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Observations of aerosols in the free troposphere and marine 

boundary layer of the subtropical Northeast Atlantic: 

Discussion of processes determining their size distribution 
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Abstract. During July 1994, submicron aerosol size distributions were measured at two sites 
on Tenerife, Canary Islands. One station was located in the free troposphere (FT), the other in 
the marine boundary layer (MBL). Transport toward these two sites was strongly decoupled: 
the FT was first affected by dust and sulfate-laden air masses advecting from North Africa and 
later by clean air masses originating over the North Atlantic, whereas the MBL was always 
subject to the noaheasterly trade wind circulation. In the FT the submicron aerosol distribution 
was predominantly monomodal with a geometric mean diameter of 120 nm and 55 nm during 
dusty and clean conditions, respectively. The relatively sma•11 diameter during the clean 
conditions indicates that the aerosol originated in the upper troposphere rather than over 
continental areas or in the lower stratosphere. During dusty conditions the physical and 
chemical properties of the submicron aerosol suggest that it has an anthropogenic origin over 
southern Europe and that it remains largely externally mixed with the supermicron mineral dust 
particles during its transport over North Africa to Tenerife. Apart from synoptic variations, a 
strong diurnal variation in the aerosol size distribution is observed at the FT site, characterized 
by a strong daytime mode of ultrafine particles. This is interpreted as being the result of photo- 
induced nucleation in the upslope winds, which are perturbed by anthropogenic and biogenic 
emissions on the island. No evidence was found for nucleation occurring in the undisturbed FT. 
The MBL site was not strongly affected by European pollution during the period of the 
measurements. The MBL aerosol size distribution was bimodal, but the relative concentration 

of Aitken and accumulation mode varied strongly. The accumulation mode can be related to 
cloud processing of the Aitken mode but also to pollution aerosol which was advected within 
the MBL or entrained from the FT. No bursts of nucleation were observed within the MBL. 

1. Introduction 

Subtropical oceanic atmospheres, adjacent to the western 

parts of the continents, are characterized by a distinct 

temperature inversion. This is a consequence of heating by 

compression of the subsiding air over a cold upwelling ocean. 
The inversion tops the marine boundary layer (MBL) at 

altitudes that range between 500 m, close to the center of the 

subtropical high, and 2000 m in the trade-wind region closer 

to the tropics. When the condensation level is lower than the 

inversion level, water vapor will condense on the available 
aerosol particles to form stratiform clouds. Because of the 

large scale of subtropical subsidence, the MBL stratiform 

clouds can extend over very large areas and cover 30% of the 
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world's oceans [h•ten•ational Satellite Cloud Climatology 

Project (ISCCP), 1992]. Charlson et al. [ 1987, 1992] drew 

attention to the possible role of these clouds in climate 
regulation and climate change. Assuming a constant liquid 
water content, these authors estimated that a 30% change in 

the cloud droplet number concentration of MBL stratus clouds 

could lead to a global-mean radiative forcing of-2 W/m 2. 
Cloud droplets form on a fraction of the aerosol particles, 

called cloud condensation nuclei (CCN). The estimates by 
Charlson et al. have therefore focused a lot of aerosol research 

on the origin and behavior of MBL aerosols and CCN. Even 

for the simplest case of the clean MBL, where sea salt and 

sulfate derived from dimethylsulfide (DMS) are the major 

aerosol constituents, there is not yet an agreement regarding 

the following two issues: (1) What is the relative contribution 

of sea salt and DMS-derived particles to the total number 
concentration of MBL CCN? (2) Is the number of DMS- 

derived aerosol particles controlled by nucleation of 

condensable species within the MBL, or are they formed in 

the free troposphere (FT) and subsequently entrained into the 

MBL? In case of a polluted MBL, aerosol particles and CCN 

are provided by advection from the continents. Here the 

following question may be raised: (3) What is the relative 

importance of transport within the MBL, and long-range 

transport in the FF with subsequent entrainment, as a way of 

perturbing the MBL and its clouds? All these questions have 
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to do with how to describe aerosol and, eventually, cloud 

droplet number concentrations in climate models; whether to 
focus more on transport issues, on atmospheric chemistry and 
aerosol dynamics, or on primary aerosol sources. 

A quantitative answer to the questions will eventually 

require Lagrangian studies in order to untangle aerosol 
processes from transport processes, as well as long-term 
measurements yielding meaningful statistics about the type of 

conditions or transport patterns that are prevailing. However, 
simultaneous characterization of the aerosol in the MBL and 

in the overlying FF should also give insights in the processes 

that are possibly involved. With this in mind, we have 
performed measurements on Tenerife, an island located in the 
NE subtropical Atlantic, where we operated two stations, one 
in the MBL and one in the free troposphere (FF). During 

summer, both stations are subject to clean maritime conditions 
and to outbreaks of anthropogenic aerosols from Europe and 
mineral dust from northern Africa. 

In this paper we focus on measurements of the size 
distribution of submicron aerosols and attempt to explain the 

observed variability (and regularities) in terms of aerosol 

dynamic processes and transport patterns. 

2. Sites and Meteorology 

Measurements were performed during July 1994, at two 

sites on Tenerife (Canary Islands, 16 ø 30' W, 28 ø 18'N ): 
Punta del Hidalgo (PDH), (50 m above sea level (asl)) and 
Izafia (IZO), (2360 m asl). 

Punta del Hidalgo (PDH) 

Measurements were taken from the top of a 50 m high 

lighthouse. It is located on the shore of the NE extremity of the 
island and is directly exposed to the northeasterly trade winds. 

PDH is a new site and no climatology of trajectories exists. 
Calculations of 5 days back trajectories during July 1994 (see 
Figure l a), 1995 and 1996 show that during this month the 
site is usually impacted by air masses subsiding around the 

high of the Azores. Often, these air masses will pass close to 

the Iberian Peninsula or even have their origin over western 

and central Europe, transporting enhanced levels of 

anthropogenic pollution through the MBL to Tenerife. On 1 
out of 90 days, air masses in the boundary layer came straight 
from Africa. 

Izafia (IZO) 

Measurements were taken at the Instituto Nacional de 

Meteorologia (INM) - Global Atmosphere Watch (GAW) 
Observatory, which is located at 2360 asl, on the mountain 

ridge that crosses the NE part of the island. Climatologies of 
back trajectories [Sancho et al., 1992, Merrill. 1994, Cuevas 

et al., 1996] show that in summer the site is mainly impacted 

by air subsiding from the •nid and upper troposphere over the 
North Atlantic and by continental air masses from northern 

Africa. Frequently, the latter have their origin over the 

Mediterranean or central Europe. 

Radio soundings from Santa Cruz de Tenerife show that 
during July the subsidence temperature inversion is located 

between 1000 and 1500 m. This inversion separates the 

MBL air masses arriving at PDH from the FF air masses 

arriving at IZO. However, during daytime, when the 

(volcanic, dark) island is heated, upslope winds will bring air 

from lower levels and possibly from below the inversion to 

IZO. Urban development and industry along the coast of the 
island as well as biogenic emission from the forests on the 

mountain up to 1900 m strongly alter the composition of the 

upslope winds, compared to what is sampled at PDH. 
For the period discussed in this paper (July 7-18, 1994), 

back trajectories were calculated with a variety of models: 

two three-dimensional (3-D) models based on the European 

Centre for Medium Range Weather Forecast (ECMWF) and 

the National Meteorological Center (NMC) wind fields 

respectively, an isobaric model based on the United Kingdom 

Meteorological Office (UKMO) model and isentropic 
trajectories based on NMC wind and thermodynamic data. 

They all show the same general picture, however relevant 

differences also exist. Here we will show only the Royal 

Netherlands Meteorological Institute (KNMI) trajectories 
(Figure 1). They are based on ECMWF wind fields, which 

have a horizontal resolution of 0.5 ø, and are available every 6 
hours. The relatively good performance of the ECMWF model 

over ocean regions has been demonstrated by Fuelberg et al. 

[1996]. The sensitivity of the KNMI trajectories to time and 

spatial resolution showed that a 6 hour, respectively, 1 o x 1 o 
resolution is largely sufficient to describe 3-D air mass 

trajectories in synoptic systems [Scheele et al., 1996]. 

In Punta del Hidalgo, air masses were mainly from the 

open Atlantic, except between July 11 (0600) and July 13 

(0600) when they traveled closer, or according to the isobaric 
UKMO model, over the Iberian coast (F. McGovern, private 
communication, 1997; see also Figure la). Izafia, on the 

contrary was influenced by European-African air between July 
8 and 14, followed by midtropospheric Atlantic air between 

July 15 and 18 (see Figure lb and lc). This analysis of the 
origin of air masses is confirmed by the chemical composition 
and loadings of the aerosol: mainly clean air at PDH and dust 
followed by clean air at IZO (F. McGovern, private 

communication, 1997). In this paper we will focus'on the size 
distribution of the submicron aerosol, and collate them with 

the transport patterns and aerosol processes. 

3. Instrumentation 

At both sites, aerosol size distributions were obtained with 

identical differential mobility particle sizers (TSI DMPS 

model 3932) operating in the size range between 16 and 620 

nm and giving a distribution every 20 min. The two systems 

were intercompared side by side using laboratory aerosol. The 
number concentrations resulting from integrating the number 

distribution were equal within 10%, and the geometric mean 
diameters of the distribution were within 5%. The DMPS at 

PDH failed after July 17. 

Apart from the TSI DMPS, a second system was used at 

IZO, consisting of a short and medium length Vienna-type 
differential mobility analyzer (DMA), [Winkhnayer, 1987] 
operated in parallel. The short, ultrafine DMA (UFDMA) was 

operated with a TSI 3025A particle counter, while the 
medium DMA (MEDMA) used a TSI 3010 counter. The size 

ranges scanned by he UFDMA and MEDMA were 3.5-20 nm 

and 20-620 nm, respectively. Both scans and hence the 
complete measurement from 3.5 to 620 nm is obtained every 

15 min. During the campaign, the "Twin DMA" and TSI 

DMPS gave, in the size range of overlap, integrated number 
concentrations within 20% and geometric mean diameters 

within 5%. After July 19 the UFDMA malfunctioned. For the 
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a 3-D 5-day backward trajectories (KNMI/ECMWF) ending at 975 hPa 
first begindate: SATURDAY 2 JULY 1994 12 GMT 
last enddate: SATURDAY 16 JULY 1994 t2 GMT 
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Figure la. Compilation of 5 days back trajectories ending at Tenerife, at 975 hPa. (Punta del Hidalgo (PDH)), at 1200 
UTC between July 7 and 16 1994. (a) Horizontal projection: the numbers [xx] yyy given at the beginning of each trajectory 
indicate the end day (xx) and the pressure level (yyy) where they start. (b) vertical projection. 

times and size classes where both IZO systems yielded valid 
data. they are presented in what follows as averages from the 
two systems. In other cases, data from one system are taken 
into account. At PDH, size distributions were measured at 40- 

50% RH, whereas at IZO the RH was always lower than 25%. 
These relative humidities were obtained from those recorded 

outside, taking into account the higher temperature in the 
instrumentation room. In what follows the shown size 

distributions can therefore be considered as those of the 

aerosol in the dry state. 

Other measurements that will be used for interpreting the 
size distribution measurements are as follows: (1) at IZO: 

surface ozone, measured with a Dasibi UV absorption 
instrument, CO2, with a nondispersive infrared Ultramat-2 
analyzer, dry and wet temperature, and global radiation with a 

Kipp and Zonen pyranometer; (2) vertical information of 
temperature, humidity, and wind over Tenerife, from sea level 

to 30 km height, from rawinsondes, released twice a day 
(0000 and 1200 UTC) at Santa Cruz de Tenerife; (3) National 

Oceanographic and Atmospheric Administration Advanced 

Very High Resolution Radiometer (NOAA/AVHRR) images 
over the NE Atlantic, obtained from the archive of the Dundee 

satellite receiving station (http://www.sat.dundee.ac.uk/). 

4. Observations 

Cloudiness From AVHRR Images 

The images are taken at the receiving station of Dundee 

(United Kingdom) in the late afternoon. They cover the NE 
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a 3-D 5-day backward trajectories (KNMI/ECMWF) ending at 750 hPa 
first begindate: SATURDAY 2 JULY 1994 12 GMT 
last enddate' WEDNESDAY 13 JULY 1994 12 GMT 
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Figure lb. Compilation of 5 days back trajectories ending at Tenerife, at 750 hPa (Izafia Station (IZO)), at 1200 UTC 
between July 7 and 13 1994, i.e., when dust was observed at IZO. (a) Horizontal projection, (b) vertical projection. 

Atlantic and western Europe, and include the Canary Islands 
at their bottom end. The images pertaining to our measuring 

period were collected and can be seen at the WWW site 
http://rea.ei.jrc.it/--vandinge/sat94/sat94.htrnl. By visually 
subtracting channel 2 (VIS) and channel 4 (IR) images, a 
rough impression of low-level cloudiness can be obtained. 
Detailed analysis of these satellite data is outside the scope of 
this study. 

During the period discussed here, the cloudiness over the 
NE Atlantic was rather complex. We focus oh the area 
between the Canary Islands and the coast of Portugal, i.e., the 
area crossed by the MBL air parcels during the last 36-48 
hours before reaching Tenerife. This area is generally free of 
low-level clouds on July 8, 9, 10, and 11. On July 12, low- 
level clouds are present immediately upwind of Tenerife and 

from July 13 onward the cloudiness becomes complex, with 
low-level clouds immediately north of the Canary Islands and 
often high-level, probably convective clouds near and over 
Portugal. 

Structure of the Atmosphere above Tenerife 

Plate la shows, as a 2-D contour plot, the time history of 

the vertical profile of the dew point, obtained from radio 
soundings at Santa Cruz de Tenerife. Santa Cruz is located at 
the lee side of the NE mountain ridge, hence protected from 
the trade winds. The first 600 m of the radio soundings are 

therefore not representative for the MBL upwind of Tenerife. 
The soundings show the humid MBL extending up to 1300 

m. The second clear structure is the extremely dry layer above 

6000 m. The layer in between, where IZO is located, shows 
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a 3-D 5-day backward trajectories (KNMI/ECMWF) ending at 750 hPa 
first begindate: SATURDAY 9 JULY 1994 12 GMT 
last enddate: MONDAY 18 JULY 1994 12 GMT 
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Figure lc. Compilation of 5 days back trajectories ending at Tenerife, at 750 hPa (IZO), at 1200 UTC between July 14 
and 18 1994, i.e. when clean air was observed at IZO. (a) Horizontal projection, (b) vertical projection. 

large variability in time and with altitude. The station is 

impacted by intrusions of dry upper tropospheric air on the 
night between July 10 and 11 and more clearly between July 
14 and 17. During these intrusions a distinct layering is 
observed, and IZO is representative only for a relaiively small 
portion of the free troposphere. During the other periods, 
which coincide with dust outbreaks from northern Africa, the 

free troposphere is more homogeneous, at least with respect to 
its thermodynamic properties. 

FT Size Distributions at lzafia (Nighttime) 

A good picture of the evolution and variability of the size 
distributions is given by the 2-D contour plot (Plate lb), 
showing dN/dlog(Dt, ) as function of Dt• and time, for the 

whole measuring period. The strong diurnal variations, with 
high concentrations of small particles during daytime stand 
out clearly. We will first consider the nighttime 
measurements, because they are least disturbed by upslope 
conditions and represent best the FT. A clearer view of the 

shape of the corresponding size distributions is given in 
Figures 2a and 2b, as a frequency plot of dN/dlog(Dt,) versus 
Dr,. The averages of the modal parameters of the distributions 
are given in Table 1. 

A first observation is that Fr size distributions are 
predominantly monomodal. This can be explained by the 
absence of cloud processing and the long residence times in 
the Fr, during which coagulation will reduce any initial 
distribution into a monomodal one. The absence of cloud 
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Dew point and size distributions in IZO and PDH 
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Plate 1. (a) Time history of the vertical dew point profile, obtained from radio soundings released twice a day at Santa 
Cruz de Tenerife. The horizontal line at 2360 m indicates the location of the Izafia Station (IZO) (b) Time history of the 
submicron size distribution measured at Izafia (IZO). The size distributions switch between unimodal during nighttime and 

bimodal during daytime. Two episodes can be discerned: the nighttime distributions change abruptly on July 14 (0000), 
which coincides with the arrival of dry upper tropospheric air at the station. (c) Time history of the submicron size 
distribution at Punta del Hidalgo (PDH) 50 m above sea level. The size distribution is always bimodal, with strong 
variations however in the relative concentrations of the accumulation mode and the Aitken mode. Four episodes can be 
discerned and are discussed in the text. 
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processing in the subtropical FT is supported by the ISCCP 

data, which show that the frequency of medium and high 
clouds in this area is typically < 10%. It is worth noticing, 

however, that according to theory, coagulation eventually 

results in lognormal distributions with a geometric standard 
deviation of 1.4 [Lai et al., 1972], whereas coagulation plus 
condensation would result in even narrower size distributions. 

Here the observed value is around 1.9! 

As mentioned before, all back trajectory models show that 

before July 14 the air masses arriving at IZO passed over the 
Sahara and, with some exceptions, over the Mediterranean 

before passing the Sahara. During the course of July 14, the 

transport pattern changed and by July 15 trajectories 

originated in the middle atmosphere above the North Atlantic. 

Contrary to this gradual change suggested by the trajectories 

and by the dewpoint (Figure 2a), the composition of tile 

atmosphere changed more abruptly at July 14 0000. The 

implication of this change from dusty to clean conditions is a 

dramatic decrease of the geometric mean diameter of the 
submicron aerosol from l l7 nm to 55 rim. We now discuss 

the dusty and clean episodes in more detail. 

Episode FT-I. July 7, 0000 to July 14, 0000 (Figure 2a). 

The average diameter of the aerosol is fairly constant (ll 7 + 
13 rim, see Table l), but the number concentration is more 

variable. This variability can be related to the large variability 

in horizontal and vertical transport over northern Africa 

(Figure lb). d'AImeida and Schutz. [1983] report that during 

desert dust storms particles in the range 0.1-0.2 lure Dr, can 
reach number concentrations up to 1500 cm -•. It is theretore 
possible that tile observed 400-600 cm -• submicron particles at 
IZO are mineral dust particles. However, several other 

observations support the possibility that the submicron mode 

consist of aged anthropogenic sulfate exported from southern 

Europe: (1) some of the back trajectories show transport out of 

southern Europe (Figure lb), (2)the chemical analysis of the 

aerosol at IZO shows that during dust events, sulfate loadings 

are usually high [Prospero et al., 19951, that the majority of 
this sulfate mass is in the submicron fraction, and that the 

Ca++/SO4 -- ratio is smaller in the submicron than in tile 

supermicron fraction, suggesting different origins tbr these 

fi'actions (D. Savoie and J.P. Putaud, personal 

communications. 1997), (3) during the episode discussed 

here, the regression of nighttime (12 hour averages) 

submicron aerosol volume on sulfate yields r 2 = 0.84, 
suggesting that most of the sulfate was indeed in the 
submicron fraction. 

The decrease of the number concentration and appearance 

of smaller particles at July I I 0000, coincides with drier air 

around Tenetire (see Plate i a), which is likely to be a 

remainder of air transported from higher altitudes, as is shown 

by the back trajectory ending on July I I 1200. Such 

downward transport was more clear after July 14. 

Episode FT-II, .July 14, 0000 to .July 18, 1200 (Figure 

2b). The sudden decrease in the particle size coincides with a 

decrease in water vapor and a strong increase with 03 (see 

Figure 3c). Plate l a shows that a layer of extremely dry air is 

subsiding over Tenefife, and the trajectories show that this 

layer has its origin in the middle troposphere. The 
monomodality and relatively small average diameter of the 
aerosol distribution show that the aerosol is relatively fresh 

and formed by nucleation and subsequent condensation and 

coagulation higher up in the troposphere. An aged aerosol 
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Diurnal Variation of the Aerosol at IZO 

The most prominent feature of the aerosol at IZO is the 
diurnal variation in the number concentration and size 

distribution of the aerosol. This diurnal variation in particle 
concentration has been noticed before. In fact, diurnal 

variations have been documented for most of the atmospheric 

constituents measured at IZO. They are explained by upslope 

winds that evolve during daytime and that bring air from 

lower levels and probably from within the MBL to the 
observatory. It has also been noticed before that during dusty 

conditions the upslope winds are weaker, and IZO is less 
influenced by air at lower levels [Cuevas et al., 1991]. 
Measurements of humidity, ozone. and CO2 during the period 
discussed here are shown in Figure 3 and confirm the previous 

analyses. For what concerns aerosol particles, our 
measurements show for the first time that the diurnal variation 

in number concentration is predominantly due to an increase 
in the ultrafine particles (Plate lb, Figure 3d). During clean 
conditions (FT-II), nucleation seems to happen in the upslope 

air near IZO, since particles were detected down at the lower 
detection limit of 3 nm. During dusty conditions (ET-I), 
nucleation seems to have happened and subsequently 

quenched in the upslope air before it arrived at IZO, since the 
smallest particles detected were significantly larger than in 
clean conditions. This difference can be explained by the 

known slower upslope transport during dusty conditions, 
and/or by quenching of nucleation when the upslope air mixes 
with the dust layer. 
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Figure 3. Diurnal variations of a variety of parameters 
measured at IZO observatory, documenting the upslope 
transport of air during daytime: (a) half hourly CO2 values 
(ppmv) and (b) corresponding standard deviation (%), (c) 
ozone and water vapor, (d) global radiation and aerosol 
particles smaller than 10 nm. 

Although the observed nucleation is most likely a local 

phenomenon, induced by the photochemistry in the perturbed 
air masses reaching IZO, it must be looked at with care since 

it might mask in situ nucleation over large areas in the 

undisturbed free troposphere at the altitude of IZO. There is 
no evidence in our data set that the latter is the case. The 

ultrafine particles never appeared before humidity, ozone or 

CO2 signaled the arrival of upslope winds at IZO, and they 

usually disappeared abruptly after the sun sets and the upslope 

wind collapses. The latter is true except on the evenings of 

July 16 and July 17 (see Plate lb). During these nights the 

winds at IZO drop below 2 m/s, and the back trajectories 
show local transport near Tenerife. It is therefore likely that 

the air that has been pumped up during the previous days is 

lingering on during nighttime. 

MBL Size Distributions at Punta del Hidalgo 

Plate l c shows the time history of the aerosol size 

distributions at Punta del Hidalgo, and Figures 2c, 2d, 2e and 

2f the corresponding distributions as frequency plots. Table 2 
gives the average modal parameters of the aerosol. 

An immediate observation is that the MBL size distribution 

is bimodal most of the time, showing an Aitken mode around 

60 nm Dp and an accumulation mode around 200 nm Dr,. 
High concentrations of ultrafine particles are not apparent, 

showing that bursts of nucleation did not occur in the MBL 

upwind of and close to PDH. This lack of nucleation bursts 
raises the problem of the origin of the Aitken mode particles, 
which we will discuss later. The accumulation mode is 

commonly explained by the cycling and chemical' processing 
of the Aitken mode aerosols in the stratiform cloud deck 

[Hoppel et al.. 1986, 1994]. However this explanation does 
not seem to apply to the accumulation modes observed before 

July 12. when AVHRR images do not show obvious low-level 

clouds upwind of Tenerife. This and the generally large 
variation in the relative importance of Aitken and 

accumulation mode asks for a closer look into the origin and 
behavior of these modes. We have used the KNMI model to 

calculate 5 days back trajectories ending in the MBL near 
Tenerife at 900, 925, 950. and 975 hPa. In the discussion 

below we will only refer to the 925 and 975 trajectories. The 

trajectory analysis and the patterns seen in Plate l c allow 

identification of four episodes. 

Episode MBL-I, July 9, 1800 to July 11, 0600 (Figure 

2c). The distributions are characterized by a sharp Aitken 

mode around 60-70 nm. The 925 and 975 trajectories ending 

on July 10 1200 originated five days earlier in the middle 

troposphere at 560 and 659 hPa, respectively. They reached 
the inversion (taken as the 900 hPa level) at about 40øN. 24 

to 36 hours prior to arrival in PDH. On the basis of these 
trajectories an average subsidence velocity of 0.8-1.0 cm/s can 

be inferred, which is within the range of entrainment 

velocities determined during the Atlantic Stratocumulus 
Transition Experiment (ASTEX): i.e., 0.3-1.0 cm/s 

[Bretherton et al.. 1995]. It is therefore likely that FI' air 
entered and mixed with the MBL without much resistance. 

The most straightforward explanation for the MBL Aitken 

mode is therefore that it originated from the preexisting FT 

aerosol that entered the MBL and evolved by condensational 

growth. Condensational growth would increase the size of the 
aerosol but also make the size distribution narrower. in 

particular when particles are smaller than the mean free path 
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Table 2. Average MBL Aerosol Properties, Based on Fits of Two Lognormal Distributions to the 
Measured Distributions 

Aitken Mode Accumulation Mode 

N, D,,.• . N. D,,:, 

Episode Type cm -• STP nm c•e cm -3 STP nm c• e 

MBL-I mixed 319 (152) 66 (9) 1.38 (0.16) 349 (115) 120 (40) 2.00 (0.28) 
MBL-II mixed 447 (327) 65 (7) 1.41 (0.12) 325 (73) 217 (14) 1.38 (0.08) 
MBL-11I clean 321 (169) 52 (6) 1.47 (0,09) 207 (51) 209 (16) 1.35 (0.07) 

MBL-IV clean 228 (44) 52 (2) 1.40 (0.05) 249 (23) 178 (5) 1.34 (0.02) 

MBL, marine boundary layer 

Values in parentheses' I standard deviation. 

length of the condensing molecules, as is the case here 

[Friedlander; 1977, p. 253]. This would explain the 

significantly lower value of the geometric standard deviation 

of the MBL Aitken mode (1.38 + 0.16) compared to that of a 
clean FF aerosol (1.89 + 0.1). We cannot exclude nucleation 

occurring upwind of Tenerife, during the initial mixing of dry 

FT air with humid MBL air [e.g. Hegg et al., 1992] and that 
the freshly nucleated aerosol evolved and contributed to the 

Aitken mode. Apart from the sharp Aitken mode, a broad 

accumulation mode is also present (see Figure 2c). Cloud 

processing is not a viable explanation, since no low-level 

clouds were present between the point where the trajectories 
entered the MBL and PDH. The FT aloft, however, was 

heavily laden with aerosol, which we interpreted as 
anthropogenic sulfate. The AVHRR pictures and back 
trajectory analysis show that this FF aerosol extends NE of 

Tenerife toward Portugal. It is thus possible that entrainment 
has partially flushed the clean MBL with the aerosol from the 

F-F, and that the latter is at the origin of the observed 

accumulation mode. This scenario is supported by the 
correspondence between the geometric mean diameter and 

standard deviation of the MBL accumulation mode particles 
and the FT aerosol aloft. A narrowing of the size distribution 

is indeed not expected since the particles are now larger than 
the mean free path length. The scenario is also supported by 
the chemical analysis of the MBL aerosol, which shows traces 

of mineral dust (D. Savoie, personal communication, 1996). 

Episode MBL-II, July 11, 0600 to July 13, 0600 (Figure 

2d). Although low-level clouds are still not clearly present 
upwind of PDH, the aerosol distributions are characterized by 
prominent Aitken and accumulation modes. The 925 

trajectory ending on July 11 1200 still originated at 580 hPa, 
and could still explain the large Aitken mode. The 975 
trajectory. on the other hand, remained below the 800 hPa 

level during the previous 5 days (see Figure 4). Although the 
latter trajectory remains over the ocean, the isobarit 1000 hPa 

trajectory of the UKMO model was located more eastward 

and passed over the Portuguese coast. This situation must 

have resulted in mixing of clean FT air with polluted BL air, 
since black carbon and sulfate concentrations in PDH were 

found to be higher during this period (McGovern, personal 
co•nmunication, 1997). Anthropogenic aerosols rapidly 
develop an accumulation mode [e.g. Raes eta!., 1995], so the 
bimodal distribution during episode MBL-II can be explained 
as the result of mixing of two air masses: one with a 

prominent Aitken and one with a prominent accumulation 

mode. Both modes hide the contribution of FF aerosol 

entrained from aloft, which according to the aerosol chemical 

analysis is still present. The trajectories ending on July 12 
1200 show a similar pattern. During the afternoon of July 12 
low clouds are present just upwind of Tenetire, so that the 

aerosol observed at PDH could have been minimally cloud 
processed. 

Episode MBL-III, July 13, 0600 to July 15, 0800 

(Figure 2e).The distributions are characterized by prominent 
Aitken and accumulation modes. The 975 trajectories ending 
on July 13 and July 14 1200 stayed below the 850 hPa level 

all the time, whereas the 925 trajectories stayed below the 740 

hPa level. The trajectories are passing farther away from the 
Iberian coast, and the chemical measurements show minimal 

anthropogenic impact. The air masses ending at PDH thus 
stayed predominantly within an unperturbed MBL for more 

than 5 days, and cloud processing has likely been the main 
process shaping the bimodal size distribution. The short time 

variability in the Aitken mode must be explained by 

variability in the source of this mode. The variability in the 

accumulation mode is probably due to intermittent 

precipitation in the air mass. Hence episode MBL-III 

corresponds best to the classical picture of an undisturbed 

MBL, in which there is, on the average, a balance between the 

source of the Aitken mode particles, cloud processing to create 
the accumulation mode, and wet removal of the accumulation 

mode particles. 

Episode MBL-IV, July 15, 0800 to July 16, 0600 (Figure 

2f). There is again a prominent Aitken and accumulation 

mode, but the modal parameters changed slightly. This 

coincides with another change in mainly vertical transport. 

The 925 and 975 back trajectories ending on July 15 1200 

originated again in the middle troposphere, at 520 and 700 

hPa respectively, and enter the MBL 24- 36 hours upwind of 

Tenetire. The situation is very similar to Episode MBL-I, 

except for the clear presence of low level clouds along the 

trajectories toward PDH. It is most likely that cloud 

processing has eroded the aerosol entering the MBL to create 

the typical MBL Aitken and accumulation modes. 

5. Discussion 

FT 

Mixing of dust with sulfate aerosols at IZO. The 

likelihood that the dust plume observed at IZO is mixed with 

sulfate from Europe is of interest, since the degree of 
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Figure 4. Five-day back trajectories ending on July 11, 1200 at four pressure levels within the marine boundary layer 
(MBL): 975,950, 925 and 900 hPa. (a) horizontal projections, (b) vertical projections. They show that the composition of 
the MBL at PDH is made up of two air masses, one of them recently originating in the free troposphere. 

internal/external mixing of these aerosols has implications for 
the radiative effect of the sulfate plume. We gave evidence for 
the fact that the sulfate particles observed during the dust 
event are predominantly in the submicron range, hence 
externally mixed from the supermicron dust particles. It is still 
possible that the sulfate is internally mixed with the 
submicron mineral dust aerosol that might be present. 

External mixtures of submicron pollution aerosol and 

supermicron dust aerosols have been observed by Clarke et 
al. |1996a] during one aircraft profile over the North Atlantic. 
They observed a transition from a predominantly pollution 
aerosol between 900 and 1200 m altitude, via an external 

pollution/dust aerosol mixture between 1200 and 2500 m, to a 

predominantly dust aerosol between 2500 and 4200 m. It is 
not clear from their data whether the mixed aerosol layer 

resulted frown a local vertical mixing between the pollution 

layer below and the dust layer aloft, or whether the various 
layers advected independently to the location of the aircraft 
descent. Both our observations and those of Clarke et al. 

[1996a] show that the anthropogenic sulfate remains largely 
in the size range that is most efficient for scattering light. Over 
the North Atlantic, this is probably due to the fact that the 

European sulfate aerosol is already well aged before it mixes 
with dust. The particles are therefore relatively large, have a 
low diffusivity, and will not interact with the dust particles. 
This is in contrast with a fresh sulfate plume, in which sulfur 
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dioxide is still being oxidized. Such a plume is expected to 

interact more efficiently with dust, e.g., by heterogeneous 
reactions or condensation. In this case the sulfate would be 

moved into the supermicron size range, which is much less 

effective for scattering light [e.g. Dentenet et al., 1996]. It is 

therefore important to study this degree of mixing in more 

detail, for example, using single-particle chemical analysis. 

High ozone concentrations at IZO. There is an ongoing 

discussion whether the high 03 levels at IZO, as seen for 

example on July 15, have an anthropogenic or natural origin 

[Schmitt, 1994: Prospero et al., 1995; Millan et al., 1996; 

Cuevas et al., 1996]. The size distribution observed during the 

clean episode FF-II might shed some light on this. The back 

trajectories and vertical profile of dew point during this 

episode support the upper tropospheric origin of the air mass 

over IZO. Furthermore, the relatively small size of the aerosol 

particles during nighttime argues for an aerosol that restilts 

from nucleation (the day betbre) in the upper troposphere 

rather than transport of aged anthropogenic or slratospheric 
aerosol. However, this does not exclude yet that the ozone is 

anthropogenic. Ozone and insoluble gaseous aerosol 

precursors may have been pumped up over industrial areas by 
convective clouds into the FT. while precipitation in such 

clouds removed most of the pollution aerosol [Prospero et al., 

1995]. However, one timber observation supports the natural 

origin of the air mass sampled at IZO, namely that the clean 
FT aerosol size distributions do not show an accumulation 

mode (see Figtire 2b). This observation could only be made 

consistent with convective transport of polluted air, if 

convective transport would remove with 100% efficiency the 

anthropogenic aerosol precursors and the pollution aerosol. 

This is unlikely. since convective transport is not necessarily 

connected with precipitation. We therefore conclude that 

during episode FT-II the air masses sampled at IZO during 

nighttime were not influenced by anthropogenic pollution. and 

that the ozone and aerosol had a natural origin. 

MBL 

There are a number of similarities between our 

observations in the NE Atlantic, and observations made over 

the remote Pacific Ocean. Covert et al. [1996] reported a 

dominant Aitken mode in areas of large-scale subsidence and 

during subsidence events behind cold fronts. Their Aitken 

mode is shifted to smaller sizes compared to what we 

observed during, for example, MBL-I. This is possibly due a 

faster downward transport (in particular behind cold fronts), 

hence shorter growth times for the newly formed aerosol. In 
the Pacific trade-wind MBL, Covert et al., [1996] and Clarke 

et al. [1996b] observed clearly distinct Aitken and 

accumulation modes, similar to what we observed during 

MBL-III. In all these cases it was the long residence and 

processing time within the MBL that resulted in the bimodal 
distribution. This distribution can be considered the result of a 

stationary state between a source of Aitken mode particles, 

cloud processing, and wet removal. 
The fact that bursts of nucleation were not observed within 

the MBL is consistent with observations made elsewhere in 

subtropical or trade-wind regimes [Clarke et at., 1996b, 
Clarke et al. 1996c, Covert et al. 1996. R. Van Dingenen, 

personal communication, 1995). These observations have 

risen the question about the origin of the Aitken mode 

particles observed in the MBL. Several hypotheses have been 

presented in the literature, which can be divided into 
"entrainment from the FF" [Raes et at., 1993; Clarke, 1993; 

Raes, 1995; Clarke et at., 1996b,c] and "nucleation within the 

MBL" [e.g. Raes and Van Dingenen, 1992, Lin and 
Chameides, 1993; Kerminen and Wexler, 1994; Pandis et at., 

1994; Coffinan and Hegg, 1995]. 

Entrainment. Our observations during episodes MBL-I, - 
II. and -IV, in particular the back trajectories originating in 
the FT and the similarities between the MBL Aitken mode 

and the FF aerosol, argue for a FF origin bf the MBL Aitken 

mode. During these episodes the transport from FT to MBL 

seemed to occur as an injection of FF aerosol into the MBL at 

a certain place. This is much different from the way Raes 
[1995] modeled entrainment. i.e., as a constant flux 

everywhere across the inversion. The latter type of entrainment 

can still be invoked for explaining the Aitken mode during 

episode MBL-III. The observed variability in the Aitken mode 
number concentration indicates however that the associated 

flux of particles is also very variable. 

Other support for entrainment stems from the observation 

that despite the obvious decoupling of transport in the MBL 

and FT, and the differences in cloudiness in both layers, the 
total number concentrations of the MBL and FT aerosol are 

not very different. In Figure 5 we have plotted the frequency 
distributions of aerosol number concentrations at IZO and 

PDH for the whole duration of the period. It is shown that the 

background aerosol number concentrations at PDH and IZO 

were about equal at 600 cm -3 STP. A simple explanation could 
be that wherever and however the aerosol originates, 

coagulation will reduce the total number concentrations below 

1000 cm • after several days of transport away from the source 
regions. The other explanation is entrainment, which provides 

enough aerosol surface tbr condensation and quenching in situ 
MBL nucleation. In absence of this in situ source of new 

particles in the MBL, the MBL number concentration must 

eventually equal the FT number concentration. or be lower in 

case of wet removal within the MBL. According to aerosol 

dynamics calculations, 15 lum:/cm 3 of dry aerosol surface is 
sufficient to quench (classical) nucleation of H:SO_•-H20 

aerosols at typical remote MBL conditions IRaes. 1995]. From 

measurements, O'Dos,'d et al. 11996] derived that a dry 

surface area of about 3 lum:/cm 3 would be sufficient. Episodes 
FT-I and FT-II yield average dry FT aerosol surface areas of 

22 and 4.4 [im:/cm •, respectively, with minimum values of 10 
and !.2 lum:/cm 3. Considering that within the MBL, 
condensation, and cloud processing would further increase the 
size of the entrained FT aerosol, we can conclude that the 

injected or continuously entrained FT aerosol was probably 

sufficient to quench in situ nucleation in the MBL. We note 

also that in case of a continuous entrainment (e.g., episode 
MBL-III) the time scale of diluting the MBL is about 2 days 

(assuming an MBL height of 1000 m and an entrainment 

velocity of 0.6 cm/s), which is less than the (at least) 5 days 

the back trajectories stayed within the MBL before reaching 
PDH. 

In-situ nucleation. Classical nucleation theory predicts 

nucleation to be critically dependent on the environmental 

parameters [e.g.. Jaecker-Voirol and Mirabel, 1988]. Aerosol 

dynamic models based on this theory therefore predict the 
formation of aerosols in bursts, filling up the size range 

around and below 20 nm [e.g. Raes. 1995]. This was not 
observed at PDH, and it is unlikely that it happened randomly 
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Figure 5. Frequency of measured values of total number concentration in Punta del Hidalgo (day and night) and Izafia 
(night only), showing that between July 9 and 17, the background number concentration in the free troposphere was 
essentially equal and around 600 cm -3 STP. Number concentrations were obtained by integrating the TSI DMPS size 
distributions. 

upwind of PDH, as this would have restilted in a more 
variable mean diameter of the Aitken mode. There is, 

however, experimental evidence for a less critical 

(nonclassical) nucleation process [Weber et at., 1996], which 

opens the possibility that nucleation occurs more continuously 
at low rates. Such a nucleation mechanism cannot be 

dismissed by our data. Applying a continuous low rate 
nucleation of the order of 2.10 -3 cm-'•s -• in our AERO2 model 

[Raes, 1995] can indeed lead to a mode that peaks around 65 

nm D/,, but with a tail down to the size of the nucleating 
particles. This is because at a lower nucleation rate but 
constant formation rate of condensable material, more 

condensable material is available per particle. Hence each 

particle will initially grow very fast but eventually pile up 
around -- 65 nm where its growth becomes diffusion limited. 

The existence of an Aitken mode tail into the nanometer range 

could not be ascertained by the instrumentation operated at 

PDH. Low concentrations of nanometer particles would. in 

fact, be difficult to detect with any DMA system. because of 

the low sensitivity of these systems in the sub-10 nm range, 

and approaches like those of Weber et al. [1996] are essential. 
Sea spray. During our measuring period. production of 

submicron particles by sea spray can be neglected as a source 

of aerosol number. In the area upwind of Tenerife the average 

wind speed is around 5 m/s. and according to O'Don'd et al. 

[1993], such wind speeds would contribute about 10 sea 

spray particles/cm 3 larger than 100 nm D•,. This is about 3 to 
10% of the observed number of accumulation mode particles. 

and it is unlikely that it would be more in the Aitken mode. 

Van Dingenen et al. [1995] have interpreted the 
accumulation mode of marine aerosols as cloud condensation 

nuclei. Our measurements show that during episode MBL-II 

the accumulation mode very probably consisted of pollution 
derived aerosol. which contained enhanced levels of black 

carbon. Since carbon containing particles might not all be 

capable of being activated in clouds, the contribution of sea 
salt to actual CCN (rather than accumulation mode particles) 

might have been larger than 3-10%. Single-particle chemical 

analysis of CCN is required to quantitatively address the 
question of the contribution of sea salt to CCN. 

6. Summary 

The observations of the aerosol size distributions at IZO 

and PDH allowed to identify various episodes, which were not 

always detectable with chemistry measurements only. For 
instance, the chemical composition of the aerosol at PDH 

distinguished only between the polluted episode MBL-II on 
the one hand, and the clean periods before and after 

(McGovem, personal communication, 1997). Back 

trajectories, radio soundings. and AVHRR images, were 
essential to interpret the observations in terms of the origin of 
the air mass. and to show that FT-MBL transport, cloud 
processing. and mixing of air masses were the main processes 
shaping the aerosol distribution of the MBL aerosol. Our 

measurements do not give quantitative answers to the three 
questions mentioned in the introduction but yield the 
tollowing information: 

1. There is a close link between the variabili.ty of MBL 
aerosol and the changes in vertical transport patterns. This 
supports that entrainment or injection of aerosols from the FT 

is a major source of MBL aerosol. The entrainment process 

and its effect on MBL aerosol dynamics is more complex than 

originally proposed by Raes [1995l. For instance. the 

variability in the number concentration of the MBL Aitken 

mode suggests that the flux of aerosols by entrainment is not 
constant. This can be due to variations in the entrainment 

velocity. which is related to the structure of the MBL and the 

turbulent forces, and/or it can be due to the layered structure of 
the b--T, which we observed. 

2. When injection of FF aerosol occurred, it occurred at a 

rather fixed distance upwind of the MBL site. It cannot be 

excluded that at the moment of injection, when dry FT air is 

mixed with humid MBL air, new particles were formed by 

rapid nucleation, which subsequently grew and contributed to 
the observed Aitken mode at the site. 
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3. No bursts of nucleation did occur at the MBL measuring 

site, and it is unlikely that they happened at random upwind of 
the site. A continuous slow production of nanometer particles, 

according to a nonclassical nucleation process cannot be 

excluded. Measuring such a slow production is at the limit of 
present measuring capabilities. 

4. During desert dust outbreaks, major submicron aerosol 

loadings were found in the free troposphere, which were very 

likely associated with anthropogenic aerosol originating over 

southern Europe. We have some evidence that entrainment of 

these aerosols affected the MBL aerosol composition during 

some of the episodes. Advection in the free troposphere and 

subsequent entrainment must be considered as a pathway to 

affect MBL aerosols, and possibly CCN, far away from 

pollution sources. 
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