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Abstract

Arid Central Asia is highly vulnerable to extreme climate events. Information on potential future changes in extreme climate 

events in Central Asia is limited. In this study, the performances of models from the Coupled Model Intercomparison Project 

phase 5 (CMIP5) in simulating climatological extremes in Central Asia are first evaluated, and a bias correction method 

is employed to constrain future projections. The responses of extreme climate events over Central Asia to future warming 

and, in particular, the impact of 1.5 and 2 °C global warming scenarios are then assessed based on the observationally con-

strained projections. During the twenty-first century, coldest night (TNn), coldest day (TXn), warmest night (TNx), warmest 

day (TXx), 1-day maximum precipitation (RX1 day), 5-day maximum precipitation (RX5 day), and precipitation intensity 

(SDII) in Central Asia would robustly increase at best estimated rates of 1.93 °C, 1.71 °C, 1.18 °C, 1.25 °C, 6.30%, 5.71%, 

and 4.99% per degree of global warming, respectively, under Representative Concentration Pathway (RCP) 8.5. Compared 

with the 2 °C warming scenario, limiting global warming to 1.5 °C could reduce the intensification (relative to 1986–2005) 

of TNn, TNx, TXn, TXx, RX1 day, RX5 day, and SDII by 33%, 24%, 32%, 29%, 39%, 42%, and 53% from the best estimates 

under RCP8.5, respectively. The avoided intensification of TNn, TNx, TXn and TXx (RX1 day and SDII) would be larger 

(smaller) under RCP4.5. This suggests that a low warming target is necessary for avoiding the dangerous risk of extremes 

in this arid region.

Keywords 1.5 and 2 °C · Central Asia · Extreme events

1 Introduction

Human-induced global warming has a great impact on soci-

ety at both global and regional scales (IPCC 2013). Central 

Asia is an arid region with annual precipitation less than 

300 mm and is characterized by a fragile ecological envi-

ronment with sparse vegetation and vast barrenness (Huang 

et al. 2016; Hu et al. 2017). The ecosystem and societal 

development in this area are highly vulnerable to climate 

change (Huang et al. 2017). Understanding and projecting 

the potential changes in climate extremes over Central Asia 

are of great importance to both policymaking and climate 

change adaption activities.

Central Asia has witnessed significant warming during 

the past half-century at a rate of approximately 0.30 °C 

 decade−1, which is much faster than the global land aver-

age rate (0.19 °C  decade−1) (Hu et al. 2014; IPCC 2013). 

Associated with significant warming, precipitation in the 

eastern part of Central Asia has increased significantly in the 
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last five decades, demonstrating the shift in the climate from 

warm and dry to warm and wet (Shi et al. 2007; Zhao et al. 

2014; Li et al. 2015; Peng and Zhou 2017). This wetting 

trend is largely influenced by the southward displacement 

of the Asian subtropical westerly jet and increased moisture 

and can be partly attributed to the human influence (Peng 

et al. 2018). Meanwhile, both extreme temperature and pre-

cipitation events in Central Asia have increased significantly 

during the past 50 years, while the dry lands have expanded 

(Jiang et al. 2013; Deng et al. 2014; Huang et al. 2015; Hu 

et al. 2016). However, how extreme climate events would 

change in this region in the future has not been investigated 

in detail thus far.

Previous analyses of future climate projections focused 

on Central Asia are rare in comparison to those focused on 

other parts of the world. The Intergovernmental Panel on 

Climate Change Fifth Assessment Report on Central Asia 

is mainly based on Coupled Model Intercomparison Pro-

ject Phase 3 (CMIP3) models, which project a stronger than 

global mean warming trend in Central Asia for both winter 

and summer and the likely increase in mean precipitation 

(Christensen et al. 2013). Later analysis based on CMIP5 

models further shows that the intensity, interannual vari-

ation, and long-term trend of annual mean precipitation in 

Central Asia during the twenty-first century would increase 

due to enhanced evaporation and increased precipitable 

water under different Representative Concentration Path-

ways (RCPs), with wetting centers in the northern, middle, 

and southeastern parts, respectively (Huang et al. 2014). In 

the eastern part of Central Asia, the projected cold events 

and consecutive dry days (warm events and wet days) would 

decrease (increase) significantly during the twenty-first cen-

tury at a faster rate under higher RCPs (Wang et al. 2017). 

The accelerated expansion of dry lands in Central Asia 

would be seen in response to continued anthropogenic influ-

ence in the future (Huang et al. 2017).

To avoid the dangerous impact of anthropogenic climate 

change, the 2015 Paris Agreement, which was approved by a 

total of 175 parties (174 countries and the European Union) 

under the United Nations Framework Convention on Climate 

Change (UNFCCC), committed to “holding the increase in 

the global average temperature to well below 2 °C above 

preindustrial levels and pursuing efforts to limit the tempera-

ture increase to 1.5 °C above preindustrial levels” (UNF-

CCC 2015). Vulnerability in response to global warming is 

regionally dependent (Schleussner et al. 2016). Thus, cli-

mate changes in 1.5 and 2 °C warmer worlds (relative to the 

preindustrial level) have been assessed in specific regions 

in many recent studies (Dosio and Fischer 2017; King and 

Karoly 2017; King et al. 2017; Shi et al. 2018; Nangombe 

et al. 2018; Wang et al. 2018; Yang et al. 2018; Yu et al. 

2018; Zhang et al. 2018; Zhou et al. 2018b, c). For example, 

under 1.5 and 2 °C global warming scenarios, more intense 

and frequent extreme temperature events are projected for 

densely populated areas in China, Japan, and the Korean 

Peninsula (Li et al. 2018a; Shi et al. 2018; Yang et al. 2018), 

and this kind of change would impact many kinds of social 

activities, including air travel (Zhou et al. 2018a). Extreme 

precipitation events would be more intense under the 1.5 and 

2 °C warming scenarios, and the events with longer return 

periods would increase (Li et al. 2018b, c). Some extreme 

temperature and precipitation events associated with high 

socially relevant impacts in eastern China are projected to 

increase significantly under 1.5 and 2 °C global warming 

scenarios (Lin et al. 2018).

In comparison to East Asia, less effort has been devoted 

to Central Asia. Although the changes in extreme events 

over Central Asia in 1.5 and 2 °C warmer worlds can be seen 

in some global studies (e.g., Schleussner et al. 2016; Warten-

burger et al. 2017), information on corresponding changes in 

climate extremes in Central Asia remains unclear. Thus, the 

objective of this study is to assess the impact of 1.5 and 2 °C 

global warming scenarios on extreme events in Central Asia. 

Based on the CMIP5 models, we use eight extreme indices 

to quantify the projected changes. We show evidence that in 

comparison to the 2 °C warmer world, 0.5 °C less warming 

would result in a significant reduction in climate extremes in 

Central Asia, with intensification avoided by more than 24% 

for both temperature and precipitation extremes.

The remainder of this paper is organized as follows: 

the observations, model simulations and the definitions of 

extreme climate indices used in this study are described in 

Sect. 2. In Sect. 3, we first evaluate the performance of the 

CMIP5 models in simulating the historical extreme indices 

in Central Asia and then discuss the changes in extreme cli-

mate events in 1.5 and 2 °C warmer worlds based on the cor-

rected projections. Finally, we summarize the main results 

in Sect. 4.

2  Data and methods

2.1  Data description

The following datasets are used in this study:

1. The global land-only gridded daily maximum and mini-

mum temperature dataset HadGHCND, with a horizon-

tal resolution of 3.75°/2.5° longitude/latitude covering 

the period from 1950 to present, is available at https 

://www.metof fice.gov.uk/hadob s/hadgh cnd/ (Caesar 

et  al. 2006). The daily station minimum and maxi-

mum temperatures used in the HadGHCND dataset are 

mainly provided by the National Climatic Data Center 

(NCDC) Global Historical Climatology Network-Daily 

(GHCND). Please note that we do not use the HadEX2 

https://www.metoffice.gov.uk/hadobs/hadghcnd/
https://www.metoffice.gov.uk/hadobs/hadghcnd/
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dataset here as observational evidence since the tem-

perature extremes were calculated at points and then 

gridded, leading to scaling issues for the HadEX2 data-

set (Caesar et al. 2006; Zhang et al. 2011; Donat et al. 

2013; Sillmann et al. 2013; Dunn et al. 2014; Avila et al. 

2015).

2. The daily mean gridded precipitation from the Asian 

Precipitation Highly Resolved Observational Data Inte-

gration Towards Evaluation of Water Resources (APH-

RODITE) project, version 1101, with a horizontal 

resolution of 0.5°/0.5° latitude/longitude covering the 

period from 1951 to 2007, is available from http://www.

chiky u.ac.jp/preci p/engli sh/produ cts.html (Yatagai et al. 

2009, 2012). The dataset is maintained by the Research 

Institute for Humanity and Nature and the Meteorologi-

cal Research Institute/Japan Meteorological Agency 

based on the rain gauge dataset from Asian countries.

3. The global gridded monthly mean air temperature Cli-

mate Research Unit (CRU) Time-Series Version 4.0, 

with a horizontal of 0.5◦/0.5◦ longitude/latitude, covers 

the period from 1901 to 2015 (Harris and Jones 2017). 

This dataset is derived from the interpolation of global 

station data and has been widely used in previous studies 

to address temperature changes over Central Asia (Hu 

et al. 2014; Peng et al. 2019).

4. The outputs of historical simulations and future pro-

jections under RCP4.5 and RCP8.5 scenarios from 

20 CMIP5 models are used in this study (Taylor et al. 

2012). The studied variables are daily precipitation, 

maximum and minimum surface air temperatures, and 

monthly mean surface air temperature. All of the models 

that studied variables available from both historical and 

future projection experiments are selected. Only the first 

ensemble member (the first realization, initialization, 

and set of perturbed physics, which is denoted “r1i1p1”) 

from each experiment for the 20 CMIP5 models is used 

(Table 1). In total, 20 runs for each experiment are 

employed. Note that the multimodel ensemble mean 

(MME) of CMIP5 is calculated as the equal weighted 

average of all the available model runs. The convective 

schemes for the 20 employed models are illustrated in 

Table 2 and can be classified into 7 groups (“A”, “Be”, 

“Bo”, “D”, “G”, “T”, and “Z”). 

2.2  Definitions of extreme indices and the skill 
score

In this study, we analyze four extreme temperature and pre-

cipitation indices from the Expert Team on Climate Change 

Detection and Indices (ETCCDI) to investigate the changes 

Table 1  The CMIP5 models 

used in this study and the timing 

of each model in reaching 

1.5 °C and 2 °C global warming

The symbol “—” indicates that the model-projected warming magnitude is less than 2  °C during the 

twenty-first century

Model name Historical 

simulation

RCP4.5 

simula-

tion

RCP8.5 

simula-

tion

RCP4.5 1.5 (2.0)  °C RCP8.5 1.5 (2.0)  °C

CanESM2 r1i1p1 r1i1p1 r1i1p1 2017 (2031) 2013 (2026)

CCSM4 r1i1p1 r1i1p1 r1i1p1 2017 (2040) 2014 (2030)

CMCC-CM r1i1p1 r1i1p1 r1i1p1 2033 (2050) 2029 (2041)

CMCC-CMS r1i1p1 r1i1p1 r1i1p1 2034 (2053) 2030 (2041)

CNRM-CM5 r1i1p1 r1i1p1 r1i1p1 2035 (2056) 2030 (2044)

CSIRO-Mk3-6-0 r1i1p1 r1i1p1 r1i1p1 2034 (2048) 2034 (2044)

FGOALS-g2 r1i1p1 r1i1p1 r1i1p1 2039 (—) 2030 (2046)

GFDL-ESM2G r1i1p1 r1i1p1 r1i1p1 2051 (—) 2038 (2055)

GFDL-ESM2 M r1i1p1 r1i1p1 r1i1p1 2045 (—) 2035 (2051)

HadGEM2-CC r1i1p1 r1i1p1 r1i1p1 2038 (2055) 2029 (2041)

inmcm4 r1i1p1 r1i1p1 r1i1p1 2062 (—) 2045 (2058)

IPSL-CM5A-LR r1i1p1 r1i1p1 r1i1p1 2015 (2031) 2012 (2027)

IPSL-CM5B-LR r1i1p1 r1i1p1 r1i1p1 2027 (2050) 2023 (2038)

MIROC5 r1i1p1 r1i1p1 r1i1p1 2040 (2073) 2034 (2049)

MIROC-ESM-CHEM r1i1p1 r1i1p1 r1i1p1 2022 (2035) 2018 (2030)

MIROC-ESM r1i1p1 r1i1p1 r1i1p1 2021 (2034) 2021 (2030)

MPI-ESM-LR r1i1p1 r1i1p1 r1i1p1 2021 (2042) 2017 (2036)

MPI-ESM-MR r1i1p1 r1i1p1 r1i1p1 2024 (2046) 2020 (2039)

MRI-CGCM3 r1i1p1 r1i1p1 r1i1p1 2054 (2085) 2041 (2053)

NorESM1-M r1i1p1 r1i1p1 r1i1p1 2041 (2074) 2034 (2050)

Total (20) 20 20 20 20 (16) 20 (20)

http://www.chikyu.ac.jp/precip/english/products.html
http://www.chikyu.ac.jp/precip/english/products.html
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in extreme events in Central Asia (Zhang et al. 2011), as 

shown in Table 3. The four temperature extreme indices are 

the annual maximum (TXx) and minimum (TXn) of the daily 

maximum temperature and the annual maximum (TNx) and 

minimum (TNn) of the daily minimum temperature. The four 

precipitation extreme indices are the annual maximum length 

of consecutive dry days (CDD) with daily precipitation less 

than 1 mm, the maximums of 1-day (RX1 day) and 5-day 

(RX5 day) precipitation, and the simple precipitation intensity 

index (SDII) averaged over wet days with daily precipitation 

not less than 1 mm. We use the area-weighted method to cal-

culate the regional average. To keep consistency between the 

model simulations and observations, all of the datasets used 

in this study are remapped onto the same horizontal resolution 

and masked with HadGHCND. After that, the observed and 

model-simulated extreme climate indices are calculated based 

on the definitions of the employed ETCCDI over each grid for 

each model.

We employ the skill score to quantify the performances of 

the CMIP5 models in simulating the spatial patterns of the cli-

matological extreme temperature and precipitation indices in 

Central Asia (Taylor 2001; Hirota et al. 2011; Song and Zhou 

2014). The definition of the skill score can be expressed as:

(1)
Skill Score =

(1 + R)2
(

SDR +
1

SDR

)

Table 2  Information on the 

convective schemes employed 

for the CMIP5 model in this 

study

Model name Convective scheme Classification

CanESM2 Zhang and McFarlane (1995) Z

CCSM4 Zhang and McFarlane (1995) Z

CMCC-CM Tiedtke (1989) T

CMCC-CMS Tiedtke (1989) T

CNRM-CM5 Bougeault (1985) Bo

CSIRO-Mk3-6-0 Gregory and Rowntree (1990) G

FGOALS-g2 Zhang and McFarlane (1995) Z

GFDL-ESM2G Donner (1993) D

GFDL-ESM2M Donner (1993) D

HadGEM2-CC Gregory and Rowntree (1990) G

inmcm4 Betts (1986) Be

IPSL-CM5A-LR Tiedtke (1989), Emanuel (1991, 1993) T

IPSL-CM5B-LR Tiedtke (1989), Emanuel (1991, 1993) T

MIROC5 Arakawa and Schubert (1974) A

MIROC-ESM-CHEM Arakawa and Schubert (1974) A

MIROC-ESM Arakawa and Schubert (1974) A

MPI-ESM-LR Tiedtke (1989) T

MPI-ESM-MR Tiedtke (1989) T

MRI-CGCM3 Tiedtke (1989) T

NorESM1-M Zhang and McFarlane (1995) Z

Table 3  Definitions of the extreme climate indices used in this study

Index Name Definitions Unit

TNn Coldest night Annual minimum value of daily minimum temperature °C

TNx Warmest night Annual maximum value of daily minimum temperature °C

TXn Coldest day Annual minimum value of daily maximum temperature °C

TXx Warmest day Annual maximum value of daily maximum temperature °C

CDD Dry days Annual maximum length of dry days with daily precipitation less than 1 mm days

RX1 day 1-day maximum precipitation Annual maximum 1-day precipitation amount mm

RX5 day 5-day maximum precipitation Annual maximum consecutive 5-day precipitation amount mm

SDII Precipitation intensity Simple precipitation intensity index averaged over days with daily precipitation 

not less than 1 mm

mm  day−1
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Here, R is the pattern correlation between the observa-

tions and model simulations. SDR is the standard deviation 

ratio between the model simulation and observation.

Note that part of the Tibetan Plateau (TP) is located in 

arid Central Asia (gray shading in Fig. 1). CMIP5 models 

show an obvious cold bias in simulating the observed tem-

perature over the TP, which results from both the limitation 

in the model parameterization of physical processes and the 

uncertainty of the observations (because the observations are 

interpolated from nearby stations with low elevations, but 

the temperature is highly dependent on elevation) (Su et al. 

2013; Chen and Frauenfeld 2014; Chen et al. 2017; Palazzi 

et al. 2017). This cold bias can strongly affect future projec-

tions of the whole region. In addition, the TP is generally 

regarded in many studies as a specific high-altitude region 

that should be separately discussed (Su et al. 2013; Zhang 

et al. 2017; You et al. 2018). Thus, in this study, we focus on 

the region of Central Asia, with the TP masked out.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 1  Spatial patterns for the climatological mean extreme tempera-

ture indices (unit:  °C) during 1986–2005. The left, middle, and right 

columns indicate the results from the HadGHCND, CMIP5 MME, 

and bias between the CMIP5 MME and HadGHCND, respectively. 

The rows, from top to bottom, indicate TNn, TNx, TXn, and TXx. 

The black boxes indicate Central Asia (35–55°N, 50–95°E). Gray 

shadings denote the TP with elevations greater than 2500 m
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2.3  Bias correction method

To correct the bias of climate models in simulating the 

changes in regional temperature and precipitation, many bias 

correction methods have been proposed in previous studies 

(Weiland et al. 2010; Dosio and Paruolo 2011; Teutschbein 

and Seibert 2012; Wu and Huang 2016). As in previous stud-

ies (Chen et al. 2011; Teutschbein and Seibert 2012), we 

employ a variance scaling method in this study to correct the 

historical and projected temperature and precipitation indi-

ces over Central Asia from CMIP5 models. This method can 

guarantee that the climatological mean and standard devia-

tion of the model simulations during the reference period are 

the same as those of the observations, and the model biases 

are time variant. There are two steps to correct the model 

simulations based on this method.

1. The climatological means of the temperature and precip-

itation indices are corrected based on the “delta change” 

method:

Here, Ti,j(d) and Pi,j(d) indicate the bias-corrected tem-

perature and precipitation indices for each grid (i, j), respec-

tively. T̄obs,i,j ( ̄Pobs,i,j ) and T̄ref ,i,j(P̄ref ,i,j ) are the climatological 

mean temperature (precipitation) indices from the observa-

tions and model simulations during the reference period 

(1986–2005), respectively. Note we assume that 20 years 

of observations are enough to represent the climate vari-

ability of the region for model evaluation.Tsim,i,j and Psim,i,j 

are the model-simulated temperature and precipitation indi-

ces from both historical and future projection simulations, 

respectively. Note that all of the extreme indices are cor-

rected based on the method for each model run.

2. The long-term mean (denoted as ( ) ) of the delta change 

corrected historical ( Pref ,i,j(d) ) and the projected 

( Prcp,i,j(d) ) precipitation indices are removed to obtain 

the corresponding anomalies (denoted by ()′):

After that, the anomalies of the model simulations from 

Eqs.  (4) and (5) are scaled by the ratio of the observed 

(2)Ti,j(d) = Tsim,i,j + (T̄obs,i,j − T̄ref ,i,j)

(3)Pi,j(d) = Psim,i,j ×

(

P̄obs,i,j

P̄ref ,i,j

)

(4)P�

ref ,i,j
(d) = Pref ,i,j(d) − Pref ,i,j(d)

(5)P�

rcp,i,j
(d) = Prcp,i,j(d) − Prcp,i,j(d)

( �(Pobs,i,j) ) and model-simulated standard deviations 

( �(Pref ,i,j(d)):

Finally, the corrected historical ( Prefcor,i,j(d) ) and future 

projection ( Prcpcor,i,j(d) ) indices are achieved by adding the 

scaled anomalies back to the climatological mean values:

Note that the temperature indices are corrected based on 

the same method in step 2.

2.4  The timing of models in reaching 1.5 and 2 °C 
global warming

The 21-year time-slice approach is employed in this study 

to discern the impacts of 1.5 and 2 °C global warming. This 

approach can eliminate the uncertainties associated with cli-

mate sensitivities from the different models and allow us to 

consider the nonlinearities in extreme indices resulting from 

internal variability (Hawkins et al. 2014; Schleussner et al. 

2016; James et al. 2017).

For each model, the timing of 1.5 and 2 °C global warm-

ing is defined as the first instance when the 21-year run-

ning mean of the global surface air temperature reaches 

1.5 and 2 °C, respectively, above the preindustrial era level 

(1861–1890) (Table 1). The MME of the CMIP5 future pro-

jections in 1.5 and 2 °C warmer worlds (relative to the pre-

sent period of 1986–2005) is the equal weighted average of 

the corresponding changes from different models averaged 

over a 21-year window centered over the warming threshold 

occurrence.

2.5  Avoided intensification of extreme indices 
between the 1.5 and 2 °C warming levels

As in previous studies (Li et al. 2018a), the avoided intensi-

fication of extreme indices can be expressed as:

Here, C1.5 and C2.0 indicate the changes at the 1.5 and 

2 °C global warming levels with respect to the reference 

(6)P
�∗

ref ,i,j
= P�

ref ,i,j
(d) ×

[

�(Pobs,i,j)

�(Pref ,i,j(d))

]

(7)P
�∗

rcp,i,j
(d) = P�

rcp,i,j
(d) ×

[

�(Pobs,i,j)

�(Pref ,i,j(d))

]

(8)Prefcor,i,j(d) = P
�∗

ref ,i,j
(d) + Pref ,i,j(d)

(9)Prcpcor,i,j(d) = P
�∗

rcp,i,j
(d) + Prcp,i,j(d)

(10)Avoided intensification =
C2.0 − C1.5

C2.0
× 100 %
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period (1986–2005), respectively. This reference period is 

widely used in previous studies (IPCC 2013; Schleussner 

et al. 2016). Note avoided intensification percentages would 

be larger with a more recent baseline.

2.6  Response of extreme events to global warming 
and the signal‑to‑noise ratio

There are two steps used to calculate the response of extreme 

events to global warming (Zhang et al. 2018): (1) the 5-year 

overlapping mean over decadal periods (i.e., 2006–2015, 

2011–2020, up to 2086–2095) is employed on the projected 

extreme indices averaged over Central Asia and global mean 

near-surface air temperature to obtain the time series, and (2) 

the linear regression between them is derived as the response 

rate. Note that the response rate is calculated separately in 

each model.

The signal-to-noise ratio (SNR) is defined as the ratio 

of the multimodel ensemble median and the intermodel 

standard deviation (Pendergrass et al. 2015). The changes 

are robust if SNRs are greater than 1. The uncertainties of 

future projections are estimated based on ranking individual 

model simulations.

3  Results

3.1  Performance of the CMIP5 models in simulating 
extreme climate events

The observed and model-simulated spatial patterns of 

the climatological extreme temperature indices during 

1986–2005 are shown in Fig. 1. The observed TNn, TNx, 

TXn, and TXx in Central Asia decrease from southwest 

to northeast (Fig. 1a, d, g, and j). The spatial distributions 

of these indices can be well captured by the CMIP5 MME 

(Fig. 1b, e, h, and k). With respect to the observations, the 

CMIP5 MME underestimates the cold indices (TNn and 

TXn) but overestimates the warm indices (TNx and TXx) 

over nearly all of Central Asia, with a strong cooling center 

(lower than − 6 °C) in the southern region and a warming 

center (higher than 3 °C) in the western region.

We further show the observed and model-simulated 

spatial patterns of the mean states of the four precipitation 

extreme indices in Central Asia in Fig. 2. The observed 

CDD decreases from the southern to the northern parts 

of Central Asia, with two centers in Turkmenistan (longer 

than 140 days) and the Taklimakan Desert (approximately 

116 days) (Fig. 2a). The meridional distribution and the 

locations of these two centers of observed CDD are well 

captured by the CMIP5 MME (Fig. 2b). The observed CDD 

is overestimated by the CMIP5 MME over nearly the whole 

region (approximately 16%), except for the northwestern 

and northeastern parts (Fig. 2c). The absolute magnitude of 

the underestimated CDD over the northeastern part (32%) 

is much larger than that over the northwestern part (4%) 

of Central Asia. This results from the stronger overestima-

tion of dry days (daily precipitation less than 1 mm) over 

the northwestern part than over the other part of this region 

(figure not shown).

The observed RX1  day, RX5  day, and SDII show a 

zonal tri-pole distribution, with two dry centers over south 

Kazakhstan and Xinjiang in western China and one wet 

center over the mountain regions between those two loca-

tions (Fig. 2d, g, and j). The magnitudes of the observed 

RX1 day, RX5 day, and SDII over the dry (wet) centers are 

approximately 7 mm, 18 mm, and 2.4 mm day−1 (25 mm, 

50 mm, and 5.2 mm day−1), respectively. The locations of 

the observed dry/wet centers for RX1 day, RX5 day, and 

SDII are well captured by the CMIP5 MME (Fig. 2e, h, and 

k). However, these indices are overestimated by the CMIP5 

MME over nearly all of Central Asia, with the largest bias 

occurring in the southeastern part at a magnitude larger than 

40% (Fig. 2f, i, and l). The overestimations of the precipita-

tion indices (RX1 day, RX5 day, and SDII) are associated 

with the overestimated frequency of observed rain events, 

ranging from 1 to 10 mm day−1, i.e., the so-called “drizzling 

too much” phenomenon revealed by climate models in previ-

ous studies (Stephens et al. 2010).

In terms of the regional average, TNn, TXn, and CDD 

(TNx, TXx, RX1 day, RX5 day, and SDII) are underesti-

mated (overestimated) by the CMIP5 MME, with absolute 

values of 2.9 °C, 4.3 °C, and 8% (2.0 °C, 2.5 °C, 13%, 23%, 

and 10%), respectively (Figs. S1 and S2). The corresponding 

overestimations and underestimations are found in most of 

the models used in this study. The magnitudes of the model 

biases for the extreme indices show a large range, which can 

be partly associated with the model convective schemes. For 

instance, the models that overestimate observed TNn (CDD) 

mainly come from the “A” (“T”) scheme group (Figs. S1a 

and S2a).

The performances of the CMIP5 models in capturing 

the climatological mean extreme indices in Central Asia 

are quantified, as shown in Fig. 3. The pattern correla-

tions of the cold indices (TXn and TNn) are higher than 

0.7 for all of the models (Fig. 3a). The models tend to 

show a higher pattern correlation for cold indices (TXn 

and TNn) than the other extreme indices. All models 

underestimate the observed standard deviations of TXx 

and TNx (Fig. 3b). The models from the “A” scheme group 

tend to underestimate (overestimate) the observed stand-

ard deviations of the temperature (precipitation) indices. 

Considering the influence of both pattern correlation 

and ratio of the standard deviation to the observations, 

the CMIP5 models tend to show high skill scores for the 

cold indices (TNn and TXn), followed by the precipitation 
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indices (CDD, RX1 day, RX5 day, and SDII) and warm 

indices (TXx and TNx) (Fig. 3c). The skill scores of the 

CMIP5 MME are higher than those of most models for all 

extreme indices in Central Asia. A large range of model 

skill scores can be found for the warm temperature and 

precipitation indices. The CMIP5 models show high per-

formance in simulating the climatological spatial patterns 

of the observed surface air temperature. The skill scores 

of the CMIP5 models in simulating the spatial patterns 

of the climatological mean extreme indices over Central 

Asia are not sensitive to the convective schemes (Fig. 3c).

The above results reveal that the CMIP5 MME can 

generally reproduce the observed spatial patterns of his-

torical extreme events in Central Asia. However, obvi-

ous biases are also found in some models in simulating 

the extreme indices, resulting in a large range of cor-

responding skill scores. Thus, we employ a bias correc-

tion method (see Sect. 2.3) to constrain future projections 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 2  Spatial patterns of the climatological mean extreme precipita-

tion indices during 1986–2005. The left, middle, and right columns 

indicate the results from APHRODITE, CMIP5 MME, and the bias 

between the CMIP5 MME and APHRODITE, respectively. The 

rows, from top to bottom, indicate the CDD (days), RX1 day (mm), 

RX5 day (mm), and SDII (mm day−1), respectively. The unit for the 

model bias in the right column is %
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based on the observations before addressing the future 

changes in extreme events over Central Asia. In the fol-

lowing section, the results are derived from the bias-cor-

rected future projections.

3.2  Response of extreme events to global warming

The projected changes in the regionally averaged extreme 

indices in Central Asia under the RCP4.5 (blue lines) and 

RCP8.5 (red lines) scenarios are shown in Fig. 4. All of the 

extreme temperature indices would increase robustly (based 

on the signal-to-noise ratio test) during the twenty-first cen-

tury, at rates of 0.37 (25–75% uncertainties: 0.28–0.44) and 

0.80 (0.65–1.03)  °C  decade−1 for TNn, 0.20 (0.15–0.25) and 

0.50 (0.43–0.61)  °C  decade−1 for TNx, 0.34 (0.27–0.41) and 

0.68 (0.58–0.84)  °C  decade−1 for TXn, and 0.22 (0.18–0.28) 

and 0.53 (0.44–0.60)   °C  decade−1 for TXx under the 

RCP4.5 and RCP8.5 scenarios, respectively (Table 4). The 

higher the RCPs are, the larger the increasing rates. The 

increasing rates of the cold indices (TNn and TXn) are 

larger than those of the warm indices (TNx and TXx). At 

the end of the twenty-first century, TNn, TNx, TXn, and 

TXx under the RCP8.5 scenario would increase by 7.52 

(6.11–9.68)  °C, 4.70 (4.04–5.73)  °C, 6.39 (5.45–7.90)  °C, 

and 4.98 (4.14–5.64)  °C, respectively.

During the twenty-first century, RX1 day, RX5 day, and 

SDII would also increase robustly at rates of 1.22 (0.90-

1.63)  %  decade−1, 1.16 (0.83–1.52)  %  decade−1, and 0.87 

(0.60–1.11)  %  decade−1 under the RCP4.5 scenario and 

rates of 2.84 (2.13–3.66)  %  decade−1, 2.43 (2.03–3.21)  % 

 decade−1, and 2.00 (1.43–2.69)   %  decade−1 under the 

RCP8.5 scenario, respectively (Table 4). At the end of the 

twenty-first century, RX1 day, RX5 day, and SDII under the 

RCP8.5 scenario would increase by 26.70% (20.02–34.40%), 

22.84% (19.08–30.17%), and 18.80% (13.44–25.29%), 

respectively. In contrast, the CDD would increase under 

both the RCP4.5 and RCP8.5 scenarios at rates of 0.07 

(− 0.15 to 0.56)  %  decade−1 and 0.34 (− 0.46 to 1.30)  % 

 decade−1, respectively, showing large intermodel uncertainty 

(Fig. 4e).

We further show the responses of projected extreme 

climate events changes in Central Asia to global mean 

near-surface air temperature (Figs. 5 and 6). Both the 

temperature and precipitation extreme indices respond 

approximately linearly to global warming (Fig. 5). Except 

for the CDD, these responses are robust against the model 

spread, with high signal-to-noise ratios (Fig.  6). The 

response rates of the cold indices are larger than those of 

the warm indices, with rates of 1.93 (1.62–2.14)  °C  K−1 

for TNn and 1.71 (1.44–1.85)  °C  K−1 for TXn compared 

to rates of 1.18 (1.00–1.23)  °C  K−1 for TNx and 1.25 

(1.12–1.40)  °C  K−1 for TXx under the RCP8.5 scenario. 

The larger response rates of the cold indices compared 

to those of the warm indices result from a faster increas-

ing rate of winter temperature than summer temperature 

(Peng et al. 2019). The response rates of the extreme wet 

indices are higher than those of precipitation intensity, 

with rates of 6.30 (5.62–7.68)  %  K−1, 5.71 (4.93–6.61)  % 

(a)

(b)

(c)

Fig. 3  The skills of the CMIP5 models in simulating the spatial pat-

terns of the mean state of extreme climate indices in Central Asia 

during 1986–2005. a Pattern correlation; b ratio of the model-simu-

lated standard deviation to the observations; c skill score. “A”, “Be”, 

“Bo”, “D”, “G”, “T”, and “Z” in the parentheses denote the model-

employed convective schemes utilized, as listed in Table 2
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 K−1, and 4.99 (3.63–5.33)  %  K−1 for RX1 day, RX5 day, 

and SDII, respectively, under the RCP8.5 scenario. The 

response rates under the RCP4.5 scenario change slightly 

with respect to those under the RCP8.5 scenario (Figs. 6 

and S3).

3.3  Changes in extreme events in Central Asia 
under 1.5 and 2 °C global warming

The spatial patterns of the changes in extreme temperature 

and precipitation events at the 1.5 and 2 °C global warming 

Fig. 4  The 21-year running 

mean of the anomalies of the 

regionally averaged corrected 

extreme climate indices over 

Central Asia during 1979–2099 

(relative to the period 1986–

2005). a TNn; b TNx; c TXn; 

d TXx; e CDD; f RX1 day; 

g RX5 day; h SDII. The blue 

and red lines indicate the 

projections from the CMIP5 

MME under the RCP4.5 and 

RCP8.5 scenarios, respectively. 

Shadings indicate the 25–75% 

uncertainties. The black and 

gray colors indicate the cor-

responding results from the 

historical simulations. The units 

for the extreme temperature and 

precipitation indices are °C and 

%, respectively

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Table 4  Projected trends and 

the 25–75% uncertainties of the 

extreme climate indices over 

Central Asia during 2006–2099 

from the CMIP5 projections

The bold fonts indicate that the trends have high signal-to-noise ratios (greater than 1)

Extreme Index RCP4.5 RCP8.5 Unit SNR (RCP4.5/8.5)

TNn 0.37 (0.28–0.44) 0.80 (0.65–1.03) °C  decade−1 2.80/4.10

TNx 0.20 (0.15–0.25) 0.50 (0.43–0.61) °C  decade−1 3.23/3.97

TXn 0.34 (0.27–0.41) 0.68 (0.58–0.84) °C  decade−1 2.50/3.72

TXx 0.22 (0.18–0.28) 0.53 (0.44–0.60) °C  decade−1 2.70/3.64

CDD 0.07 (− 0.15 to 0.56) 0.34 (− 0.46 to 1.30) %  decade−1 0.35/0.20

RX1 day 1.22 (0.90–1.63) 2.84 (2.13–3.66) %  decade−1 2.25/3.07

RX5 day 1.16 (0.83–1.52) 2.43 (2.03–3.21) %  decade−1 2.18/2.82

SDII 0.87 (0.60–1.11) 2.00 (1.43–2.69) %  decade−1 2.20/3.13
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levels (relative to 1986–2005) under the RCP8.5 scenario 

are shown in Figs. 7 and 8, respectively. Compared with 

the present period (1986–2005), in a 1.5 °C warmer world, 

both the cold (Fig. 7a, g) and warm (Fig. 7d, j) indices would 

consistently increase (more than 70% of the models with the 

same sign of change) over Central Asia but show different 

spatial patterns, which may be partly due to the influence 

of internal variability. The warming magnitudes for the 

cold indices increase from the southeastern to northwestern 

parts of the region, with a strong warming center in northern 

Kazakhstan (larger than 2.6 °C). This is associated with the 

distribution of corresponding changes in the winter mean 

surface air temperature, which shows a larger increasing rate 

at higher latitudes (figure not shown). In contrast, the warm 

indices increase evenly across Central Asia at a value of 

approximately 1.5 °C.

Meanwhile, both extreme wet indices (RX1 day and 

RX5 day) and the mean precipitation intensity (SDII) would 

increase over nearly all of Central Asia but with low con-

sistency (less than 70% of the models have the same sign 

of change) over most regions (Fig. 8d, g and j). Three cent-

ers are found for RX5 day over the southeastern, central 

southern and northern regions, with a value greater than 

5%, while a center over the northeastern region for the SDII 

is projected at a rate of approximately 3%. The CDD would 

increase over the western region (2%) but decrease over the 

eastern and northern regions (− 2%) with low consistency 

(Fig. 8a).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5  Responses of corrected extreme events averaged over Central 

Asia (vertical coordinates) to global near-surface air temperature 

changes (horizontal coordinates) under the RCP8.5 scenario. a Sur-

face air temperature (Tas); b TNn; c TNx; d TXn; e TXx; f CDD; g 

RX1 day; h RX5 day; i SDII. Projected changes are calculated over 

decadal periods starting in 2006, with an overlap of 5  years (i.e., 

2006–2015, 2011–2020, up to 2081–2095). Each red line represents 

an individual model, and the black line denotes the linear fit of the 

median response. The red strings in the top left figure indicate the 

multimodel median scaling rates and the 25–75% uncertainties for the 

temperature (°C  K−1) and precipitation (%  K−1) indices
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In a 2  °C warmer world, the spatial patterns of the 

changes in both the extreme temperature and precipitation 

indices across Central Asia are similar to those in a 1.5 °C 

warmer world. The cold indices would increase by more 

than 1.8 °C over nearly the whole region, with a warming 

center in the northwestern part higher than 3.6 °C, while 

the warm indices would evenly increase by approximately 

1.8 °C. RX1 day, RX5 day, and SDII would increase consist-

ently over nearly all of Central Asia by more than 7%, 5%, 

and 4%, respectively.

Compared with the results in a 1.5 °C warmer world, 

0.5 °C more warming would consistently increase TNn and 

TXn over nearly the whole region, with the warming cent-

ers in the northern part of the region with values larger than 

1.2 °C and 0.8 °C, respectively. Meanwhile, TNx and TXx 

would consistently increase over Central Asia, with values 

larger than 0.4 °C. RX1 day, RX5 day, and SDII would 

increase over nearly all of Central Asia in response to 0.5 °C 

more warming, with high consistency for RX5 day and SDII 

in the northwestern and northern regions. The CDD would 

increase over most regions of Central Asia, with low model 

consistency.

The spatial distributions of projected changes in the 

extreme temperature and precipitation indices under the 

RCP4.5 scenario are generally similar to those under the 

RCP8.5 scenario (Figs. S4 and S5). However, there are still 

some differences between these two scenarios. The increas-

ing magnitudes of TNn, TNx, TXn, and TXx would be lower 

in a 1.5 °C warmer world under RCP4.5 over the whole 

region. The areas with consistent signs of changes for CDD, 

RX1 day, RX5 day, and SDII are larger in a 1.5 °C warmer 

world under the RCP4.5 scenario. In response to 0.5 °C more 

warming, the increases in TNn, TXn, and RX5 day (TNx, 

TXx, CDD, and SDII) would be larger (lower) under the 

RCP4.5 scenario over nearly all of Central Asia.

We further quantified the avoided intensification of 

extreme indices in Central Asia from 0.5 °C less warm-

ing, as shown in Fig. 9. If global warming can be limited 

to 1.5 °C instead of 2 °C, Central Asia is projected to ben-

efit from a consistently (the same sign of changes in more 

than 70% of the models) avoided intensification for both 

extreme temperature (TNn, TNx, TXn, and TXx) and pre-

cipitation (RX1 day, RX5 day, and SDII) events. Under the 

RCP8.5 scenario, TNx and TXx would increase by 1.82 

(1.60–2.17)  °C and 1.79 (1.31–2.14)  °C with respect to the 

present day for the 1.5 °C warming level, respectively, com-

pared with 2.25 (2.12–2.79)  °C and 2.31 (1.92–2.91)  °C 

for the 2 °C warming level, respectively (red bars in Fig. 9). 

Thus, the avoided intensification is estimated to be 24% 

(20–31%) and 29% (19–37%) for TNx and TXx due to 0.5 °C 

(a) (b)

(c) (d)

Fig. 6  Response rates of the corrected extreme indices over Central 

Asia to the changes in global mean surface air temperature under the 

RCP4.5 (blue bars) and RCP8.5 (red bars) scenarios. a Temperature 

extreme indices (°C  K−1). b Precipitation extreme indices (%  K−1). 

The multimodel ensemble medians and the 25–75% uncertainties 

are denoted by histograms and vertical black lines, respectively. c, d 

show the signal-to-noise ratios of the temperature and precipitation 

extremes, respectively
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less warming, respectively. This robust reduction can also 

be seen for TNn [33% (18–55%)] and TXn [32% (10–51%)] 

under RCP8.5. The reduced risk under 0.5 °C less warming 

can also be seen for RX1 day [39% (26–61%)], RX5 day 

[42% (14–63%)], and SDII [53% (31–70%)].

Compared with the results under the RCP8.5 scenario, the 

avoided intensification of TNn, TNx, TXn, and TXx (RX1 day 

and SDII) tended to be larger (smaller) under the RCP4.5 

scenario, suggesting a degree of scenario dependence. The 

estimated avoided intensification for the CDD shows large 

uncertainty under both the RCP4.5 and RCP8.5 scenarios.

4  Summary and discussion

The 2015 Paris agreement committed to hold the increase in 

global mean temperature to well below 2 °C and to pursue 

efforts to limit the global mean temperature to 1.5 °C above 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 7  Spatial patterns for the changes in corrected extreme tem-

perature indices (unit: °C) in 1.5 and 2  °C warmer worlds from the 

CMIP5 MME under the RCP8.5 scenario (relative to the period 

1986–2005). The left, middle, and right columns show the results in 

the 1.5 and 2 °C warmer worlds and the results due to an increase of 

0.5 °C, respectively. The rows, from top to bottom, denote TNn, TNx, 

TXn, and TXx. Dots indicate where more than 70% of the models 

agree on the sign of the changes (the same applies below)
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preindustrial levels, aiming to avoid the dangerous risk of 

climate change as a result of anthropogenic influence. Arid 

Central Asia is highly sensitive to extreme climate changes. 

We employ eight extreme indices (TNn, TXn, TNx, TXx, 

CDD, RX1 day, RX5 day, and SDII) to evaluate the impacts 

of 1.5 °C and 2 °C global warming scenarios on the changes 

in extreme events over this arid region based on CMIP5 

models. The main conclusions are summarized as follows:

The CMIP5 models tend to show reasonable performance 

in reproducing the spatial patterns for the mean states of all 

selected extreme indices. The models tend to underestimate 

TNn, TXn, and CDD but overestimate TNx, TXx, RX1 day, 

RX5 day, and SDII. A large range of model biases is found 

for all employed extreme indices. Therefore, a bias correc-

tion method is employed to constrain the future projections 

based on the observations.

As revealed in the corrected projections, all of the 

selected extreme indices, except for the CDD, in Central 

Asia would increase robustly during the twenty-first cen-

tury, with higher rates under higher RCPs. Under RCP4.5 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 8  Spatial patterns for the changes in corrected extreme precipita-

tion indices (unit: %) in 1.5 and 2 °C warmer worlds from the CMIP5 

MME under the RCP8.5 scenario. The left, middle, and right col-

umns show the results in 1.5 and 2 °C warmer worlds and the results 

due to an increase of 0.5 °C, respectively. The rows, from top to bot-

tom, denote CDD, RX1 day, RX5 day, and SDII
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(RCP8.5), the cold indices TNn and TXn would increase at 

rates of 0.37 (0.28-0.44) [0.80 (0.65–1.03)]  °C  decade−1 and 

0.34 (0.27–0.41) [0.68 (0.58–0.84]  °C  decade−1, respec-

tively, compared with the lower rates of the warm indices 

TNx and TXx [0.20 (0.15–0.25) (0.50 (0.43–0.61]   °C 

 decade−1 and 0.22 (0.18–0.28) [0.53 (0.44-0.60]   °C 

 decade−1, respectively). The increasing rates are 1.22% 

(0.90–1.63%) [2.84% (2.13–3.66%]  decade−1 for RX1 day 

and 1.16% (0.83–1.52%) [2.43% (2.03–3.21%]  decade−1 

for RX5 day, which are larger than those for the SDII, 

with a value of 0.87% (0.60–1.11%) [2.00% (1.43–2.69%] 

 decade−1, under RCP4.5 (RCP8.5). In response to 0.5 °C 

more warming under RCP8.5, the CDD would increase 

over most regions but decrease over the northeastern part, 

with low consistency. RX1 day, RX5 day, and SDII would 

increase over all of Central Asia but with high consistency 

over the southeastern, northwestern, and northern regions. 

The strong centers for TNn and TXn are found in the north-

western region; those for RX1 day, RX5 day, and SDII are 

found in the southeastern, northwestern, and northwestern 

regions, respectively, while no obvious strong centers are 

found for TNx and TXx.

The extreme indices, except for CDD, in Central Asia 

have approximately linear responses to global warming, 

with high signal-to-noise ratios under RCP8.5, with rates 

of 1.93 (1.62–2.14)  °C  K−1 for TNn, 1.71 (1.44–1.85)  °C 

 K−1 for TXn, 1.18 (1.00–1.23)   °C  K−1 for TNx, 1.25 

(1.12–1.40)  °C  K−1 for TXx, 6.30% (5.62-7.68%)  K−1 for 

RX1 day, 5.71% (4.93–6.61%)  K−1 for RX5 day, and 4.99% 

(3.63–5.33%)  K−1 for SDII. The rates under RCP4.5 change 

slightly compared with those under RCP8.5.

The intensification of extreme events over Central Asia is 

reduced at the 1.5 °C global warming level compared with 

that at the 2 °C level, showing obvious scenario dependence. 

In response to 0.5 °C less warming under RCP8.5, robust 

reductions are found for TNn, TNx, TXn, TXx, RX1 day, 

RX5  day, and SDII, with reduced magnitudes of 33% 

(18–55%), 24% (20–31%), 32% (10–51%), 29% (19–37%), 

39% (26–61%), 42% (14–63%), and 53% (31–70%), respec-

tively. The avoided intensification is larger (smaller) under 

RCP4.5 for TNn, TNx, TXn, and TXx (RX1 day and SDII). 

Large uncertainties are found for the avoided intensification 

of CDD.

Finally, we highlight the need for observationally con-

strained projections. An obvious difference is observed 

in the projected changes of extreme indices over Central 

Asia between the bias-corrected and uncorrected results. 

The response rates of TNn, TNx, TXn, TXx and CDD 

(RX1 day, RX5 day, and SDII) to global warming derived 

from the corrected projections in Fig. 5 are smaller (larger) 

than the uncorrected projections in Fig. S6. Compared to 

the uncorrected results (Fig. S7), stronger warming cent-

ers exist in the north-central region of Central Asia in a 

1.5 °C warmer world for the corrected TNn and TXn under 

Fig. 9  The changes in corrected 

extreme indices averaged 

over Central Asia in 1.5 and 

2 °C warmer worlds under 

the RCP4.5 (blue bars) and 

RCP8.5 (red bars) scenarios. 

The left and right columns 

show the results for the extreme 

temperature (°C) and precipita-

tion (%) indices. The top and 

middle rows indicate the results 

for 1.5 and 2 °C global warm-

ing, respectively. The bottom 

row indicates the avoided 

intensification from 0.5 °C less 

warming. The circles and bars 

indicate the multimodel medi-

ans and the 25–75% uncertain-

ties, respectively. Solid (open) 

circles indicate that more (less) 

than 70% of the models agree 

on the sign of the changes

(a) (b)

(c) (d)

(e) (f)
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RCP8.5, resulting in weaker warming over this region in 

response to 0.5 °C more warming (Fig. 7). The increasing 

magnitudes of RX1 day, RX5 day, and SDII derived from 

the corrected projections (Fig. 8) are larger than those 

derive from the uncorrected results (Fig. S8) over nearly 

all of Central Asia in response to 0.5 °C more warming. 

The avoided intensification of uncorrected (corrected) 

SDII in Fig. S9 (Fig. 9) is larger (smaller) under RCP4.5 

compared with that under RCP8.5.

The bias correction method used in this study mainly 

accounts for the bias in the climatological mean values. 

Obvious biases have been found for the CMIP5 models in 

simulating the historical trends of extreme indices (Fig. 

S10). The models tend to reproduce significant increas-

ing trends in the observed warm (TNx and TXx) and cold 

(TNn and TXn) indices but with overestimated and under-

estimated magnitudes, respectively. Those overestimations 

(underestimations) can be explained by the overestimated 

(underestimated) summer (winter) warming trend in Peng 

et al. (2019). The models tend to capture the observed 

changes in CDD and RX5 day but fail to reproduce the 

slight decreases in RX1 day and SDII. Changes in regional 

precipitation are strongly influenced by internal climate 

variability, which cannot be well reproduced in the cli-

mate models (Stott et al. 2010; Hegerl and Zwiers 2011; 

Sarojini et al. 2016). Previous studies have suggested that 

the influence of internal variability on regional tempera-

ture and precipitation changes would be small in mid- and 

long-term climate projections (Hawkins and Sutton 2009, 

2011), providing some reliance on the future projections in 

this study. However, the overestimations/underestimations 

of historical extreme events over Central Asia could result 

in potential biases in corresponding future projections.

The responses of extreme temperature and precipitation 

indices over Central Asia to global warming are nearly 

linear for the multi-model ensemble averages (Seneviratne 

et al. 2016). In comparison, the responses from individual 

model simulations look less linear, as seen in Fig. 5 of 

the revised manuscript. The linearities of extreme climate 

event changes over Central Asia response to global warm-

ing also vary in climate indices, with more linear for the 

responses of temperature indices than those of precipita-

tion indices. Besides, King (2019) highlights that acceler-

ated warming as a function of global warming will occur 

over Central Asia in summer under RCPs. However, the 

obvious non-linearities of temperature changes associ-

ated with global warming in summer cannot be found for 

the annual mean temperature in this study, implying the 

seasonal dependence of response linearity. Thus, the lin-

earities of extreme climate events changes over Central 

Asia in response to global warming under RCPs would be 

addressed in details for further studies.
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