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1. Introduction

Inflation has been a very successful paradigm for understanding otherwise puzzling aspects
of big bang cosmology [1, 2]. It can naturally solve the flatness, homogeneity and monopole
problems that otherwise seem to require a very high degree of fine tuning for the initial
state of our universe. Furthermore, inflation generically predicts almost scale invariant
Gaussian density perturbations [3], consistent with experimental observations of the
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Observational signatures and non-Gaussianities of general single-field inflation

cosmic microwave background. Future experiments can constrain and distinguish between
inflationary models in several ways.

In the next few years, we can expect to see increasingly precise determination of the
scalar spectral index ns and its running5. Planck will also lower bounds on the tensor-to-
scalar ratio r well into the regime favoured by models of large-field inflation [6]. However,
ns and r are just two numbers. Although their precise determination will be a tremendous
achievement, it will leave considerable ambiguity in reconstructing the correct inflationary
model.

In contrast, the non-Gaussian component of the scalar fluctuations is characterized
by a three-point function which is, a priori, a nontrivial function of three variables
(momentum magnitude and ratios) on the sky. Furthermore, as demonstrated conclusively
in [7, 8], slow-roll models where the density perturbations are produced by fluctuations
of the inflaton itself, predict negligible non-Gaussianity. A detection of non-Gaussianity
by the next generation of experiments would therefore strongly favour either an exotic
inflationary model, or a model where density perturbations are generated by other
dynamics (as in curvaton [9] and modulated reheating [10] scenarios). A crude measure of
non-Gaussianity is the number fNL. Values of |fNL| ≥ 5 would almost certainly indicate
some novelty in the dynamics of the inflaton itself.

In this paper, we determine the most general non-Gaussian perturbations possible
in single-field inflationary theories. We assume that the inflaton itself generates the
density perturbations, and that the Lagrangian is a function of the inflaton and its first
derivative alone. Under these assumptions, we prove that the full non-Gaussianity (at
the first order in various slow-variation parameters) is actually captured by five numbers.
These numbers characterize the three-point function of fluctuations of the inflaton (or
more precisely, its gauge-invariant analogue). For models with cs ≪ 1, which are known
to produce the most significant non-Gaussianities, the result is stronger: the leading
non-Gaussianity is characterized by two numbers, and two different possible qualitative
shapes in momentum space; the subleading non-Gaussianity is characterized by three more
numbers.

The elegant, gauge invariant calculation of the non-Gaussianities for slow-roll models
appeared first in [7, 8]. The result is that slow-roll models produce a primordial fNL

of O(10−2), too small to measure. Creminelli stressed that models where the effects of
higher derivatives are important may give larger fNL (under the assumption that the
non-Gaussianity is not diluted by the inflationary expansion itself, as happens in some
models [11]). However, this effect can only reach fNL ∼ O(1) in the regime where effective
field theory applies [12]. A proof of principle that significantly larger fNL can occur in
sensible models was provided by the work of Alishahiha et al [13], who found that a
fairly concrete string construction [14] could yield substantially larger fNL ≫ 1. Different
models in this class were constructed [15, 16] in the context of warped compactification.
The large non-Gaussianities in these models are compatible with the current observational
bound, but are potentially observable in future experiments [13, 17]. (Another interesting
model also providing large fNL, but so far resisting embedding in a UV complete theory,

5 Already, there are strong hints that models with a red spectrum are preferred [4]. Moreover, if the spectral index
runs from blue to red, then there should be an approximate coincidence [5] between the length scale k at which
n(k) − 1 = 0 and the length scale at which the tensor to scalar ratio reaches a minimum. Such a coincidence of
scales, if observed, can put constraints on inflationary model building.
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appears in [18]. This model does not belong to the general class that we will study in
Einstein gravity.) Our results build on these papers and further significant work by Seery
and Lidsey [19], who found the fluctuation Lagrangian to cubic order for a general class
of Lagrangians, and of Babich et al [20], who emphasized the importance of analysing the
full shape of non-Gaussianities in k-space.

There are several motivations for completing such a general analysis. Firstly, it
provides a null hypothesis against which to compare any future measurement of the
non-Gaussianity. Secondly, several string-inspired models, if realized in nature, will
give rise to a very characteristic measurable non-Gaussianity. String theory is relevant
here because models with significant non-Gaussianity tend to be governed by higher-
derivative terms, and a UV completion is needed to make sense of such models (indeed,
this is true even of slow-roll models with negligible non-Gaussianities [21], since the
slow-roll conditions are sensitive to Planck-suppressed corrections to inflaton dynamics).
Our analysis should make it straightforward to work out predictions for any such
models. When we wish to provide specific examples, we use DBI inflation [14, 15] and
K-inflation [22].

In addition, non-Gaussian fluctuations could contain a signature of any departure
of the inflaton from its standard Bunch–Davies vacuum. This has been suggested as a
possible signature of trans-Planckian physics, and there has been much debate of the
plausibility of such modifications; some representative references are [11], [23]–[32]. It
is a simple matter to translate any modification of the inflaton wavefunction into a
modification of the three-point function, so the non-Gaussianities could serve as a test of
any proposed modification.

Finally, the structure of the three-point function can in principle be determined by
dS/CFT [33] or its generalization appropriate to models with cs ≪ 1. This could provide
a useful laboratory for studying holographic descriptions of dS space. This perspective
could be useful even if there is no exact relation between the dS gravity theory and
a dual field theory, since the useful aspects of the duality for this purpose are purely
kinematical. Recent work in this direction appears in [34, 35]. Our work on this connection
will eventually appear in a companion paper [36].

The organization of this paper is as follows. In section 2, we present the general
class of Lagrangians that we will analyse (those that are an arbitrary function of a single
scalar field and its first derivative), and define the notation we will use in the rest of the
paper. While our analysis applies much more broadly, in section 3 we describe three well-
studied classes of inflationary theories whose non-Gaussianities we shall discuss in detail
as special examples: slow-roll models, DBI models, and power-law K-inflation models.
In section 4, we find the cubic fluctuation Lagrangian in appropriate gauge-invariant
variables for the most general single-field Lagrangian, and compute the non-Gaussianities.
Our main result is that there are only a few basic shapes, governed by five parameters
in the most general model. We evaluate our results for the three special examples in
section 5, and present the different qualitative shapes of the non-Gaussianities that may
occur. In section 6, the effects of putting the inflaton in a vacuum other than the Bunch–
Davies vacuum are described. We conclude in section 7. Readers who are interested
only in the class of Lagrangians studied and the general structure of the non-Gaussianity
for this class, can confine their attention to sections 2 and 4 (which are more or less
self-contained).
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2. Inflation models with a general Lagrangian

To set up our notation, let us first review the formalism in [37] where a general Lagrangian
for the inflaton field is considered. The Lagrangian is of the general form

S = 1
2

∫

d4x
√
−g

[

M2
plR + 2P (X, φ)

]

, (2.1)

where φ is the inflaton field and X = −1/2gμν∂μφ∂νφ. The reduced Planck mass is
Mpl = (8πG)−1/2 and the signature of the metric is (−1, 1, 1, 1). The energy of the
inflaton field is

E = 2XP,X − P, (2.2)

where P,X denotes the derivative with respect to X. Suppose the universe is homogeneous
with a Friedmann–Robertson–Walker metric

ds2 = −dt2 + a2(t) dx2
3. (2.3)

Here a(t) is the scale factor and H = ȧ/a is the Hubble parameter of the universe. The
equations of motion of the gravitational dynamics are the Friedmann equation and the
continuity equation

3M2
plH

2 = E, (2.4)

Ė = −3H(E + P ). (2.5)

It is useful to define the ‘speed of sound’ cs as

c2
s =

dP

dE
=

P,X

P,X + 2XP,XX
(2.6)

and some ‘slow-variation parameters’ as in standard slow-roll inflation

ǫ = − Ḣ

H2
=

XP,X

M2
plH

2
,

η =
ǫ̇

ǫH
,

s =
ċs

csH
.

(2.7)

These parameters are more general than the usual slow-roll parameters (which are defined
through properties of a flat potential, assuming canonical kinetic terms), and in general
depend on derivative terms as well as the potential. For example, in DBI inflation the
potential can be steep, and kinetically driven inflation can occur even in the absence of a
potential. We also note that the smallness of the parameters ǫ, η, s does not imply that
the rolling of inflaton is slow.

The primordial power spectrum is derived for this general Lagrangian in [37]

P ζ
k =

1

36π2M4
pl

E2

cs(P + E)
=

1

8π2M2
pl

H2

csǫ
, (2.8)

where the expression is evaluated at the time of horizon exit at csk = aH . The spectral
index is

ns − 1 =
d ln P ζ

k

d ln k
= −2ǫ − η − s. (2.9)
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In order to have an almost scale invariant power spectrum, we need to require the three
parameters ǫ, η, s to be very small, which we will denote simply as O(ǫ). We note that
in inflationary models with standard kinetic terms the speed of sound is cs = 1, but here
we do not require cs to be close to 1. For example, in the case of DBI inflation, the speed
of sound can be very small. In the case of arbitrary cs, the formula (2.8), (2.9) for the
power spectrum and its index at leading order is still valid as long as the variation of the
sound speed is slow, namely s ≪ 1. We will discuss this in more detail in section 4.1.

The tensor perturbation spectrum P h
k and the tensor spectral index nT are given by

P h
k ≡ 2

3π2

E

M4
pl

, (2.10)

nT ≡ d ln P h
k

d ln k
= −2ǫ (2.11)

and they satisfy a generalized consistency relation P h
k /P ζ

k = −8csnT . This is
phenomenologically different from standard inflation when the speed of sound is not one.

3. Several classes of models

In this section, we review three types of single-field inflationary models. We discuss the
basic setups and results of the corresponding effective field theories. These models will be
used as primary examples after we work out the general expression for non-Gaussianities.

3.1. Slow-roll inflation

Slow-roll inflation models are the most popular models studied in the literature. The
effective action takes the canonical non-relativistic form

P (X, φ) = X − V (φ). (3.1)

One achieves inflation by starting the inflaton on top of a flat potential V (φ). The flatness
of this potential is characterized by the slow-roll parameters

ǫV =
M2

pl

2

(

V ′

V

)2

,

ηV = M2
pl

V ′′

V
,

(3.2)

which are required to be much less than one. The energy

E = X + V ≈ V (3.3)

is dominated by the potential and the sound speed cs = 1. During inflation, the inflaton
speed is determined by the attractor solution

φ̇ = − V ′

3H
. (3.4)

This condition relates the slow-roll parameters in (3.2) to the slow-variation parameters
in (2.7),

ǫ = ǫV , η = −2ηV + 4ǫV . (3.5)
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The primordial scalar and gravitational wave power spectrum are both determined by the
potential

P ζ
k =

1

12π2M6
pl

V 3

V ′2
, (3.6)

P h
k =

2V

3π2M4
pl

. (3.7)

The spectral indices and the running can be computed using the relation

d ln k = Hdt =
H

φ̇
dφ (3.8)

and we get

ns − 1 =
d ln P ζ

k

d ln k
= M2

pl

(

−3
V ′2

V 2
+ 2

V ′′

V

)

,

dns

d ln k
= M4

pl

(

−6
V ′4

V 4
+ 8

V ′2V ′′

V 3
− 2

V ′V ′′′

V 2

)

,

nT =
d lnP h

k

d ln k
= −M2

pl

V ′2

V 2
.

(3.9)

There has been significant effort invested in developing slow-roll models of inflation
in string theory. Some fairly recent reviews with further references are [38, 39].

3.2. DBI inflation

DBI inflation [13]–[16] is motivated by brane inflationary models [21], [40]–[43] in warped
compactifications [44]–[49]. In particular, strongly warped regions or ‘warped throats’ with
exponential warp factors, can arise when there are fluxes supported on cycles localized
in small regions of the compactified space. A prototypical example of such a strongly
warped throat is the warped deformed conifold [50, 51]. The effective field theory of
compact models containing such throats [48, 49] has been explored in detail in [52]. In
the slow-roll paradigm, inflation can happen when a brane is approaching anti-branes in
a throat if the potential is flat enough. However, this is non-generic [21]. Both the degree
of tuning involved, and various possible ways of engineering flat potentials, have been
discussed in the literature [21], [53]–[59].

Perhaps the most interesting idea, which relies upon dynamics distinct from the usual
slow-roll paradigm, arises in the DBI model. In this model, the warped space slows
down the rolling of the inflaton on even a steep potential. (This ‘slowing down’ can
also be understood as arising due to interactions between the inflaton and the strongly
coupled large-N dual field theory.) This scenario can naturally arise in warped string
compactifications [15]. The inflaton φ is the position of a D-brane moving in a warped
throat. In the region where the back-reaction [14, 16, 60] and stringy physics [16, 17] can
be ignored, the effective action has the following form

S =
M2

pl

2

∫

d4x
√
−gR −

∫

d4x
√
−g

[

f(φ)−1
√

1 + f(φ)gμν∂μφ∂νφ − f(φ)−1 + V (φ)

]

.

(3.10)
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The above expression applies for D3-branes in a warped background where f(φ) is the
warping factor. We will first express the results in terms of a general f(φ). For an AdS-
like throat, f(φ) ≃ λ/φ4 (where λ in specific string constructions is a parameter which
depends on the flux numbers)6. Two situations have been considered in the literature:

• In the UV model [13, 14], the inflaton moves from the UV side of the warped space
to the IR side under the potential

V (φ) ≃ 1
2
m2φ2, m ≫ Mpl/

√
λ. (3.11)

In this case the inflaton starts far away from the origin and rolls relativistically to the
minimum of potential at the origin.

• In the IR model [15, 16], the inflaton moves from the IR side of the warped space to
the UV side under the potential

V (φ) ≃ V0 − 1
2
m2φ2, m ∼ H. (3.12)

The inflaton starts near the origin and rolls relativistically away from it.
The evolution of the inflaton in both cases was studied and the resulting power spectra
were computed in [13]–[16]. Stages of DBI and slow-roll inflation can also be smoothly
connected to each other [15, 62].

In the following we summarize the basic results of DBI inflation, following [13]–[16],
and using the general formalism developed in [37]. For the zero-mode evolution, we assume

the inflaton φ is spatially homogeneous and denote X = φ̇2/2. The pressure P and energy
E are

P = −f(φ)−1
√

1 − 2Xf(φ) + f(φ)−1 − V (φ),

E = 2XP,X − P =
f(φ)−1

√

1 − 2Xf(φ)
− f(φ)−1 + V (φ)

(3.13)

and the speed of sound cs

cs =

√

1 − φ̇2f(φ). (3.14)

In DBI inflation, the scalar rolls relativistically and a speed limit can be inferred by
requiring positivity of the argument of the square root in the DBI action. So in this limit
cs ≪ 1, we can approximate the inflaton speed during inflation by

φ̇ ≃ ± 1
√

f(φ)
= ± φ2

√
λ

. (3.15)

It is easy to see that the requirement ǫ ≪ 1 (or equivalently |E + P |/E ≪ 1) implies
that the potential energy V (φ) dominates throughout inflation despite the fact that φ is
rolling relativistically. Hence, the Friedmann equation and the continuity equation reduce
to

H2 =
V (φ)

3M2
pl

,

V ′(φ) = −3H
1

cs

√

f(φ)
,

(3.16)

6 This is a good approximation if we assume that the last 60 e-foldings of inflation occur far from the tip of the
throat. Otherwise, inflationary observables may depend on the details of the warp factor [61].
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where we have used the universal speed limit relation (3.15) in the continuity equation.
The number of e-foldings is computed as the following

Ne =

∫ tf

ti

Hdt =

∫ φf

φi

H
dφ

φ̇
=

∫ φf

φi

dφ

Mpl

√

f(φ)V (φ)

3
. (3.17)

The scalar power spectrum and gravitational power spectrum are computed in the general
formalism to be

P ζ
k =

1

36π2M4
pl

E2

cs(P + E)
=

f(φ)V (φ)2

36π2M4
pl

,

P h
k =

2E

3π2M4
pl

=
2V (φ)

3π2M4
pl

.

(3.18)

The spectral indices and the running can also be computed using (3.8),

ns − 1 =
d ln P ζ

k

d ln k
=

√
3Mplφ

2

√
λV

(

−4

φ
+

2V ′

V

)

,

dns

d ln k
=

3M2
plφ

2

λ

(

− 4

V
+

8φV ′

V 2
+

2φ2V ′′

V 2
− 3φ2V ′2

V 3

)

,

nT =
d lnP h

k

d ln k
=

√

3M2
pl

λ

φ2V ′

V 3/2
,

(3.19)

where we have evaluated f(φ) = λ/φ4. Using the equations of motion it is easy to verify
that the gravitational wave spectral index satisfies the generalized consistency constraint
P h

k /P ζ
k = −8csnT in [37].

We make two remarks regarding the result (3.19). Firstly, as pointed out in [13], for
the UV model, both the variation in the speed of sound and the small parameters ǫ, η
contribute to the scalar spectral index and their effects cancel each other in the case of a
quadratic potential V (φ) = 1

2
m2φ2, so that the spectral index is a second-order quantity

O(ǫ2) in this case. Indeed, we can directly see the cancellation from the first formula
in (3.19) for a quadratic potential. Secondly, in the IR model the potential remains
V (φ) ≃ V0 during inflation, so the above expressions for the number of e-foldings, the
scalar spectral index and its running (3.19) become simplified

Ne =

∫ φf

φi

dφ

φ2

1

Mpl

√

λV0

3
≃ 1

Mplφi

√

λV0

3
,

ns − 1 =

√
3Mplφ

2
i√

λV0

(

− 4

φi

)

= − 4

Ne
,

dns

d ln k
=

3M2
plφ

2
i

λ

(

− 4

V0

)

= − 4

N2
e

.

(3.20)

In this IR model the gravitational wave production is very much suppressed compared to
the UV model. This suppression is due to the consistency relation P h

k /P ζ
k = −8csnT , and

to the fact that the gravitational wave spectral index nT is much smaller than the scalar
spectral index ns − 1 in this case since |V ′/V | ≪ |4/φ|.
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A concern in DBI inflation is how to get the large background charge λ (∼1014)
which is needed to fit the field theory result to the observed density perturbations.
Since this requirement just arises from requiring the compactification scale in the throat
to be ∼MGUT (combined with the standard AdS/CFT relation between gsN and the
compactification volume), it seems very likely that model building could significantly
reduce the apparent tune. For discussions of this issue, see [13, 16, 17].

3.3. Kinetically driven inflation

One simple class of models which can give rise to large non-Gaussianities is the models of
K-inflation, where the dynamics of inflation is governed by (non-standard) inflaton kinetic
terms [22, 37]. The Lagrangians giving rise to K-inflation are not radiatively stable, and
so this mechanism is UV sensitive. There are as yet no convincing limits of string theory
which give rise to K-inflation, but because the models are so simple, we analyse them in
detail nonetheless. It would be very interesting to find controlled limits of string theory
which give rise to such models.

The simplest class of K-inflation models are the models of ‘power-law K-inflation’.
The Lagrangian for power-law K-inflation is of the form

P (X, φ) =
4

9

(4 − 3γ)

γ2

1

φ2
(−X + X2), (3.21)

where γ is a constant, not to be confused with the Lorentz factor (1/cs) that often appears
in the literature of DBI inflation. (The form of the Lagrangian and our discussion can be
straightforwardly generalized to a more arbitrary form where P ∝ f(X)/φ2 [22].) Before
describing the physics which follows from (3.21), we should discuss some general concerns
about K-inflation. The most obvious (also mentioned above) is that a Lagrangian of the
form (3.21) is not radiatively stable, since it is not protected by any symmetry. (A shift
symmetry of φ could protect a Lagrangian of the form P (X) with generic coefficients.)
A second concern is that a reasonable exit mechanism for inflation must be provided. A
third, related concern is that the dominant energy condition

∂P

∂X
≥ 0, X

∂P

∂X
− P ≥ 0 (3.22)

is not satisfied by (3.21) for small values of X. Therefore, while in the inflating solution we
will see that (3.22) is satisfied, one must provide an exit mechanism that changes the form
of P drastically enough that the physics around flat space is sensible. We shall discuss
these issues further after summarizing the key properties of the solution of interest.

One solution to the equations of motion [22] is to take

X = X0 =
2 − γ

4 − 3γ
(3.23)

which gives rise to an FRW cosmology with

a(t) ∼ t2/3γ (3.24)

for any 0 < γ < 2/3. The speed of sound following from (3.21) is

c2
s =

γ

8 − 3γ
. (3.25)

We are most interested in the regime with cs ≪ 1. Therefore, we will focus on models
with small γ, and sometimes expand formulae around γ → 0.
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3.3.1. The effective theory governing small fluctuations. To get some intuition for these
models, it is useful to construct an effective theory describing small fluctuations around
the background inflating solution. The equations (3.23) imply that

φ(t) ∼ (1 + γ/8)t (3.26)

where we have absorbed an overall constant into the definition of t, and have only written
the solution to O(γ). Let us cast the Lagrangian into a more familiar form by performing
the field redefinition

Φ = log(φ) (3.27)

valid for t > 0. Then the mini-superspace Lagrangian takes the form

L = f(γ)
(

−1
2
Φ̇2 + 1

4
Φ̇4e2Φ

)

(3.28)

where f(γ) is the complicated γ-dependent prefactor in (3.21); for small γ

f(γ) ∼ 16

9γ2
. (3.29)

Defining Y = −1
2
gμν∂μΦ∂νΦ, the full Lagrangian is just

L = f(γ)
(

−Y + Y 2e2Φ
)

. (3.30)

Now, we introduce the effective field π which describes small fluctuations around the
solution via

Φ(x, t) = π(x, t) + Φ0(t) (3.31)

where Φ0 characterizes the inflationary solution, with

Φ0(t) = log
((

1 +
γ

8

)

t
)

(3.32)

(and therefore Y0 = (1/2)(1/t2)). We will also find it useful to define

Z = −1
2
gμν∂μπ∂νπ. (3.33)

Expanding L around this solution, we find a Lagrangian for π of the form

L(π, π̇,∇π) = f(γ)
(

L̃0 + L̃2 + L̃3

)

. (3.34)

Here, the subscript on the L̃ denotes its order in the fluctuation π. The first-order term
is guaranteed to vanish in the background Φ0, since it solves the equations of motion. To
compute the Lagrangian up to third order in π, we need the expansions of Y and e2Φ.
Using the explicit solution (3.32) we see that

Y =
1

2t2
+

1

t
π̇ + Z (3.35)

and

e2Φ = t2
(

1 +
γ

4

)

(

1 + 2π + 2π2 +
4

3
π3 + · · ·

)

. (3.36)

We then find

L̃0 = −1

4

1

t2

(

1 − γ

4

)

, (3.37)

L̃2 =
(

1 +
γ

4

)

π̇2 +
γ

4
Z +

π2

2t2

(

1 +
γ

4

)

+ 2
ππ̇

t

(

1 +
γ

4

)

(3.38)
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Observational signatures and non-Gaussianities of general single-field inflation

and

L̃3 =
(

1 +
γ

4

)

(

1

3

π3

t2
+ 2

π2π̇

t
+ 2πZ + 2ππ̇2 + 2tπ̇Z

)

. (3.39)

Here, the field π has one dimension, and all terms should be rendered in four dimensions
by appropriate powers of Mpl. One can use the relation H ∼ 2/3γt to replace explicit
powers of t above with powers of H and γ, in estimating the size of various terms.

3.3.2. Basic phenomenology. Here, we describe the rough phenomenology of a ‘realistic’
model of power-law K-inflation. The exit from inflation will be discussed in a later
subsection.

The power spectrum of these models was derived by Garriga and Mukhanov [37].
Working in the limit of small γ, their answer (equation (42) of [37]) becomes

P ζ
k =

1

cs

2

3γ

GH2
1

π

(

k

k1

)−3γ

=
1

cs

2

3γ

H2
1

8π2M2
pl

(

k

k1

)−3γ

(3.40)

where H1 is taken to be the Hubble scale at the time of horizon exit for the perturbations
currently at our horizon, and k1 is the the associated comoving wavenumber.

It follows from (3.40) that the tilt

ns − 1 = −3γ + · · · (3.41)

which allows us to fix γ ∼ 1/60 using the central value of the spectral index in the WMAP
results [4]. This justifies our use of perturbation theory in γ in earlier equations.

Using (3.25) and (3.40), as well as the fact that data determines P ζ ∼ 10−9 at horizon
crossing, we find

H2 ∼ 3

4
√

2
γ3/28π2M2

pl × 10−9 (3.42)

at horizon crossing, where Mpl is the reduced Planck mass. Plugging in γ ∼ 1
60

as
determined from ns, we see that the Hubble scale when the 60th from the last e-folding
leaves our horizon is roughly H ∼ 10−5Mpl. So primordial gravitational waves will be
unobservable in this model.

The reader may wonder about the following. In these models, with cs ≪ 1, the sound
horizon where fluctuations freeze out at cs/H can be much smaller than 1/H. What
happens if cs/H < lp, i.e. H > csMpl? This would seem to give rise to a ‘trans-Planckian
problem’.

However, it is easy to see that this regime cannot be reached in any reliable fashion.
The power spectrum (3.40) makes it clear that

δρ

ρ
∼ 1

γ3/4

(

H

Mpl

)

. (3.43)

Hence, for H > γ1/2Mpl, δρ/ρ ≥ O(1) and there is no good semi-classical description of
any resulting region which exits from inflation.
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3.3.3. Exiting from K-inflation. Using a(t) ∼ t2/3γ , the requirement that one gets 60 e-
foldings starting from some initial time ti is simply

log(tf/ti) = 90γ. (3.44)

Then, we need to arrange for an appropriate exit mechanism to kick in at the tf we
determine in this way.

Here, we briefly describe a simple mechanism to exit from K-inflation, modelled on
hybrid inflation [63]. Going back to the Lagrangian (3.30), we would like to arrange so
that after 60 e-foldings, at some specific value of φ, the inflationary stage ends and the
exit to standard radiation domination occurs. An easy way to do this, while fixing the
problem that (3.30) violates the DEC around X = 0, is to consider a more elaborate
theory including also a second scalar field ψ. Then a Lagrangian of the schematic form

L = −Y + Y 2e2Φ + (∂ψ)2 + (Φ2
∗ − Φ2)ψ2 +

1

M2
∗

ψ2Y + α(ψ2 − β2M2
∗ )2 + · · · (3.45)

can do the trick. Here M∗ is some UV scale, perhaps the string scale or the Planck scale.
For small αβ2, assuming Φ∗ ∼ M∗, then right around the time when 〈Φ〉 ∼ Φ∗ the ψ field
becomes tachyonic and condenses. It rolls to a vev 〈ψ〉 ∼ βM∗, and for β ≥ O(1), can
correct the sign of the φ kinetic term.

The Lagrangian (3.45) can then support an early phase of K-inflation, and exit to
a phase with normal kinetic terms for the various fields. The DEC is satisfied during
both the inflationary phase and around the flat-space vacuum with 〈ψ〉 = βM∗. It is
an interesting question to check whether it is satisfied all along the trajectory from the
inflationary phase to the final vacuum.

4. Non-Gaussian perturbations

Now in the general setup of section 2, we consider the non-Gaussian perturbations in
the primordial power spectrum. There is a large amount of literature on this subject,
see e.g. [7, 8, 13, 17, 19, 64, 69, 70]. However, most of the literature has been focused on
the case where the speed of sound cs is very close to one, where the primordial non-
Gaussianities are generally too small to be detected in future experiments. In addition,
in some of the literature, only the perturbations in the matter Lagrangian are considered,
but not the gauge invariant perturbation that remains exactly constant after horizon exit7.
Here we will consider a general Lagrangian of the form (2.1), and we will allow the speed
of sound cs to assume arbitrary values, only requiring the parameters in (2.7) (and one
more parameter to be defined later) to be small and of order O(ǫ). We will calculate the
three-point correlation function for the gauge invariant scalar perturbation ζ following the
approach of Maldacena [7].

It is useful to define two parameters following [19]

Σ = XP,X + 2X2P,XX =
H2ǫ

c2
s

, (4.1)

λ = X2P,XX + 2
3
X3P,XXX . (4.2)

7 For models with significant non-Gaussianity, this may be a reasonable approximation, since the contributions
from the gravitational sector yield an fNL which is too small to measure in any case.
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Observational signatures and non-Gaussianities of general single-field inflation

In the case of inflationary models with P,Xφ = 0, the parameter λ can be written in terms
of the speed of sound and small parameters ǫ, η, s in (2.7). However, for inflation models
where P,Xφ �= 0, such as DBI inflation or K-inflation, there is no simple formula for the
parameter λ in terms of the slow-variation parameters, and we must treat each model
individually.

To compute the Einstein action to the third order, it is useful to work in the ADM
metric formalism

ds2 = −N2dt2 + hij( dxi + N idt)( dxj + N jdt). (4.3)

This formalism is convenient because the equations of motion for the variables N and N i

are quite easy to solve. We will work in a comoving gauge where the three-dimensional
metric hij takes the form

hij = a2e2ζδij , (4.4)

where we have neglected the tensor perturbations. a is the scale factor of the universe and
ζ is the scalar perturbation, and remains constant outside the horizon in this gauge. The
index on N i can be lowered by the three-dimensional metric hij . The inflaton fluctuation
δφ vanishes in this gauge, which makes the computations simpler. Using the ADM metric
ansatz the action becomes

S = 1
2

∫

dt d3x
√

hN(R(3) + 2P ) + 1
2

∫

dt d3x
√

hN−1(EijE
ij − E2) (4.5)

where we have set the reduced Planck mass Mpl = 1 for convenience. The three-
dimensional Ricci curvature R(3) is computed from the metric hij. The symmetric tensor
Eij is defined as

Eij = 1
2
(ḣij −∇iNj −∇jNi). (4.6)

The equations of motion for N and N i are

R(3) + 2P − 4XP,X − N−2(EijE
ij − E2) = 0,

∇j(N
−1Ej

i ) −∇i(N
−1E) = 0.

(4.7)

We follow [7] and decompose N i into two parts Ni = Ñi + ∂iψ where ∂iÑ
i = 0, and

expand N and N i in powers of ζ

N = 1 + α1 + α2 + · · · ,
Ñi = N

(1)
i + N

(2)
i + · · · ,

ψ = ψ1 + ψ2 + · · · ,
(4.8)

where αn, Ñ
(n)
i , ψn ∼ O(ζn). One can plug the power expansion into the equations of

motion (4.7) for N and N i. At first order in ζ , the solutions [7, 19] are

α1 =
ζ̇

H
, N

(1)
i = 0, ψ1 = − ζ

H
+ χ, ∂2χ = a2 ǫ

c2
s

ζ̇ , (4.9)

after choosing proper boundary conditions.
In order to compute the effective action to order O(ζ3), as pointed out in [7], in

the ADM formalism one only needs to consider the perturbations of N and N i to the
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first-order O(ζ). This is because their perturbations at order O(ζ3) such as α3 will
multiply the constraint equation at the zeroth order O(ζ0) which vanishes, and the second-
order perturbations such as α2 will multiply a factor which vanishes by the first-order
solution (4.9). So the solution (4.9) is enough for our purpose. This general conclusion in
the ADM formalism can be seen as follows.

What we have done so far is solve the constraint equations for the Lagrange multipliers
N and Ni, which result from the variation of the action with respect to them

δS =

∫

d4x δL(∂iN, N)

=

∫

d4x

[

∂L
∂(∂iN)

∂iδN +
∂L
∂N

δN

]

, (4.10)

where for simplicity we schematically denote N as either N or Ni. We expand N =
N (0) + ΔN = N (0) + N (1) + N (2) + · · · for

∂L
∂(∂iN)

=
∂L

∂(∂iN)

∣

∣

∣

0
+

∂2L
∂(∂iN)∂(∂jN)

∣

∣

∣

0
∂jΔN + · · · ,

∂L
∂N

=
∂L
∂N

∣

∣

∣

0
+

∂2L
∂N2

∣

∣

∣

0
ΔN + · · · ,

(4.11)

where the subscript 0 means ΔN = 0. In order to get N (1) we can neglect the terms
involving ∂2L/∂(∂iN)∂N . This is because this term starts from O(ζ) as we can see
from (4.5) and (4.6), so it does not contribute to ΔN at the first-order O(ζ).

The O(ζ0) terms in (4.10) are
∫

d4x

[

∂L
∂(∂iN)

∣

∣

∣

0,ζ0

∂iδN +
∂L
∂N

∣

∣

∣

0,ζ0

δN

]

= 0. (4.12)

This equation is consistent with the background equation of motion (2.4). The O(ζ) terms
in (4.10) are
∫

d4x

{[

∂L
∂(∂iN)

∣

∣

∣

0,ζ
+

∂2L
∂(∂iN)∂(∂jN)

∣

∣

∣

0,ζ0

∂jN
(1)

]

∂iδN

+

[

∂L
∂N

∣

∣

∣

0,ζ
+

∂2L
∂N2

∣

∣

∣

0,ζ0

N (1)

]

δN

}

= 0, (4.13)

where the subscripts ζ or ζ0 denote the order of the perturbation ζ that we take. After
integration by parts this gives the constraint equations for ΔN at order O(ζ), namely
N (1). A similar procedure can be used to solve for ΔN to order O(ζn), namely up to
N (n).

We will next substitute these solutions for the Lagrange multipliers into the action
and expand to order O(ζn), where n ≥ 3. We show that to do this the knowledge up to
N (n−2) is enough. Let us look at the terms that possibly contain N (n−1) and N (n),

ΔS =

∫

d4x

{

∂L
∂(∂iN)

∣

∣

∣

0
∂iΔN +

1

2

∂2L
∂(∂iN)∂(∂jN)

∣

∣

∣

0
(∂iΔN)(∂jΔN)

+
∂L
∂N

∣

∣

∣

0
ΔN +

1

2

∂2L
(∂N)2

∣

∣

∣

0
(ΔN)2 + · · ·

}

. (4.14)
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The terms involving ∂2L/∂(∂iN)∂N = O(ζ) are not written because such terms will not
contain N (n−1) or N (n) at order O(ζn).

The following are all terms containing N (n)(n ≥ 2) in (4.14),
∫

d4x

{

∂L
∂(∂iN)

∣

∣

∣

0,ζ0

∂iN
(n) +

∂L
∂N

∣

∣

∣

0,ζ0

N (n)

}

. (4.15)

Comparing with (4.12) we know that this term vanishes. This is because after integration
by parts, N (n) will multiply a term which is just the zeroth-order constraint equation
coming from (4.12) after integration by parts. Next we look at all terms containing
N (n−1)(n ≥ 3) in (4.14),
∫

d4x

{

∂L
∂(∂iN)

∣

∣

∣

0,ζ
∂iN

(n−1) +
∂2L

∂(∂iN)∂(∂jN)

∣

∣

∣

0,ζ0

∂iN
(n−1)∂jN

(1)

+
∂L
∂N

∣

∣

∣

0,ζ
N (n−1) +

∂2L
∂N2

∣

∣

∣

0,ζ0

N (n−1)N (1)

}

. (4.16)

This term also vanishes because, after integration by parts, N (n−1) will multiply a term
which is the first-order constraint equation coming from (4.13) after integration by parts.

Therefore our task is simplified. In order to expand the action (4.5) to quadratic and
cubic order in the primordial scalar perturbation ζ , we only need to plug in the solution
for the first-order perturbation in N and N i and do the expansion. The results can also
be extracted8 from [7, 19]

S2 =

∫

dt d3x

[

a3 ǫ

c2
s

ζ̇2 − aǫ(∂ζ)2

]

, (4.17)

S3 =

∫

dt d3x

[

−ǫaζ(∂ζ)2 − a3(Σ + 2λ)
ζ̇3

H3
+

3a3ǫ

c2
s

ζζ̇2

+
1

2a

(

3ζ − ζ̇

H

)

(∂i∂jψ∂i∂jψ − ∂2ψ∂2ψ) − 2a−1∂iψ∂iζ∂2ψ

]

, (4.18)

where ζ̇ is the derivative with respect to t. One can decompose the perturbations into
momentum modes using

uk =

∫

d3x ζ(t,x)e−ik·x. (4.19)

4.1. The quadratic part

To solve the quadratic part of the action (4.17) we define

vk ≡ zuk, z ≡ a
√

2ǫ

cs
. (4.20)

This brings the equation of motion for the perturbation ζ to a simple form

v′′
k + c2

sk
2vk −

z′′

z
vk = 0, (4.21)

8 Note that there is a typo in (1/a4)(Ṙ/H) term in equation (44) of [19], it should be (1/a4)(Ṙ/H)∂2ψ1∂
2ψ1

instead.
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where the prime denotes the derivative with respect to the conformal time defined by
dt = adτ , τ = −(aH)−1(1 + O(ǫ)). The leading order of z′′/z = 2a2H2(1 + O(ǫ)) is
contributed by the scale factor a which has the strongest time dependence. If the sound
speed varies slowly enough, the leading behaviour of equation (4.21) is given by a Bessel
function. We write it in terms of the Fourier modes of ζ , uk, using (4.20),

uk = u(τ,k) =
iH√
4ǫcsk3

(1 + ikcsτ)e−ikcsτ . (4.22)

Here we have made the approximation that the sound speed changes slowly, so this solution
has oscillatory behaviour but with a frequency that is slowly changing due to the time
dependence of cs. This requires

−kτΔcs ≪ cskΔτ. (4.23)

That is, the phase change in (4.22) caused by the change of cs is much slower than that
caused by the change of τ . This condition can be brought to the form

ċs

cs
≪ H, (4.24)

which is just the condition for small slow-variation parameter s in (2.7).
From equation (4.22) we can see that, before horizon exit csk > aH , uk is oscillating

and its amplitude is decreasing proportionally to τ . For vk, this is the leading behaviour
in flat space and we have chosen the standard Bunch–Davies vacuum. (We will discuss
non-Gaussianities for other choices of vacua in section 6.) After the horizon exit csk < aH ,
uk remains constant [3]. This is most easily seen from (4.21) where we can neglect the
second term, and we see that (for the growing mode) vk ∝ zk so that uk = constant.
This conclusion is not going to be changed by the higher order interactions [7], because,
as we can see from the interaction terms (4.18), they involve either spatial derivatives,
which can be neglected at super-horizon scales, or powers of time derivatives starting from
second order. So after horizon exit, the leading value of uk is determined by (4.22) at
τ ≈ 0 with the rest of the variables evaluated at csk = aH . We emphasize here that the
validity of our analysis only requires the variation of sound speed to be slow; the sound
speed can be arbitrary. For our later purposes, the first-order corrections to the leading
behaviour (4.22) are also important. We work this out in appendix A.

Now, we follow the standard technique in quantum field theory and write the operator
in terms of creation and annihilation modes

ζ(τ,k) = u(τ,k)a(k) + u∗(τ,−k)a†(−k) (4.25)

with the canonical commutation relation [a(k), a†(k′)] = (2π)3δ(3)(k − k
′).

4.2. The cubic part

The cubic effective action in (4.18) looks like order O(ǫ0) in the slow-variation parameters.
In slow-roll inflation, as emphasized and demonstrated in [7], one can perform a lot of
integrations by parts and cancel terms of order O(ǫ0) and O(ǫ). The resulting cubic
action is actually of leading order O(ǫ2) in slow roll parameters. A similar analysis can be
performed for the general Lagrangian in [19], as well as in the case of interest here where
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the sound speed is arbitrary. Except for terms that are proportional to 1 − c2
s or λ, the

rest of the terms can be cancelled to the second-order O(ǫ2),

S3 =

∫

dt d3x

{

− a3

(

Σ

(

1 − 1

c2
s

)

+ 2λ

)

ζ̇3

H3
+

a3ǫ

c4
s

(ǫ − 3 + 3c2
s)ζζ̇2

+
aǫ

c2
s

(ǫ − 2s + 1 − c2
s)ζ(∂ζ)2 − 2a

ǫ

c2
s

ζ̇(∂ζ)(∂χ)

+
a3ǫ

2c2
s

d

dt

(

η

c2
s

)

ζ2ζ̇ +
ǫ

2a
(∂ζ)(∂χ)∂2χ +

ǫ

4a
(∂2ζ)(∂χ)2 + 2f(ζ)

δL

δζ

∣

∣

∣

1

}

,

(4.26)

where the variable χ is defined in equation (4.9), and in the last term

δL

δζ

∣

∣

∣

∣

1

= a

(

d∂2χ

dt
+ H∂2χ − ǫ∂2ζ

)

, (4.27)

f(ζ) =
η

4c2
s

ζ2 +
1

c2
sH

ζζ̇ +
1

4a2H2
[−(∂ζ)(∂ζ) + ∂−2(∂i∂j(∂iζ∂jζ))]

+
1

2a2H
[(∂ζ)(∂χ) − ∂−2(∂i∂j(∂iζ∂jχ))]. (4.28)

Here ∂−2 is the inverse Laplacian, δL/δζ|1 is the variation of the quadratic action with
respect to the perturbation ζ , therefore the last term which is proportional to δL/δζ|1 can
be absorbed by a field redefinition of ζ . It can be easily shown that the field redefinition
that absorbs this term is

ζ → ζn + f(ζn). (4.29)

For the correlation function, only the first term in (4.28) contributes since all other terms
involve at least one derivative of ζ that vanishes outside the horizon. The three-point
function after field redefinition ζ → ζn + (η/4c2

s)ζ
2
n becomes

〈ζ(x1)ζ(x2)ζ(x3)〉 = 〈ζn(x1)ζn(x2)ζn(x3)〉
+

η

2c2
s

(〈ζn(x1)ζn(x2)〉〈ζn(x1)ζn(x3)〉 + sym) + O(η2(P ζ
k )3). (4.30)

We proceed to calculate with the above cubic terms (4.26). The terms in the last line
in (4.26) are all of subleading order in slow-variation parameters (2.7). The interaction
Hamiltonian from the leading terms to O(ǫ2) is

Hint(t) = −
∫

d3x

{

− a3

(

Σ

(

1 − 1

c2
s

)

+ 2λ

)

ζ̇3

H3
+

a3ǫ

c4
s

(ǫ − 3 + 3c2
s)ζζ̇2

+
aǫ

c2
s

(ǫ − 2s + 1 − c2
s)ζ(∂ζ)2 − 2a

ǫ

c2
s

ζ̇(∂ζ)(∂χ)

}

. (4.31)

One then computes the vacuum expectation value of the three-point function in the
interaction picture that characterizes the primordial non-Gaussianities

〈ζ(t,k1)ζ(t,k2)ζ(t,k3)〉 = −i

∫ t

t0

dt′〈[ζ(t,k1)ζ(t,k2)ζ(t,k3), Hint(t
′)]〉, (4.32)
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where t0 is some very early time when the vacuum fluctuation of the inflaton is well within
the horizon, and t is a time about several e-foldings after the horizon exit. Translated
to the conformal time τ = −1/(aH), we can in a good approximation take the integral
over conformal time τ from −∞ to 0. We follow the standard procedure and compute
the contributions from various terms. In the following, we first evaluate the leading
contributions of each term.

(1) Contribution from ζ̇3 term. We denote K = k1 + k2 + k3, and find

−i

(

c2
s − 1 +

2λc2
s

Σ

)

H2ǫ

c4
s

u(0,k1)u(0,k2)u(0,k3)

∫ 0

−∞

adτ

H3

×
(

6
du∗(τ,k1)

dτ

du∗(τ,k2)

dτ

du∗(τ,k3)

dτ

)

(2π)3δ3

(

∑

i

ki

)

+ c.c.

= − 3H4

8ǫ2c4
s

(

c2
s − 1 +

2λc2
s

Σ

)

(2π)3δ3(k1 + k2 + k3)

(

3
∏

i=1

1

k3
i

)

(

k2
1k

2
2k

2
3

K3

)

.

(4.33)

(2) Contribution from ζζ̇2 term. We find

i
ǫ

c4
s

(ǫ − 3 + 3c2
s)u(0,k1)u(0,k2)u(0,k3)

∫ 0

−∞

a2dτ

× 2

(

u∗(τ,k1)
du∗(τ,k2)

dτ

du∗(τ,k3)

dτ
+ sym

)

(2π)3δ3

(

∑

i

ki

)

+ c.c.

=
H4

16ǫ2c4
s

(ǫ − 3 + 3c2
s)(2π)3δ3(k1 + k2 + k3)

(

3
∏

i=1

1

k3
i

)

×
(

k2
2k

2
3

K
+

k1k
2
2k

2
3

K2
+ sym

)

. (4.34)

(3) Contribution from ζ(∂ζ)2 term.

H4

16ǫ2c4
s

(ǫ − 2s + 1 − c2
s )(2π)3δ3(k1 + k2 + k3)

(

3
∏

i=1

1

k3
i

)

×
(

(k1 · k2)

(

−K +
k1k2 + k1k3 + k2k3

K
+

k1k2k3

K2

)

+ sym

)

. (4.35)

(4) Contribution from ζ̇(∂ζ)(∂χ) term.

− H4

16ǫc4
s

(2π)3δ3(k1 + k2 + k3)

(

3
∏

i=1

1

k3
i

)

(

(k1 · k2)k
2
3

K

(

2 +
k1 + k2

K

)

+ sym

)

. (4.36)

(5) Contribution from field redefinition ζ → ζn + (η/4c2
s)ζ

2
n.

η

2

H4

16ǫ2c4
s

(2π)3δ3(k1 + k2 + k3)

(

1

k3
1k

3
2

+ sym

)

. (4.37)
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As a first step, we add all of these leading contributions together. After some
simplification, we find

〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)7δ3(k1 + k2 + k3)(P
ζ
k )2 1

∏

i k
3
i

A, (4.38)

where the above contributions to A are organized as follows

A ⊃
(

1

c2
s

− 1 − 2λ

Σ

)

3k2
1k

2
2k

2
3

2K3

+

(

1

c2
s

− 1

)

(

− 1

K

∑

i>j

k2
i k

2
j +

1

2K2

∑

i�=j

k2
i k

3
j +

1

8

∑

i

k3
i

)

+
ǫ

c2
s

(

−1

8

∑

i

k3
i +

1

8

∑

i�=j

kik
2
j +

1

K

∑

i>j

k2
i k

2
j

)

+
η

c2
s

(

1

8

∑

i

k3
i

)

+
s

c2
s

(

−1

4

∑

i

k3
i −

1

K

∑

i>j

k2
i k

2
j +

1

2K2

∑

i�=j

k2
i k

3
j

)

. (4.39)

4.3. Correction terms

We notice that, in (4.39) for general cs, the first two lines are not of the same order of
magnitude as the last three lines. The former are O(1) while the latter are O(ǫ). So for
c2
s ≪ 1, it is clear that the first two terms dominate. If for completeness one is interested

in the full result to O(ǫ), however, small corrections to the first two lines may compete
with the last three lines. This means that one must calculate the subleading terms (of
order O(ǫ)) for the first three integrations in section 4.2.

In obtaining (4.39), we treat all the slow-varying parameters in the integrand as
constant, and we use the leading order solution (4.22). The corrections come from several
sources.

Firstly, there are corrections to the leading order u(τ, k) in (4.22), which we work out
in appendix A,

uk(y) = −
√

π

2
√

2

H√
ǫcs

1

k3/2

(

1 +
ǫ

2
+

s

2

)

exp
(

i
π

2

(

ǫ +
η

2

))

y3/2

×H
(1)
(3/2)+ǫ+(η/2)+(s/2) ((1 + ǫ + s)y) , (4.40)

where y = csk/aH.
Secondly, various parameter in this solution as well as others in the integrand,

including H , cs, λ, ǫ, are all time-dependent subject to the slow-variation conditions.
We Taylor-expand such functions as

f(τ) = f(tK) +
∂f

∂t
(t − tK) + O(ǫ2f)

= f(τK) − ∂f

∂t

1

HK
ln

τ

τK
+ O(ǫ2f), (4.41)
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where the reference point τK is chosen to be the moment when the wavenumber K =
k1 + k2 + k3 exits the horizon.

Thirdly, the scale factor a also receives O(ǫ) correction,

a = − 1

HKτ
− ǫ

HKτ
+

ǫ

HKτ
ln(τ/τK) + O(ǫ2). (4.42)

We then consider all types of corrections in the first three integrations (4.33), (4.34)
and (4.35) in section 4.2. We leave the details of these calculations to appendix B, and
summarize the final results in the following subsection.

4.4. Summary of final results

To first order in the slow-variation parameters O(ǫ), the three-point correlation function
of the gauge invariant scalar perturbation ζ for a general single-field inflation model is
given by the following:

〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)7δ3(k1 + k2 + k3)(P̃
ζ
K)2 1

∏

i k
3
i

× (Aλ + Ac + Ao + Aǫ + Aη + As), (4.43)

where we have decomposed the shape of the three-point function into six parts

Aλ =

(

1

c2
s

− 1 − λ

Σ
[2 − (3 − 2c1)l]

)

K

3k2
1k

2
2k

2
3

2K3
, (4.44)

Ac =

(

1

c2
s

− 1

)

K

(

− 1

K

∑

i>j

k2
i k

2
j +

1

2K2

∑

i�=j

k2
i k

3
j +

1

8

∑

i

k3
i

)

, (4.45)

Ao =

(

1

c2
s

− 1 − 2λ

Σ

)

K

(ǫFλǫ + ηFλη + sFλs) +

(

1

c2
s

− 1

)

K

(ǫFcǫ + ηFcη + sFcs) , (4.46)

Aǫ = ǫ

(

−1

8

∑

i

k3
i +

1

8

∑

i�=j

kik
2
j +

1

K

∑

i>j

k2
i k

2
j

)

, (4.47)

Aη = η

(

1

8

∑

i

k3
i

)

, (4.48)

As = sFs. (4.49)

The definitions of the sound speed cs, Σ and λ are

c2
s ≡

P,X

P,X + 2XP,XX
,

Σ ≡ XP,X + 2X2P,XX ,

λ ≡ X2P,XX + 2
3
X3P,XXX .

(4.50)

The definitions of the four slow-variation parameters are

ǫ ≡ − Ḣ

H2
, η ≡ ǫ̇

ǫH
, s ≡ ċs

csH
, l ≡ λ̇

λH
. (4.51)
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P̃ ζ
K is defined as

P̃ ζ
K ≡ 1

8π2

H2
K

csKǫ
. (4.52)

Note that H , cs, λ and Σ in this final result are evaluated at the moment τK ≡
−(1/KcsK)+O(ǫ) when the wavenumber K ≡ k1+k2+k3 exits the horizon KcsK = aKHK ,
as indicated by the subscript K. Various F are functions of ki, whose detailed forms are
given in appendix B.1.

These results clearly illustrate that very significant non-Gaussianities fNL ≫ 1 will
arise most easily in models with cs ≪ 1 or λ/Σ ≫ 1 during inflation (while conventional
slow-roll models enjoy cs = 1 and λ/Σ = 0). We also see that for this wide class of
models, the functional form of the leading non-Gaussianity is completely determined in
terms of 5 numbers: cs, λ/Σ, and the three slow-variation parameters ǫ, η and s. Note
that in (4.39) we are assuming that these parameters do not vary over the few e-foldings
we see close to the horizon. If they do, the parameter counting becomes a little more
complicated, and one can in principle extract more information from these results (by
studying the running of the non-Gaussianities). Indeed, after Taylor-expanding some
slow-varying functions in working out all the correction terms in section 4.3, one more
parameter l comes up. However, as illustrated in (4.44), it happens that one can absorb
l in 2λ/Σ as (λ/Σ)[2 − (3 − 2c1)l], where c1 is the Euler constant. (Later we will often
refer to it as 2λ/Σ for simplicity.) The error introduced to (4.43) after this absorption is
of order O(ǫ2). So to the first-order O(ǫ) that we are interested in, our final result is still
parameterized by five numbers.

5. Size, shape and running of the non-Gaussianities

In the previous section, we have obtained the most general form of the primordial three-
point scalar non-Gaussianities up to first order in slow-variation parameters (4.51) in
single-field inflationary models, where the matter Lagrangian is an arbitrary function
of the inflaton and its first derivative. This non-Gaussianity is controlled by five
parameters—three small parameters ǫ, η and s, the sound speed cs and another parameter
λ/Σ. There is a large amount of literature studying non-Gaussian features in models
belonging to this class. One interesting feature of our result is that we can take different
limits and smoothly connect various previous results. We will also explore regions which
have not been studied before. Before giving several major examples, we first discuss some
general features of the non-Gaussianity obtained in section 4.4.

The correlation function in section 4.4 is a function of three momenta forming a
triangle. Therefore, generally there are three interesting properties—the magnitude of
the function, its dependence on the shape of the triangle and its dependence on the size
of the triangle. Namely, these quantities determine the size, shape and running of the
non-Gaussianity.

To discuss whether a non-Gaussianity is large enough to be observed we first need
to quote the experimental sensitivities. The non-Gaussianity of the CMB in the WMAP
observations is analysed by assuming the following ansatz for the scalar perturbation

ζ = ζL − 3
5
fNLζ2

L, (5.1)
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where ζL is the linear Gaussian part the perturbations, and fNL is an estimator
parameterizing the size of the non-Gaussianity. This assumption leads to the following
three-point correlation function

〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)7δ3(k1 + k2 + k3)

(

− 3

10
fNL(P ζ

k )2

) ∑

i k
3
i

∏

i k
3
i

. (5.2)

Notice that this shape is different from any of the shapes in section 4.4 except for Aη. But
we can set up a similar estimator fNL for each of those different shapes of non-Gaussianities
to parameterize its magnitude. This matching is conventionally done for the equilateral
triangle case k1 = k2 = k3. We then have

fλ
NL = − 5

81

(

1

c2
s

− 1 − 2λ

Σ

)

+ (3 − 2c1)
lλ

Σ
,

f c
NL =

35

108

(

1

c2
s

− 1

)

,

f o
NL = O

(

ǫ

c2
s

,
ǫλ

Σ

)

,

f ǫ,η,s
NL = O(ǫ).

(5.3)

The bound on the parameter fNL from data analysis depends on the shape of the non-
Gaussianities which we will discuss shortly. The current bound is roughly |fNL| < 300 for
the first two shapes [65], and |fNL| < 100 for the rest [4]. A non-Gaussianity is potentially
observable in future experiments if |fNL| > 5 [66]–[68].

The magnitudes of Aǫ, Aη and As are unobservably small, of order O(ǫ). The sizes
of Ao are determined by ǫ/c2

s , η/c2
s and s/c2

s . So in order to make the magnitude of these
functions larger, we need the denominator c2

s to be less than at least one of the slow-
variation parameters. (A similar conclusion for the λ/Σ term.) It is very interesting to
construct such models, and we will show an example in this section. The most significant
non-Gaussianities come from Aλ and Ac when cs ≪ 1 and/or λ/Σ ≫ 1.

As in [20], to show the shape of A(k1, k2, k3), we present the 3-d plot
x−1

2 x−1
3 A(1, x2, x3) as a function of x2 = k2/k1 and x3 = k3/k1. The shapes of −Aλ/k1k2k3

and Ac/k1k2k3 are shown in figures 1 and 2. We can see that Aλ and Ac have overall
similar shapes, but with opposite sign. The shape of −Aǫ/k1k2k3 is shown in figure 3.
The shapes of Aη, As and Ao are similar to that of Aǫ up to a sign, in the sense that they
all roughly approach to a pole in the squeezed limit, e.g. when k1 = k2 and k3 → 0. (See
appendix B.2.)

Interestingly, for a small sound speed, both the leading non-Gaussianity Aλ, Ac

and the subleading non-Gaussianity Ao are potentially observable. Moreover, they have
distinctive shapes. This is most dramatic in the squeezed limit where one of the momenta
is relatively small. For example, in the limit k1 = k2 and k3 ≈ 0,

Aλ

k1k2k3

∝ k3

k1

= x3, (5.4)

while

Ao

k1k2k3
∝ k1

k3
=

1

x3
. (5.5)
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Figure 1. The shape of −Aλ/k1k2k3.
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Figure 2. The shape of Ac/k1k2k3.

The size of the non-Gaussianity also depends on the scale that we measure. Analogous
to the spectral index, we define [17]

nNG − 1 ≡ d ln |fNL|
d ln k

. (5.6)

For example, if the main contribution to fNL comes from a small sound speed, then
nNG − 1 ≈ −2s. So, in this case a measurement of the running of the non-Gaussianity
directly tells us one of the slow-variation parameter s.
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Figure 3. The shape of −Aǫ/k1k2k3.

5.1. Slow-roll inflation

We now reduce equation (4.43) to the slow-roll case. In this case, the deviation of the
sound speed from one is very small. We denote u = 1 − (1/c2

s) ≪ 1. Assuming u = O(ǫ),
we can neglect both As (4.49) since s ≈ (u̇/2H) ≪ O(ǫ) and Ao since Ao = O(uǫ). As
in [19], if we further assume P,Xφ = 0, the relations

λ =
ǫ

6

(

2ǫ

3ǫX
(1 − u)s − u

)

, ǫX ≡ − Ẋ

H2

∂H

∂X
(5.7)

follow. In this limit equations (4.44)–(4.49) become

A = −
(

ǫ

3ǫX
s + u

)

k2
1k

2
2k

2
3

K3

−u

(

− 1

K

∑

i>j

k2
i k

2
j +

1

2K2

∑

i�=j

k2
i k

3
j +

1

8

∑

i

k3
i

)

+ ǫ

(

−1

8

∑

i

k3
i +

1

8

∑

i�=j

kik
2
j +

1

K

∑

i>j

k2
i k

2
j

)

+ η

(

1

8

∑

i

k3
i

)

. (5.8)

Taking into account the convention difference ASL = 4Aours, we recover the result
equation (83) of Seery and Lidsey.

Further setting the sound speed to be 1 (therefore u = 0 and s = 0), using the
relation (3.5) and taking into account of the convention difference AMaldacena = 8Aours, we
recover the result equation (4.6) of Maldacena.
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5.2. DBI inflation

In [13, 17, 69], the three-point correlation functions in various models with potentially
larger non-Gaussianities have been calculated by considering the perturbations in the
matter Lagrangian only. In general, such a procedure is not valid because it is only the
gauge invariant combination ζ that will remain constant after the horizon exit. However
(as realized by these authors) for the large non-Gaussianity case, due to large non-
linear self coupling of the inflaton, the corrections coming from the gravitational part are
relatively small, and this simpler method can be successfully used to obtain the leading
behaviour of the non-Gaussianities. Indeed, in this limit our leading behaviour in Aλ

and Ac, which is of order O(c−2
s , λ/Σ), recovers the leading behaviour of the result in

equation (6) of Gruzinov [69]. However, this procedure does not guarantee that the
subleading term in [69], which is of O(1), will be correct. In fact, as we discussed at the
beginning of this section, for 0 < c2

s < ǫ, η, s, the subleading terms actually come from Ao

and a subleading term in Aλ, which are of order c−2
s O(ǫ, η, s) and should be observable.

Now we consider the example of DBI inflation discussed in section 3.2. Interestingly
for this type of inflation model, because of the Lagrangian (3.13), the parameter λ defined
in (4.2) is

λ = X2P,XX +
2

3
X3P,XXX =

H2ǫ

2c4
s

(1 − c2
s). (5.9)

So, the leading order contribution in Aλ vanishes. The leading behaviour of Ac reproduces
the result of Alishahiha et al [13, 17]. Using the estimator defined in (5.3), we have

f c
NL ≈ 0.32

1 − c2
s

c2
s

≈ 0.32c−2
s . (5.10)

To estimate the subleading order corrections, let us look at both the UV and IR model.
In the UV model, the sound speed is given by

c−1
s ≈

√

2λ

3

mMpl

φ2
. (5.11)

It is easy to see that whether the subleading order is of order O(1) or O(ǫ/c2
s ) depends

on the value of φ. In the IR model, the sound speed is related to the number of e-foldings
Ne before the end of inflation by

c−1
s ≈ βNe/3, (5.12)

where β parameterizes the steepness of the potential β ≡ m2/H2, which is generically
of order one as we know from the usual eta-problem in slow-roll inflation. Since
ǫ, η, s = O(N−1

e ), we see that this model falls into the region where c2
s ≪ O(ǫ, η, s),

where both the leading non-Gaussianity Ac and the subleading Ao are observable. As we
see from the discussions in section 5 and appendix B.2, their shapes are very different.

We can also compute the running of non-Gaussianities as considered in [17]

nNG − 1 ≈ −2s = −2

√

3M2
pl

f(φ)V (φ)

(

1

2

V ′

V
− V ′′

V ′
+

2

φ

)

. (5.13)
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Just like the spectral index, the running non-Gaussianities also provide a good probe of
the effective potential V (φ) and warp factor f(φ), and could (in an optimistic scenario)
distinguish between different possible background geometries where the brane motion is
occurring.

5.3. Kinetic inflation

We saw above that in one large class of models with measurable non-Gaussianities, the
leading order of Aλ vanishes. However, generally it does not vanish for some other
models such as K-inflation, and could in principle be comparable to the second term
Ac. An experimental detection of the shape of large non-Gaussianities could therefore in
principle distinguish between DBI inflation and more general models where the first term
has significant contributions.

Here, we first outline a quick estimate of the non-Gaussianities in K-inflation, and
then describe the exact result following section 4.

5.3.1. Crude estimate of non-Gaussianities. Given the fluctuation Lagrangians (3.38)
and (3.39), we can do a simple estimate of the non-Gaussianity (following the general
strategy also used in [13, 18]). While this is not strictly necessary in view of the detailed
formulae in section 4, it is perhaps illuminating to understand in simple terms why these
models have large fNL.

The basic point is the following. We saw in (3.40) that

P ζ
k ∼ 1

γ3/2

(

H

Mpl

)2

. (5.14)

Using the fact that

ζ ∼ H

Φ̇
π (5.15)

and evaluating this on the inflationary solution, we find

ζ ∼ π

γMpl

. (5.16)

It follows that

〈ζζ〉 ∼ 1

γ2
〈ππ〉. (5.17)

Furthermore, given the overall factor of f(γ) ∼ 1/γ2 in L, which in particular multiplies
the π kinetic terms, one has the relation

〈ππ〉 ∼ γ2(δπ)2 (5.18)

where δπ is a typical fluctuation of the π field during inflation. Therefore, estimating P ζ

via

P ζ ∼ 1

γ2
〈ππ〉 ∼ (δπ)2 (5.19)

and using P ζ ∼ H2/γ3/2, we see that

δπ ∼ H

γ3/4
. (5.20)
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Using the form of the modes, one can also see that

δπ̇ ∼ Hδπ. (5.21)

Now, we are interested in estimating the non-Gaussianity, say through a crude
estimate of fNL. Since naively

L̃3

L̃2

∼ fNL

√
P ζ, (5.22)

we can plug (5.20) and (5.21) into the fluctuation Lagrangians to estimate
the non-Gaussianity. The term 2tπ̇Z in L̃3 contributes fluctuations of size
(1/Mpl)(1/Hγ)(H2/γ3/4)3 ∼ (1/γ13/4)(H5/Mpl). The largest terms in L̃2 scale like
H4/γ3/2. We then find

L̃3

L̃2

∼ 1

γ7/4

H

Mpl
. (5.23)

Because
√

P ζ ∼ 1

γ3/4

H

Mpl
(5.24)

this translates into the rough estimate

fNL ∼ 1

γ
∼ 1

c2
s

. (5.25)

This in fact reproduces the more detailed results of section 4 when applied to K-inflation,
though it does not give the (potentially very important) information about the detailed
shape of the momentum dependence.

5.3.2. Shape of non-Gaussianities in K-inflation. An order of magnitude estimate for the
general size of the non-Gaussian signatures arising in K-inflation appears in (5.25). Here,
we refine this estimate using the formulae of section 4.

The Lagrangian of power-law K-inflation, at leading order in the expansion in γ, is
given by

P (X, φ) =
16

9γ2

1

φ2
(−X + X2). (5.26)

We then see that

Σ =
16

9γ2

1

φ2

(

6X2 − X
)

∼ 16

9γ2

1

φ2
(5.27)

and

λ =
32

9γ2

X2

φ2
∼ 8

9γ2

1

φ2
. (5.28)

In each case, the estimate after ∼ follows from the fact that X = 1
2

+ O(γ) on the
inflationary solution.
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We find that, to leading order in γ,

Aλ =
12

γ

(

k2
1k

2
2k

2
3

K3

)

(5.29)

and

Ac =
8

γ

(

− 1

K

∑

i>j

k2
i k

2
j +

1

2K2

∑

i�=j

k2
i k

3
j +

1

8

∑

i

k3
i

)

. (5.30)

So unlike the other higher derivative model we have carefully examined, DBI inflation,
these models receive a leading-order contribution from the shape Aλ. Also, in distinction
to a general DBI inflation model in section 5.2, the constant speed of sound implies that
the non-Gaussianity does not run in power-law K-inflation.

Evaluating on equilateral triangles and comparing to the ‘local’ form of non-
Gaussianities, this translates to an estimated fNL of

fNL ≈ 170

81

1

γ
. (5.31)

This gives fNL ≈ 125 for realistic models, which is allowed by current experimental
bounds but would be easily detectable in future experiments. Comparing to the rough
estimate (5.25), which was fNL ∼ 8/γ, we see that the two results agree up to an O(1)
coefficient (whose moderate smallness prevents the model from being excluded by current
data).

6. Non-Gaussianities as a probe of the inflationary vacuum

There has been some interest in the question of whether we can observe trans-Planckian
physics in the cosmic microwave background radiation [11], [23]–[32]. In this context,
the assumption that the Bunch–Davies vacuum is the unique initial state of inflation has
recently been questioned. While several plausible alternatives for the initial state have
been suggested, its precise form is highly dependent on how we model the behaviour of
quantum fields at Planckian energies. What is universal however is that any deviation
from the Bunch–Davies vacuum during inflation will result in modulations of the power
spectrum [24, 25, 29], thus offering the exciting possibility of probing the initial state of
the universe from cosmological measurements.

We hasten to stress that the microphysics that determines the choice of inflationary
vacuum is by no means understood. Here we put aside the conceptual issues associated
with the choice of vacuum and its consistency, and simply approach the problem of vacuum
ambiguity from a phenomenological perspective. To be specific, we explore the possibility
of using primordial non-Gaussianities to test any deviation from the standard Bunch–
Davies vacuum. As it turns out, the effect of deviation from the Bunch–Davies vacuum
on the shape of the primordial non-Gaussianities is quite simple to compute within our
formalism. A general vacuum state for the fluctuation of the inflaton field during inflation
can be written as follows

uk = u(τ,k) =
iH√
4ǫcsk3

(C+(1 + ikcsτ)e−ikcsτ + C−(1 − ikcsτ)eikcsτ ). (6.1)
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In the standard Bunch–Davies vacuum we have C+ = 1 and C− = 0. Now we allow a
small deviation from the Bunch–Davies vacuum by turning on a small finite number C−,
and calculate the corrections to the shape of non-Gaussianities we found in the Bunch–
Davies vacuum. For simplicity, we only consider the corrections to the leading order non-
Gaussianities Aλ, Ac in the small sound speed cs ≪ 1 limit (the corrections to the other
shapes of non-Gaussianities due to a non-standard choice of vacuum can be worked out
by a similar procedure). The computations of the three-point functions of the primordial
perturbations essentially go through as before. The first subleading correction to the
Bunch–Davies vacuum result is simply to replace one of the three u(τ,k) with its C−

component. (A correction of O(C−) in u(0,k) gives a term which has the same shape as
in the Bunch–Davies vacuum case. We do not include them here.) This does not change
the common factor 1/k3

1k
3
2k

3
3 but will simply replace one of the ki in the shapes Aλ, Ac

with −ki. We denote the corresponding corrections Ãλ, Ãc. We immediately find the
corrections as

Ãλ = Re(C−)

(

1

c2
s

− 1 − 2λ

Σ

)

3k2
1k

2
2k

2
3

2

×
(

1

(k1 + k2 − k3)3
+

1

(k1 − k2 + k3)3
+

1

(−k1 + k2 + k3)3

)

, (6.2)

Ãc = Re(C−)

(

1

c2
s

− 1

) 3
∑

p=1

(

− 1

K

∑

i>j

k2
i k

2
j +

1

2K2

∑

i�=j

k2
i k

3
j +

1

8

∑

i

k3
i

)
∣

∣

∣

∣

∣

kp→−kp

. (6.3)

We can estimate the size of the non-Gaussianities Ãλ and Ãc according to the WMAP
ansatz. This estimate is usually done in the equilateral triangle limit; we find

f̃λ
NL = −5Re(C−)

(

1

c2
s

− 1 − 2λ

Σ

)

,

f̃ c
NL =

25

4
Re(C−)

(

1

c2
s

− 1

)

.

(6.4)

If the sound speed cs is sufficiently small, the effects of a slight deviation from the
Bunch–Davies vacuum is potentially observable by future experiments. We plot the shapes
of the non-Gaussianities Ãλ and Ãc in figures 4 and 5. We see the shapes of these
corrections are very distinctive and in fact dramatically different from that of the DBI
inflation or slow-roll inflation. In particular, these shapes are highly peaked at the ‘folded
triangle’ limit where k3 ≈ k1 + k2 for arbitrary values of k1 and k2. This feature is not
shared by other known sources of non-Gaussianities, and so measurements of the shape
of non-Gaussianities could in principle be an excellent probe of the choice of inflationary
vacuum.

Note that, while the rising behaviour of the non-Gaussianity in the folded triangle
limit is the signal of the non-Bunch–Davies vacuum, the divergence at the limit,
e.g. k1 +k2−k3 = 0, is artificial. This divergence is present because we have assumed that
such a non-standard vacuum existed in the infinite past. Realistically there should be a
cutoff at a large momentum M for k/a, where k is a typical value of k1,2,3. This amounts
to a cutoff for τ at τc = −M/Hk. Since the integrand is regulated at τ = −1/Kcs due
to its rapid oscillation, if τc < −1/Kcs, the cutoff M has no effects on our calculation.
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Figure 4. The shape of |Ãλ|/k1k2k3.
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Figure 5. The shape of |Ãc|/k1k2k3.

That is, for K ≫ kH/Mcs, we will see the behaviours shown in figures 4 and 5 near the
folded triangle limit. But within K < kH/Mcs, the cutoff takes effect first, the divergence
behaviour will be replaced. The details depend on the nature of the cutoff, e.g. a naive
sharp cutoff will introduce oscillatory behaviour.

7. Conclusion

The forthcoming suite of cosmological experiments will nail down with ever greater
precision the parameters of the inflationary model that yielded our homogeneous, isotropic
universe. Some measurements, such as the value of the spectral index and the nature of its
running, are guaranteed to occur. Others, such as a detection of primordial gravitational
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waves, are not necessarily expected to occur on theoretical grounds (since models with very
small r seem more natural as quantum field theories), but would be tremendously exciting
and instructive if they do. The discovery of significant non-Gaussian scalar fluctuations
falls into this latter category. While the simplest models of inflation do not produce
this phenomenon, its discovery would tell us something qualitatively important about
the inflationary epoch, and experiments sensitive enough to measure |fNL| ≥ 5 will be
launched in the next two years. For this reason, we feel it is worthwhile to parametrize
the reasonable possibilities, and understand the qualitative physics of the models that
produce them.

In this paper, we have taken some steps in this direction for generic single-field models.
There are several clear directions for further work:

• It would be nice to derive the same formulae governing non-Gaussianities as arising
directly from symmetry principles. Perhaps these would be encapsulated most neatly
in a hypothetical dual, non-gravitational theory. For the models with cs ≪ 1, this
theory may have novel properties.

• Higher derivative terms play a significant role in the dynamics of those single-field
models which produce striking non-Gaussian signatures. One class of models where
such terms are important, the DBI inflation [13]–[16], has a reasonable microscopic
justification in string theory. It would be interesting to find other examples where
one can microphysically justify the study of dynamics that is very sensitive to higher
derivative terms.

• We have focused here on single-field models. It is a logical possibility that our 60
e-foldings arose from a multi-field inflationary model. This could be motivated if,
for instance, r is measured to be non-negligible. In slow-roll models, measurable r
implies an inflaton that traversed a super-Planckian distance in field space [71], as
in chaotic inflation [72]. At least in string theory, this is difficult to accommodate
in single-field models [73], but could conceivably happen in a multi-field setting [74].
For this and other reasons, it would be worthwhile to develop a general framework
for analysing non-Gaussianities in multi-field models. Examples of multi-field models
with significant non-Gaussianity appear in [75]–[77]. Formalisms to compute the non-
Gaussianities in large classes of such models are developed in [78]–[81].
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Appendix A. Corrections to uk

In this appendix, we calculate the O(ǫ) correction to the solution of equation (4.21),
generalizing the method of [82, 83].

We define

y ≡ csk

aH
(A.1)

and write the equation of motion of the quadratic action

v′′
k + c2

sk
2vk −

z′′

z
vk = 0 (A.2)

in terms of y. Note that generally cs is a (slowly varying) function of time. Using

z′′

z
= 2a2H2

(

1 − 1

2
ǫ +

3

4
η − 3

2
s

)

+ O(ǫ2) (A.3)

we get

(1 − 2ǫ − 2s) y2 d2vk

dy2
− sy

dvk

dy
+ y2vk −

(

2 − ǫ +
3

2
η − 3s

)

vk = 0. (A.4)

The solution of this differential equation is given by

vk = y(1/2)(1+s)
[

C1H
(1)
ν ((1 + ǫ + s)y) + C2H

(2)
ν ((1 + ǫ + s)y)

]

, (A.5)

where

ν =
3

2
+ ǫ +

η

2
+

s

2
. (A.6)

The Bunch–Davies (BD) vacuum corresponds to C2 = 0. To determine the coefficient C1,
we need to look at the large k behaviour of the equation (A.2),

v′′
k + c2

sk
2vk = 0. (A.7)

The behaviour is more general than the usual case where the sound speed is constant,
because here we allow cs to vary slowly. Using a similar approach and defining ỹ ≡
−cskτ = (1+ǫ+O(ǫ2))y, we get the solution for (A.7) with positive energy (BD vacuum),

vk → 1√
2csk

exp (i[(1 + s)ỹ − (π/4)s]) , (A.8)

up to a constant phase. Here the coefficient is determined by the quantization condition
(Wronskian condition), v∗

k(dvk/dτ) − vk(dv∗
k/dτ) = −i, to first-order O(ǫ). Notice that

in (A.8), the sound speed cs runs as a function of y. So we can expand it as

vk → 1√
2cs0k

(

y

y0

)s/2

exp
(

i
[

(1 + s)ỹ − π

4
s
])

, (A.9)

where the subscript 0 on cs denotes the evaluation at y0. Expanding (A.5) in the same
limit,

vk → C1

√

2

π

1√
1 + ǫ + s

ys/2 exp
(

i
[

y(1 + ǫ + s) − π

2
ν − π

4

])

, y ≫ 1, (A.10)
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we find

C1 = −
√

π

2

1√
cskk

(

1 +
ǫ

2
+

s

2

)

exp
(

i
π

2

(

ǫ +
η

2

))

. (A.11)

Note a convention for the variables used here: the variables such as csk with the
subscript k are evaluated at

y0 =
kcsk

akHk

= 1; (A.12)

in some later formulae, the variables without the subscript such as cs mean that they are
functions of y.

From the definition

vk ≡ zuk, z ≡ a
√

2ǫ

cs
, (A.13)

we get the expression for uk to order O(ǫ),

uk(y) = −
√

π

2
√

2

H√
ǫcs

1

k3/2

(

1 +
ǫ

2
+

s

2

)

exp
(

i
π

2

(

ǫ +
η

2

))

y3/2H(1)
ν ((1 + ǫ + s)y) .

(A.14)

As an application, we use the y → 0 limit of equation (A.14) to derive an expression
for the density perturbation to order O(ǫ). To do this, we use the expansion of the Hankel
function in the y ≪ 1 limit,

H(1)
ν (y) → −i

1

sin νπ

1

Γ(−ν + 1)

(y

2

)−ν

, (A.15)

and get

uk(0) =
iHk

2
√

cskǫk

1

k3/2

(

1 − (c2 + 1)ǫ − c2

2
η −

(

c2

2
+ 1

)

s
)

exp
(

i
π

2

(

ǫ +
η

2

))

, (A.16)

where

c2 ≡ c1 − 2 + ln 2 ≈ −0.73

and c1 = 0.577 · · · is the Euler constant. Hence the density perturbation is

√

P ζ
k =

√

k3

2π2
|uk(y = 0)|

=
1√
8π2

Hk√
cskǫk

(

1 − (c2 + 1)ǫ − c2

2
η −

(

c2

2
+ 1

)

s
)

+ O(ǫ2). (A.17)

This generalizes the result (31) of [82] to the case with running sound speed.
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Appendix B. Details on the correction terms

In this appendix, we provide details on the correction terms in section 4.3. Let us look at
the first integration (4.33) in section 4.2,

−6i

∫

dτ a f1(τ)
∏

i

u(0,ki)
d

dτ
u∗(τ,ki) · (2π)3δ3

(

∑

i

ki

)

+ c.c., (B.1)

where

f1(τ) =
ǫ

Hc4
s

(c2
s − 1) +

2λ

H3
. (B.2)

We have evaluated the leading contribution of this integral in section 4.2. The corrections
come from several different places.

The first is from the time variation in f1(τ),

f1(τ) = f1(tK) +
∂f1

∂t
(t − tK) + O(ǫ2f1)

= f1(τK) − ∂f1

∂t

1

HK

ln
τ

τK

+ O(ǫ2f1). (B.3)

We choose to eventually evaluate all the variables at the time τK , which is defined as the
moment when the wavenumber K = k1 + k2 + k3 exits the horizon KcsK = aKHK , at
which

τK ≡ − 1

KcsK

+ O(ǫ). (B.4)

All the subscripts K denote the evaluation at the horizon exit point defined in (B.4). The
∂f1/∂t can be expressed in terms of the slow-variation parameters

∂f1

∂t
= (ηǫ + ǫ2)(c−2

s − c−4
s ) + ǫs(−2c−2

s + 4c−4
s ) + 2lλH−2 + 6ǫλH−2, (B.5)

where we have defined

l ≡ λ̇

λH
. (B.6)

We assume that the time variation of λ is slow, l = O(ǫ). Plugging the correction terms
of (B.3) into (B.1) and evaluating the rest in leading orders, we get9

ΔA ⊃ 9

4

(

1 − 2

3
c1

) (

(−ǫ − η)

(

1

c2
s

− 1

)

+ s

(

4

c2
s

− 2

)

+ (2l + 6ǫ)
λ

Σ

)

K

k2
1k

2
2k

2
3

K3
. (B.7)

The second comes from the correction to the scale factor a ≈ −1/Hτ . This can be
obtained from the relation

dτ =
dt

a
= − 1

H
d

(

1

a

)

(B.8)

9 The integration
∫

0

−∞
dx ln(−x) eix = ic1 − (π/2) has been used. Similar types of integrations will be used later.
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and the expansion

1

H
=

1

HK
+ ǫ(t − tK) + O(ǫ2). (B.9)

Integrating (B.8) we can get the following expansion

a = − 1

HKτ
− ǫ

HKτ
+

ǫ

HKτ
ln(τ/τK) + O(ǫ2). (B.10)

Plugging this correction term into (B.1), we obtain

ΔA ⊃
(

c1 −
1

2

)

ǫ

(

1

c2
s

− 1 − 2λ

Σ

)

K

3k2
1k

2
2k

2
3

2K3
. (B.11)

The third comes from the correction term to u(τ,ki) which we obtained in appendix A.
We first look at the corrections to the factor u(0,ki) in (B.1). The corrections to the final
result come not only from the corrections in the bracket of (A.16), but also from the
running from ki to K

Hki√
csiǫi

=
HK√
csKǫK

(

1 −
(

ǫ +
η

2
+

s

2

)

ln
ki

K

)

+ O(ǫ2). (B.12)

So these add a correction term to the three-point correlation function10

ΔA ⊃
(

−3(c2 + 1)ǫ − 3c2

2
η − 3

(

c2

2
+ 1

)

s −
(

ǫ +
η

2
+

s

2

)

ln
k1k2k3

K3

)

×
(

1

c2
s

− 1 − 2λ

Σ

)

K

3k2
1k

2
2k

2
3

2K3
. (B.13)

We next look at the corrections to the factor (d/dτ )u∗(τ,ki) in (B.1). To do this, we
use (A.14) and expand the pre-factor around k = K,

uk(y) = −
√

π

2
√

2

HK√
ǫKcsK

1

k3/2

(

1 +
ǫ

2
+

s

2
+

(

ǫ +
η

2
+

s

2

)

ln
τ

τK

)

exp
(

i
π

2
(ǫ + η)

)

× y3/2H(1)
ν ((1 + ǫ + s)y) . (B.14)

10 To make sure that the expansion such as (B.12) is perturbative, we need ki ≫ O(Ke−1/ǫ). Note that this
condition still allows one of the momenta to be much smaller than the others, e.g. (k3/k1)

2 ≪ ǫ.
In order for the expansion such as (B.10) to be perturbative, we need τKe−1/ǫ ≫ τ ≫ τKe1/ǫ. So it appears that
the integration over τ can only be taken from τKe1/ǫ to τKe−1/ǫ. We first look at the upper bound, since the
mode ki exits the horizon at τi ≈ −1/kicsi. At the upper bound of τ , all modes have exited the horizon and
their amplitudes are frozen. So the error introduced by including the integration from τKe−1/ǫ to 0 is of order
O((kicsi/KCsK)e−1/ǫ) ∼ O(e−1/ǫ). We next look at the lower bound. For the range of ki that we are interested
in, at τ ∼ τKe1/ǫ all modes are well within the horizon. Their contributions are regulated away due to their rapid
oscillation. Therefore, to order O(e−1/ǫ), we can effectively take the integration range for τ from −∞ to 0.
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Denoting Δu(τ, ki) as the corrections to the leading order, we have

Δu∗(τ, ki) = −1

2

HK√
csKǫK

1

k
3/2
i

exp
(

−i
π

2
(ǫ + η)e−ix

)

×
[

− i(ǫ + s) + (ǫ + s)x + isx2

+
(

i
(

ǫ +
η

2
+

s

2

)

−
(

ǫ +
η

2
+

s

2

)

x − ix2s
)

ln
τ

τK

+

√
π

2
eix

(

ǫ +
η

2
+

s

2

)

x3/2 dH∗
ν

dν

]

, (B.15)

where x ≡ −kicsKτ . The above corrections include those in the first line of (B.14), in y3/2

where y = −kicsKτ(1 − ǫ − s ln(τ/τK)) + O(ǫ2) is used, and in H
(1)∗
ν ((1 + ǫ + s)y) which

includes corrections in the index ν and corrections in the variable y. Differentiating (B.15),
we have

d

dτ
Δu∗(τ, ki) =

1

2

HK√
csKǫK

1

k
3/2
i

exp
(

−i
π

2
(ǫ + η)

)

kicsKe−ix

×
[

−
(

ǫ +
η

2
+

s

2

)

+
(

ǫ +
η

2
+

s

2

) i

x
− iǫx + sx2

+

(

iǫ +
i

2
η − 3

2
is − sx

)

x ln
τ

τK

+

√
π√
2
eix d

dx

(

x3/2 dH∗
ν

dν

)

(

ǫ +
η

2
+

s

2

)

]

. (B.16)

The first two lines in the square brackets in (B.16) contribute

ΔA ⊃ 3

4

(

1

c2
s

− 1 − 2λ

Σ

)

K

((

(3 − 6c1)ǫ +

(

9

2
− 3c1

)

η +

(

3c1 −
17

2

)

s

)

k2
1k

2
2k

2
3

K3

+
(

ǫ +
η

2
+

s

2

)

(

1

K2

∑

i�=j

k2
i k

3
j −

2

K

∑

i>j

k2
i k

2
j

))

. (B.17)

The last term in (B.16) involves special functions and contributes

ΔA ⊃ 3

4

(

ǫ +
η

2
+

s

2

)

(

1

c2
s

− 1 − 2λ

Σ

)

K

R1(k1, k2, k3) + sym, (B.18)

where

R1(k1, k2, k3) =
k2

2k
2
3

k1

Re

[
∫ ∞

0

dx h∗(x)

(

1 − i
k2 + k3

k1

x

)

exp

(

−i
k2 + k3

k1

x

)]

, (B.19)

h(x) = −2ieix + ie−ix(1 + ix)[Ci(2x) + iSi(2x)] − iπ sin x + iπx cos x. (B.20)
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We have used the following relations,

xH
(1)
ν−2(x) + xH (1)

ν = 2(ν − 1)H
(1)
ν−1(x), (B.21)

[

∂Jν(x)

∂ν

]

ν=1/2

=

(

1

2
πx

)−1/2

[sin xCi(2x) − cos xSi(2x)], (B.22)

[

∂Nν(x)

∂ν

]

ν=1/2

=

(

1

2
πx

)−1/2

{cos xCi(2x) + sin x[Si(2x) − π]}, (B.23)

[

∂Jν(x)

∂ν

]

ν=−1/2

=

(

1

2
πx

)−1/2

[cosxCi(2x) + sin xSi(2x)], (B.24)

[

∂Nν(x)

∂ν

]

ν=−1/2

= −
(

1

2
πx

)−1/2

{sin xCi(2x) − cos x[Si(2x) − π]}. (B.25)

The same procedure can be repeated for the second integration (4.34) in section 4.2,

−2i

∫ 0

−∞

dτ a2 f2(τ)

(

u(0,k1)u(0,k2)u(0,k3)

×u∗(τ,k1)
du∗(τ,k2)

dτ

du∗(τ,k3)

dτ
+ sym

)

(2π)3δ3

(

∑

i

ki

)

+ c.c., (B.26)

where

f2 =
ǫ

c4
s

(3 − 3c2
s − ǫ). (B.27)

From the variation of f2, we get the correction term

ΔA ⊃
((

3η

4
− 3s

) (

1

c2
s

− 1

)

− 3s

2

)

(

(1 − 2c1)
1

K

∑

i>j

k2
i k

2
j − (1 − c1)

1

K2

∑

i�=j

k2
i k

3
j

)

.

(B.28)

From the correction term to the scale factor a, we get

ΔA ⊃ ǫ

(

1

c2
s

− 1

)

K

(

−
(

3

2
+ 3c1

)

1

K

∑

i>j

k2
i k

2
j +

3c1

2

1

K2

∑

i�=j

k2
i k

3
j

)

. (B.29)

From the correction term to u(0, ki), we get

ΔA ⊃ 3

4

(

3(c2 + 1)ǫ +
3c2

2
η + 3

(

c2

2
+ 1

)

s +
(

ǫ +
η

2
+

s

2

)

ln
k1k2k3

K3

)

×
(

1

c2
s

− 1

)

K

(

2

K

∑

i>j

k2
i k

2
j −

1

K2

∑

i�=j

k2
i k

3
j

)

. (B.30)
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The correction to u∗(τ, ki) in (B.15) contributes

ΔA ⊃ −3

4

(

1

c2
s

− 1

)

K

(

(3 − 6c1)s
k2

1k
2
2k

2
3

K3

+

(

−(1 + 2c1)ǫ +

(

1

2
− c1

)

η −
(

3

2
+ c1

)

s

)

1

K

∑

i>j

k2
i k

2
j

+

(

c1ǫ −
1

2
(1 − c1)η +

1

2
(1 + c1)s

)

1

K2

∑

i�=j

k2
i k

3
j

)

(B.31)

and

ΔA ⊃ −3

4

(

1

c2
s

− 1

)

K

(

ǫ +
η

2
+

s

2

)

(

k2
2k

2
3

k1

G1 + sym

)

, (B.32)

where

G1 ≡ Re

[
∫ ∞

0

dxh∗(x) exp

(

−i
k2 + k3

k1
x

)]

. (B.33)

The correction to (d/dτ )u∗(τ, ki) in (B.16) contributes

ΔA ⊃ 3

4

(

1

c2
s

− 1

)

K

(

(2ǫ − η + 3s)
1

K

∑

i>j

k2
i k

2
j

+ (−2c1ǫ + (1 − c1)η + (−6 + 6c1)s)
1

K2

∑

i�=j

k2
i k

3
j

+ (2ǫ + η + s)k1k2k3

+ (1 − 2c1)s

(

1

K3

∑

i�=j

k2
i k

4
j +

2

K3

∑

i>j

k3
i k

3
j

)

− (2ǫ + η + s)

(

∑

i

k3
i +

∑

i�=j

kik
2
j +

∑

i

k3
i Re

∫ ∞

0

dx
e−ix

x

))

(B.34)

and

ΔA ⊃ 3

4

(

1

c2
s

− 1

)

K

(

ǫ +
η

2
+

s

2

)

(M̃1 + sym), (B.35)

where

M̃1 ≡ −k1Re

∫ ∞

0

dx
1

x

(

k2
2 + k2

3 + ik2k3
k2 + k3

k1

x

)

exp

(

−i
k2 + k3

k1

x

)

dh∗

dx
. (B.36)

Notice that in (B.34), the last term is divergent. This divergence is cancelled by the
divergence that appears in (B.36) using the limit h(x) → (−2 + c1)i + i ln 2x + O(x2) as
x → 0. So we can re-define

M1 + sym ≡ M̃1 − Re(k3
2 + k3

3)

∫ ∞

0

dx
e−ix

x
+ sym (B.37)

to absorb this divergence.
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The following are the corrections to the third integration (4.35)

−2i

∫ 0

−∞

dτ a2 f3(τ) (u(0,k1)u(0,k2)u(0,k3)

×u∗(τ,k1)u
∗(τ,k2)u

∗(τ,k3) (−k2 · k3) + sym) · (2π)3δ3

(

∑

i

ki

)

+ c.c.

(B.38)

with

f3 = − ǫ

c2
s

(1 − c2
s − 2s + ǫ). (B.39)

From the variation of f3, we get

ΔA ⊃
(

(η

4
− s

2

)

(

1 − 1

c2
s

)

+
s

2

)

K

(

1 − c1

2

∑

i

k3
i −

1

2
k1k2k3 +

1

2

∑

i�=j

kik
2
j

+
1 − 2c1

K

∑

i>j

k2
i k

2
j −

1 − c1

K2

∑

i�=j

k2
i k

3
j

)

. (B.40)

From the corrections to a, we get

ΔA ⊃ ǫ

2

(

1 − 1

c2
s

)

K

(

−c1

2

∑

i

k3
i −

1

2
k1k2k3 +

1

2

∑

i�=j

kik
2
j

− 1 + 2c1

K

∑

i>j

k2
i k

2
j +

c1

K2

∑

i�=j

k2
i k

3
j

)

. (B.41)

From the corrections to u(0, ki), we get

ΔA ⊃ −1

4

(

3(c2 + 1)ǫ +
3c2

2
η + 3

(

c2

2
+ 1

)

s +
(

ǫ +
η

2
+

s

2

)

ln
k1k2k3

K3

)

×
(

1

c2
s

− 1

)

K

(

1

2

∑

i

k3
i +

2

K

∑

i>j

k2
i k

2
j −

1

K2

∑

i�=j

k2
i k

3
j

)

. (B.42)

Corrections from u∗(τ, ki) give

ΔA ⊃ −1

8

(

1

c2
s

− 1

)

K

×
(

(3c1ǫ + 3
2
(−1 + c1)η + 3

2
(1 + c1)s)

∑

i

k3
i

+
(

−3ǫ + 3
2
(−1 + 2c1)η − 3

2
s
)

∑

i�=j

kik
2
j

+
(

3(1 + 2c1)ǫ − 3
2
η +

(

11
2

+ c1

)

s
)

k1k2k3

+ (6ǫ + 3(1 − 2c1)η + 2(1 + 2c1)s)
1

K

∑

i>j

k2
i k

2
j
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+ (6c1ǫ + 3(−1 + c1)η + (5 − 2c1)s)
1

K2

∑

i�=j

k2
i k

3
j

− 2s
1

K

∑

i

k4
i + s

1

K2

∑

i�=j

kik
4
j + (1 − c1)s

1

K2

∑

i

k5
i

)

(B.43)

and

ΔA ⊃ −1

4

(

1

c2
s

− 1

)

K

(

ǫ +
η

2
+

s

2

)

(N1 + sym), (B.44)

where

N1 ≡ −3k1(k2 · k3)Re

∫ ∞

0

dx
1

x2
exp

(

−ix
k2 + k3

k1

) (

−1 + i
k2 + k3

k1
x +

k2k3

k1
x2

)

h∗.

(B.45)

B.1. Final results

Collecting all the results in section 4.2 and this appendix, we get the final result:

〈ζ(k1)ζ(k2)ζ(k3)〉 = (2π)7δ3(k1 + k2 + k3)(P̃
ζ
K)2 1

∏

i k
3
i

× (Aλ + Ac + Ao + Aǫ + Aη + As) (B.46)

where we have decomposed the shape of the three-point function into six parts

Aλ =

(

1

c2
s

− 1 − 2λ

Σ
+ (3 − 2c1)l

λ

Σ

)

K

3k2
1k

2
2k

2
3

2K3
, (B.47)

Ac =

(

1

c2
s

− 1

)

K

(

− 1

K

∑

i>j

k2
i k

2
j +

1

2K2

∑

i�=j

k2
i k

3
j +

1

8

∑

i

k3
i

)

, (B.48)

Ao =

(

1

c2
s

− 1 − 2λ

Σ

)

K

(ǫFλǫ + ηFλη + sFλs)

+

(

1

c2
s

− 1

)

K

(ǫFcǫ + ηFcη + sFcs) (B.49)

Aǫ = ǫ

(

−1

8

∑

i

k3
i +

1

8

∑

i�=j

kik
2
j +

1

K

∑

i>j

k2
i k

2
j

)

, (B.50)

Aη = η

(

1
8

∑

i

k3
i

)

, (B.51)

As = sFs. (B.52)

The definitions of the sound speed cs, Σ and λ are

c2
s ≡

P,X

P,X + 2XP,XX
,

Σ ≡ XP,X + 2X2P,XX ,

λ ≡ X2P,XX + 2
3
X3P,XXX .

(B.53)
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The definitions of the four slow-variation parameters are

ǫ ≡ − Ḣ

H2
, η ≡ ǫ̇

ǫH
, s ≡ ċs

csH
, l ≡ λ̇

λH
. (B.54)

P̃ ζ
K is defined as

P̃ ζ
K ≡ 1

8π2

H2
K

csKǫ
. (B.55)

Note that H , cs, λ and Σ in this final result are evaluated at the moment τK ≡
−(1/KcsK)+O(ǫ) when the wavenumber K ≡ k1+k2+k3 exits the horizon KcsK = aKHK .

So, P̃ ζ
K in (B.55) is defined differently from (A.17). The various functions F are given by

the following:

Fλǫ ≡
(

3

2
c1 −

9

2
c2 −

39

4
− 3

2
ln

k1k2k3

K3

)

k2
1k

2
2k

2
3

K3

+
3

4K2

∑

i�=j

k2
i k

3
j −

3

2K

∑

i>j

k2
i k

2
j +

3

4
R(k1, k2, k3), (B.56)

Fλη ≡ 1

2
Fλǫ −

(

3c1 −
33

4

)

k2
1k

2
2k

2
3

K3
, (B.57)

Fλs ≡
1

2
Fλǫ +

(

3

2
c1 − 6

)

k2
1k

2
2k

2
3

K3
, (B.58)

Fcǫ ≡ −1
8
(c1 + 3c2 + 15)

∑

i

k3
i − 11

8
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i�=j

kik
2
j + 1

8
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2
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2
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1
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3
j

)

+3
4
Q(k1, k2, k3), (B.59)

Fcη ≡ −
(

c1

16
+

3

8
c2 +

17

16

)
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i

k3
i −

(

3c1

8
+

11

16
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kik
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k1k2k3

+

(

c1

2
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2
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(
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3
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4
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1

K2
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− 1
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Q(k1, k2, k3), (B.60)
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Fcs ≡ −
(

7c1

16
+

11
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i
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Fs ≡
1

4
(1 − c1)

∑

i

k3
i +

1

4

∑
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kik
2
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, (B.62)

where c1 = 0.577 · · · is the Euler constant and c2 ≡ c1 − 2 + ln 2 = −0.73 · · ·. The
functions R(k1, k2, k3) and Q(k1, k2, k3) involve special functions,

R(k1, k2, k3) ≡
k2

2k
2
3

k1
Re

[
∫ ∞

0

dx

(

1 − i
k2 + k3

k1
x

)

exp

(

−i
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k1
x

)

h∗(x)

]

+ sym,

(B.63)

Q(k1, k2, k3) ≡ −k1Re

[
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0

dx
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×Re

[
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k2
1

x2
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h∗(x)

]

+ sym, (B.64)

h(x) ≡ −2ieix + ie−ix(1 + ix)[Ci(2x) + iSi(2x)] − iπ sin x + iπx cos x. (B.65)

In all formulae, the ‘sym’ stands for two other terms with cyclic permutation of the indices
1, 2 and 3.
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B.2. The squeezed limit

It is interesting to look at the behaviours of various functions in the squeezed limit (for
example, k1 = k2 and k3 → 0), because from them one can roughly know whether the
shape of a non-Gaussianity is closer to the DBI type (figure 2), or the slow-roll type
(figure 3).

In slow-roll inflation, Maldacena has argued that the three-point function in the
squeezed limit goes to [7]

〈ζ(k1)ζ(k2)ζ(k3)〉 → −(2π)7 1

4k3
1k

3
3

(ns − 1)P ζ
k1

P ζ
k3

(B.66)

to all orders in the slow-roll parameters. This condition was generalized to general single-
field inflation in [84].

Here we check this condition in the general single-field inflation model with large
non-Gaussianities. We first consider the case where cs = 1. For a large λ/Σ ≫ 1, the
right-hand side of the consistency condition starts from order O(ǫ) (does not include the

terms P ζ
k1

P ζ
k3

), while the left-hand side starts from O(λ/Σ) in Aλ and O(ǫλ/Σ) in Ao.
So, in order for the condition to hold, both the leading and subleading order terms in the
three-point function have to vanish in the squeezed limit. It is not difficult to see that Aλ

vanishes in this limit. Interestingly, the subleading terms (B.56), (B.57) and (B.58) also
vanish in this limit due to a cancellation from the special function R (see appendix B.3).

But the case with a small cs ≪ 1 is more subtle. The condition (B.66) similarly
requires the leading and subleading orders of the left-hand side to vanish. It is easy
to see the leading order contribution Ac satisfies this condition. For the subleading
order, without going into the full details of the special function Q, it is easy to see
that (B.59), (B.60) and (B.61) cannot vanish simultaneously by taking differences between
them (to get rid of Q). So overall Ao goes as

Ao

k1k2k3
∝ k1

k3
. (B.67)

Hence, the shape Ao/k1k2k3 has similar poles to the slow-roll shapes Aǫ and Aη in the
squeezed limit. In addition, since

Fs

k1k2k3
→ k1

k3
, (B.68)

the order O(ǫ) terms on both sides of the condition cannot match either. It will be
interesting to have a more intuitive understanding as to why the subleading terms deviate
from the consistency condition when the sound speed deviates from one.

B.3. Some details

In this section, we demonstrate some details to show that Fλǫ vanishes in the squeezed
limit. To calculate the squeezed limit of the R-term, we analytically continue the integrand
in the convergent direction by x → −ix and note the asymptotic behaviour

Ci(−2ix) − iSi(−2ix) ∼ − i

2
π − 1

2x
e−2x

(

1 + O
(

1

x

))

, x → +∞. (B.69)
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So the ex terms cancel in the asymptotic behaviour of h∗(x), and we find

h∗(x) ∼ xe−x, x → +∞. (B.70)

One can also compute the asymptotic of h∗(x) near x ∼ 0, and we find

h∗(x) = (c − ilog(x)) + O(x2), (B.71)

where c is a constant that will not be important for us.
We can now take a squeezed limit k3 → 0 in the R-term. There are 3 terms in the

symmetric rotation of the indices. Two terms are proportional to k2
3 and the integral is

convergent because of the good asymptotic behaviour (B.70), (B.71), so they vanish in
the squeezed limit. The remaining term is

R(k1, k2, k3) =
k2

1k
2
2

k3
Re

[

−i

∫ ∞

0

dx

(

1 − K

k3
x

)

e−(K/k3)x h∗(x)

]

. (B.72)

Here K = 2k1 = 2k2. We only keep the leading term in the squeezed limit and drop
higher powers of k3. We can then change integration variable x → (k3/K)x and expand
around k3 = 0 using the formula (B.71). We find

R(k1, k2, k3) =
k2

1k
2
2

K
Re

[

−i

∫ ∞

0

dx (1 − x) e−x

(

c − ilog

(

k3

K
x

))]

+ O(k2
3)

=
k2

1k
2
2

K
+ O(k2

3) =
k3

1

2
+ O(k3). (B.73)

So the squeezed limit of the term Fλǫ vanishes

Fλǫ = (3
8
− 3

4
+ 3

8
)k3

1 + O(k3) = O(k3). (B.74)
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