern of cRnet is very similar to that of correlation 

in Figure la. Thus, variations in evaporation’s sensitivity to soil moisture can explain in 

large part the spatial structure of the simulated precipitation correlation field. 

- 

The low sensitivities in the eastern and southwestern United States, by the way, are not 

unexpected. In the east, evaporation is limited by the atmosphere’s ability to receive water 

rather than by soil water availability; evaporation there is “atmosphere-controlled” . Thus, 

in the east, an excess or a small deficit of soil water will not affect the evaporation rate. 

In the southwest, evaporation sensitivity to soil moisture, particularly deeper soil moisture, 

which can retain anomalies from week to week, is limited by an absence of transpiration 

caused by sub-wilting moisture levels and minimal vegetation cover. 

The third part of the feedback cycle, the modification of precipitation by evaporation, 

also affects the correlation fields. A map of convective available potential energy (CAPE) 

indicates, as expected, low values of CAPE in the southwestern United States. The low 

values imply a stable atmosphere that is not likely to promote convection when the near- 

surface air is modified by evaporation. Thus, in the southwest, feedback and the associated 

temporal correlations in precipitation are further inhibited. Atmospheric stability does not 

similarly inhibit feedback in the central and eastern United States, where CAPE values are 

much higher. 

As for the precipitation variance in Figure la, note that the monthly variance of any quan- 

tity will typically increase with both an increase in the mean and an increase in sub-monthly 

temporal correlation (van den Do01 and Chervin, 1986). Variances in Figure la are large 

wherever the correlations are large, except where the precipitation means are low (particu- 

larly in the northwest). The result is a pronounced maximum for the variance. 
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This generalization of the AGCM results is a bit of an oversimplification, since other factors 

also affect the shape of the AGCM's variance and correlation fields in Figure la. The 

discussion simply serves to demonstrate that, at least to first order, the structures of the 

simulated fields in Figure l a  are intuitively reasonable. We may indeed expect the same 

physical features (atmosphere control rather than soil control over evaporation, lack of 

transpiration, and low CAPE) to limit feedback in nature, in roughly the same regions. 

3 Analysis of Observed Precipitation 

3.1 Description of Dataset 

The precipitation dataset used in this study is the multidecadal (1948-1997) daily precipi- 

tation reanalysis of Higgins et al. (2000). The input data for the reanalysis was a Unified 

Raingauge Database (URD) for the U.S., which consists of daily raingauge reports from 

multiple sources in the U.S., including the River Forecast Centers (about 7000 sites per 

day), the National Climatic Data Center (NCDC) daily cooperative network (about 6000 

sites per day) and the NCDC Hourly Precipitation Network (HPN) (about 2500 sites per 

day; aggregated into daily accumulations). Several types of quality control were applied 

to the daily gauge data, including a duplicate station check, a buddy check, a standard 

deviation check, and a NEXRAD radar QC (see Higgins et al. 2000 for details). 

1" The daily precipitation data were gridded at a horizontal resolution of io latitude by ;I 

longitude over the domain 140"W - 60"W, 20"N - 60"N using a Cressman (1959) scheme with 
I 

modifications (Glahn et al. 1985; Charba et al. 1992). An intercomparison of precipitation 

analyses produced by Cressman (1959), Barnes (1964), Shepard (1968) and 01 (Gandin, 

1963) schemes revealed only minor differences in the analyses, presumably due to a sufficient 

data density over the U.S. (about 15500 sites per day). For full consistency with the 

treatment of the AGCM data, the io x io daily dataset was aggregated in space and time 

into a 2" x 29" pentad dataset, and the horizontal fields were subsequently smoothed in 
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each direction with the 3-point filter. 

3.2 Structure of the Observed Autocorrelation Fields 

Figure IC presents the mean and variance of July precipitation and the correlation between 

twice-removed precipitation pentads in July, as determined from the observational dataset. 

The observations show that the AGCM overestimates precipitation in the eastern United 

States and strongly overestimates both precipitation variance and temporal correlation in 

the center of the country. Because the correlations are solely induced by feedback in the 

AGCM, we can conclude that feedback in the AGCM is excessive relative to the level of 

feedback in nature. 

Despite these deficiencies, Figure IC does show a pronounced maximum of precipitation 

variance in the center of the country, in a location very close to that predicted by the 

AGCM. In addition, the swath of significant correlation in July, though weaker and thinner, 

appears in essentially the same location as the swath in the AGCM. This co-location is 

highly suggestive of the existence of land-atmosphere feedback in nature, since, again, these 

features in the AGCM result solely from the feedback. 

Other potential contributors to the observed signal are worth considering. A long-term 

trend in the precipitation data, for example, could lead to increases in both variance and 

autocorrelation. We repeated the observational analysis above using detrended precipita- 

tion data, Le., data in which the linear temporal trend (as determined from a least-squares 

regression analysis) was removed from the precipitation time series at each grid cell. Re- 

sults (not shown) are essentially the same as those shown in Figure IC. Determining the 

relevance of still other contributors, such as monsoon dynamics, is not as straightforward; 

nevertheless, we can say that if these other contributors produce the observed statistical 

structures without help from feedback, then any agreement seen between Figures l a  and IC 

is entirely coincidental. 



AGCM-generated correlations in June (not shown) are weak, and those in August are fairly 

strong, though not as strong as in July. (Accordingly, the product CG is generally largest 

in July.) Correlations inherent in the “no-feedback” simulation and in the observational 

data are essentially negligible in both June and August. Thus, on the one hand, the June 

and August results lend further support to the conclusion that the AGCM overestimates the 

strength of land-atmosphere feedback. On the other hand, though, we note that July is the 

period of maximum correlation for both the AGCM and the observations. The agreement in 

the timing of the maximum is either an additional piece of evidence for feedback in nature 

or is yet another coincidence. 

4 Discussion 

Given the potential importance of land-atmosphere feedback for improving short- and long- 

term weather predictions, a demonstration of the existence of feedback in nature would 

be of tremendous value. Although the evidence presented here is not conclusive, it is at 

least highly suggestive, particularly because the position of the variance and correlation 

structures for both the model and the observations make intuitive sense in the context of 

what controls feedback (section 2.2). The desired definitive evidence may need to wait sev- 

eral decades for the amassing of large-scale soil moisture and evaporation data. Note that 

the direct measurement of large-scale evaporation is a particularly difficult problem, and 

programs for its measurement are not currently in place. Alternatively, definitive evidence 

of feedback might be obtained much sooner through a detailed analysis of the impact of 

soil moisture initialization (as determined in a full data assimilation system) on the skill of 

short- or long-term precipitation forecasts. 
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Figure Captions 

Fig. 1 a. Mean precipitation (in mm day-’), variance of precipitation (in mm2 day-2), 

and correlations between twice-removed pentad precipitation amounts for July, as 

produced by the AGCM. b. Same as (a), but for an AGCM run in which land- 

atmosphere feedback is artificially disabled. c. Same as (a), but for observational 

precipitation data. All correlations shown are significant at the 90% level or higher. 
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a. JULY PRECIPITATION, AGCM 
Correlation (pentads, 

twice removed) Mean Variance 

b. JULY PRECIPITATION, AGCM (NO FEEDBACK) 
Correlation (pentads, 

Mean Variance twice removed) 

c. JULY PRECIPITATION, OBSERVATIONS 
Correlation (pentads, 

Mean Variance twice removed) 

Figure 1: a. Mean precipitation (in mm2 day-2), variance of monthly precip- 
itation (in mm2 day-2) , and correlations between twice-removed pentad pre- 
cipitation amounts for July, as produced by the AGCM. b. Same as (a), but 
for an AGCM run in which land-atmosphere feedback is artificially disabled. 
c. Same as (a), but for observational precipitation data. All correlations 
shown are significant at the 90% level or higher. 
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“Observational Evidence tha,t Soil Moisture Variations Affect Precipitation”, by 
R. Koster, M. Suarez, W. Higgins, and H. \?an den Do01 

Statement of Significance 

Q ZJESTION: .?llthoiigh hydrologists and climatologists often assume that preci- 
pit at  ion- ir id I iced soil moist lire a nornalies C a l i  infi uenw subsequent precipitation, 
they have never been able to prove this on the large scale with observational 
data. Although direct evidence is indeed impossible to obtain, can we find some 
indirect evidence in the available observations? 

APPROACH: Two simulations were performed with an atmospheric general 
circulation model: one tha,t allowed soil moisture to affect precipitation, and 
one thai. did not. A comparison of the two simulations identified some unique 
signatures (of >oil moisture impact in thc simulated precipitation data. The same 
signatures were sought in a 50-year observaiationai precipitation dataset covering 
the United States. 

SIGNIFICAVCE AND IMPLICATIONS OF FINDINGS: The “soil moisture 
impact” signatures are not as strong in the observational data as they are in 
the model results, suggesting that the model overestimates the soil moisture - 
precipitation connection. Nevertheless, the signatures do appear in the observa- 
tions. Thus. we have found, for the first time ever, indirect large-scale evidence 
supporting the idea that, soil moisture variations do influence precipitation in 
the real i t o y l < l .  

RELATIONSHIP TO ESE SCIENCE PLAN 

The soil moisture - precipitation connection is key to many science investiga- 
tions that address ESE themes of (1) seasonal-to-interannual climate prediction, 
(2) changes in long term climate, and (3) landcover and land use change. 



Popular Summary: 

“Obscrvational Evidence that Soil lloisture Iariations Affect Precipitation”, by R. 
Kostcr, M. Siiarc~,  W. Higgins, and H. Van den Do01 

Climate scientisr.s have long speculat,ed tha.t wet periods may sustain themselves 
through laritl-at,mospl-iere feedba.cli, by which ’ wt,t,er- than-normal soil from a precip- 
iti-ttion event, rnaintains higher-than-norma,l evapora,tion in subsequent weeks, which 
in turn induces atldi tional precipitation. Similarly, through feedback, an anomalous 
lack of rain may iiiduce lower evaporation rates, which in turn may reduce subsequent 
precipitation. Lantl-atmosphere feedback, if it exists and is well understood, could 
contribut,e to  the skill of long-term weather forecasts, including forecasts of droughts 
or floods. 

Important as it is, the existence of this fettlback has never been demonstrated 
conclusively with observational data,  largely due to a lack of large-scale soil moisture 
and evaporation measurements that  span decades. Any evidence of feedback must be 
indirect and circurristantial. In this paper we search for such indirect evidence in a 
50-year observational precipitation dataset covering the TJnited States. 

The a,pproach ii-lvolves tho use of an atmospheric general circulation model. Two 
siniiilations tv-ere pcrfarnied with the AGCRI: one t,hat allowed soil moisture t,o affect 
precipitation, and one that  did not. By comparing the precipitation fields generaked 
by the two simiilations, we could identify some uniqiie signat,iires of land-at.mophere 
feedback. These ;a me signatures were t,hen sought in the observational precipitation 
cia t ?LSC t . 

The feedback signatures were not as strong in the observational data as they were 
in the model results, suggesting that the model overestimates the soil moisture - pre- 
cipitakion connection. Nevertheless, the signatures did appear in the observations. 
Thus, for the first t,ime ever, we have indirect large-scale evidence that supports the 
existence of Iand-atinosphere feed back, evidence that supports the idea that  soiI mois- 
ture variations do influence precipitation in the real world. 
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