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Abstract. The decomposition of martensite during tempering or ageing is an important phenomenon as it leads to 
changes in the mechanical properties. These changes could take place during both steel manufacturing or in-service. 
Thus, their understanding is required to predict the material performance. Recent advances in the development of 
local electrode atom probes has led to a significant increase in the analysed volume of material (up to 100 millions of 
atoms) and at the same time reduced the acquisition times. This allows improvement in data statistics when 
investigating fine nanoscale features, such as solute segregation, clustering and ultrafine precipitation. Selected results 
of atom probe studies on the decomposition of martensite from bake hardening of a pre-strained Transformation 
Induced Plasticity (TRIP) steel and ageing of FeNiTiMnAl maraging steel are presented. 

 
 
 
1. Introduction  
 
Recent developments of local electrode atom probes [1-3] open new opportunities for analysis of martensite 
decomposition at the atomic level. These modern instruments allow the collection of data in a shorter period of 
time from a larger volume of material compared to the previous generation atom probe field ion microscopes. As 
a result, a more accurate and statistically better analysis of chemical composition, shape and distribution of fine 
microstructural features present in the material, such as nanoscale precipitates and clusters, is achieved.  

For decades, the decomposition of martensite in various steel grades has attracted the attention from both 
fundamental and applied perspectives. This process leads to modification of the mechanical properties, which 
could have both beneficial and negative effects depending on the stage of martensite decomposition and the 
desirable in-service characteristics of the material. Whereas, there is a general agreement on the stages of 
decomposition taking place during tempering of carbon-containing ferrous martensite [4,5], some discrepancies 
still exist on the nature of the initial carbides formed. However, the atom probe tomography not only provides 
insight into the early stages of clustering in martensite, but also highlight the details of the precipitation sequence 
at a later stage.  

Transformation-induced plasticity (TRIP) steels are promising candidates for applications in the 
automotive industry [6-9]. After forming, the automotive body is subjected to a paint baking process (typically 
for 20 minutes at 175-180oC), which results in an additional strength increase [7-9]. The microstructure of the 
TRIP steels consists of polygonal ferrite, carbide-free bainite morphologies, retained austenite and martensite. 
As previous studies using electron microscopy have shown [9-13], during pre-straining and bake hardening 
various microstructural changes take place: increase in dislocation density, especially in polygonal ferrite in the 
vicinity of hard martensite or retained austenite crystals, strain-induced transformation of austenite to martensite 
and precipitation of fine carbides in the bainitic ferrite. 

FeNiTi (Mn,Al) maraging steels exhibit an unusual rapid hardening phenomenon after just 5 s ageing at 
550oC [14-17]. In this condition it achieves approximately 50% of the maximum increase in strength without 
significant sacrifices in ductility. Based on the transmission electron microscopy data, there is no indication of 
precipitate formation during ageing times below 60 s. Thus, atom probe tomography is the most suitable 
technique to elucidate the decomposition of martensite in this steel. 
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In this paper we present selected atom probe studies on decomposition of martensite during bake 
hardening of the TRIP steel, subjected initially to thermomechanical processing, and on the ageing behaviour of 
Fe-Ni-Mn-Ti-Al maraging steel.  

2. Experimental

2.1 TRIP steel

The compositions and selected processing parameters for the studied TRIP steel are given in Table 1. It was 
subjected to thermomechanical processing simulation using a laboratory rolling mill at Deakin University. The 
details of the processing schedule are described elsewhere [13]. After the simulation of coiling in a fluidized bed 
furnace, the samples were quenched to room temperature. Tensile specimens were machined from the strip and 
subjected to 4% pre-straining (PS) before bake hardening (BH) at 175 oC for 60 min.

Table I. TRIP steel compositions and thermomechanical processing parameters

Steel
Element Parameters

C Si Mn Mo Al Cu Nb P TAC.oC TIH, oC tIH, s

AR
wt% 0.21 1.18 1.52 0.29 0.57 0.03 0.036 0.027

780 450 1200at% 0.95 2.3 1.51 0.16 1.15 0.026 0.02 0.05

M-
BH at% 1.5

±0.07
3.7 

±0.1
1.11 

±0.06 0 1.64
±0.07

0.07 
±0.02

0.06
±0.01

0.03 
±0.01

Fe is balance. AR-as-received, M-BH - martensite after bake hardening, TAC- accelerated cooling start temperature; TIH-
isothermal hold temperature, tIH-holding time

Atom probe tomography (APT) studies were carried out using the Oxford nanoScience 3DAP at the Monash 
Centre for Electron Microscopy. The pulse repetition rate was 20kHz and the pulse fraction was 0.2. The sample 
temperature was 60K.

2.2  Maraging steel

An experimental steel with the following composition: Fe-20.1Ni-1.8Mn-1.6Ti-0.59Al-0.04Si-0.01C with P and 
S < 0.001 (wt%) was solution heat treated at 1100 C for 12 h. Thin slices of ~0.4mm thickness were then cut and
solution treated for 1h at 1050oC. To complete the martensite transformation after water quenching the slices
were immersed in liquid nitrogen for 10 minutes. Ageing was carried out in salt bath out at 550oC. Detailed 
description of processing is given elsewhere [17]. Selected samples, which corresponded to the conditions of the 
best combination of strength and ductility (5 s ageing) and to the peak strength (600 s), were chosen for atom 
probe analysis. Data was acquired from a needle-shape sample inserted into a local electrode atom probe at the 
University of Sydney operating at a pulse repetition rate of 200 kHz, a pulse fraction of 0.2, and a sample 
temperature of 80K.

2.3 Atom probe data analysis

A detailed analysis of clusters and fine precipitates was carried out using the maximum separation envelope 
method [18] with a maximum separation distance between atoms of interest of 0.5 nm and a grid spacing  of 0.1 
nm. In order to minimise random solute fluctuations in the matrix, a minimum of 20 atoms was used to define 
the clusters. Their atomic composition was calculated from the number of atoms of each type forming a cluster 
or a particle as determined by the maximum separation envelope method. However, it should be noted that the 
maximum separation method aggressively removes the solvent atoms from particles and clusters, especially from 
the surface regions. Thus, using this method the solute content of the finest clusters ( 1nm), in which there is a 
high proportion of surface to interior atoms, may be overestimated by ~25%. Using the data from the maximum 
separation method, the observed clusters and fine particles were grouped together based on the selection of non-
overlapping ranges for their solute content. As output of the program, the size of the feature of interest is given 
by the radius of gyration ( gl ), which is slightly smaller than its actual physical extent. The real size might be 

better represented by the Guinier  radius ( Gr ) given by the following equation [18]:

G g

5
r l

3
(1)
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The compositions of relatively large precipitates and of the matrix volumes free of visible clusters or precipitates 
were determined from the selected volumes with background noise subtraction based on the number of atoms.
Concentration profiles were taken perpendicular to the interface of the feature of interest. Isoconcentration 
surfaces were also used to visualize the microstructural features.

3. Results and Discussion

3.1 Effect of bake hardening on martensite in TRIP steel

After TMP the multi-phase microstructure of TRIP steel consists of 15 3% of polygonal ferrite, 16.5 3% of 
retained austenite, ~65 3% of carbide-free bainite and the remainder martensite. As previous transmission 
electron microscopy studies have shown [10,13], the martensite was present in the form of thin layers between 
the bainitic ferrite laths or in a blocky form as part of the martensite/austenite constituent. However, it should be 
noted, that at the test temperature of atom probe studies all retained austenite was deemed to be also transformed 
to martensite. During cooling of strip to room temperature, some of the retained austenite crystals present in the 
microstructure, which are either chemically or mechanically unstable, transform to martensite. As previous 
research has shown, this martensite auto-tempers with the formation of fine (20-50 atoms) C-rich clusters 
[12,19]. Additionally, strain-induced martensite forms during pre-straining [9,13]. All of these types of 
martensite crystals undergo tempering during bake hardening. 
          The non-uniform segregation of C atoms is clearly visible in the atom map shown in Fig. 1a. The clusters

a) b)

c) d)

Fig. 1. C atom map (a), clusters (b and c) and representative C concentration profile across matrix/carbide interface (d) in the 
martensite of TRIP steel after bake hardening. All other atoms are removed in (b) and (c) by the maximum separation 
envelope method. 
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determined by the maximum distance separation method are shown in Fig. 1b from different points of view in 
order to give a better insight into the morphology of the clusters/fine carbides. An enlarged selected area with 
clusters is shown in Fig. 1c. The concentration profile indicates that the carbon concentration within the coarse 
carbide reaches approximately 20at%. The summary of the clusters composition and sizes are given in Table 2. 

It is clear that the fine clusters are predominantly C-rich, as expected and in agreement with the results 
obtained for the early stages of martensite decomposition in the TMP condition [12]. They do not have the 
composition of Fe4C, as suggested by Sherman et.al. [20], but are close to the composition of FeC8. The density 
of clusters and fine precipitates is an order of magnitude higher than in the martensite after TMP [19,21]. With
an increase of cluster/precipitate size, the C content decreases and the coarsest precipitates reach the composition 
of Fe4C. It is surprising that it is not the equilibrium composition of Fe3C, as was previously observed for several 
bake-hardened TRIP steels. It could be assumed that due to the limited volume of material analysed in this case 
the Fe3C was not detected. However, the coarse precipitates, visible under TEM, were of that composition 
[13,21]. It is also worth noting, that the matrix composition of martensite (Table I) still shows a significant 
supersaturation in carbon, indicating that decomposition has not yet been completed. This is in agreement with 
other studies on the tempering of martensite using APT [21]. Based on the combined body of knowledge to-date,
it can be concluded that a continuous set of iron carbide compositions from C-rich clusters to Fe3C carbides is 
present in the tempered martensite.

Table II. Characterisation of clusters and carbides in the martensite of TRIP after bake hardening

Composition, at% (AP)
C Mo Nb Fe rG, nm No. ions per feature

89.4±5.3 - - 8.1±4.8 1.1±0.1 28±6
51.5±2.9 3.0±0.6 1.9±0.7 26.8±2.4 3.1±0.5 302±42
19.7±0.3 0.3±0.1 0.3±0.1 74.0±0.4* 4.8±0.5 11255± 230

*Traces of Mn and other elements

3.2 Decomposition of martensite in maraging steel

Analysis of the sample after 5 s ageing has clearly shown the solute segregation in the martensite crystals. Al, Ti 
and Mn atom maps (Fig. 2) depict the cluster formation. A more detailed analysis using the maximum separation 
envelope method has shown the preferential formation of Ti+Al and Mn+Fe clusters (Table III).

a) b)

Fig. 2. Cluster formation in FeNiTiAl maraging steel after 5s 
ageing at 550oC. All other atoms have been removed by the 
maximum separation method with dmax = 0.5 nm.

c)

Whereas the composition of Mn-Fe clusters varies, their size remains constant. Contrarily, with an increase in 
size, Ti+Al clusters become richer in Fe and Ni, which could be explained by the deficiency of the maximum 
separation method, as described in section 2.3. However, there is no doubt in affinity between Mn-Fe and Ti-Al 
atoms, which results in the formation of these clusters. This is in agreement with the previous Mössbauer 
spectroscopy data on preferential formation of Fe-Mn bonds and displacement of Ti by Mn from solid solution, 
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which leads to the accelerated precipitation of Ni3Ti [15]. Mn also has a strong affinity with Al [22] and with the 
progress of ageing the formation of nearly spherical (Fe,Ni)3(Mn,Al) particles was observed (Fig. 3). It could be 
suggested that not only dislocations, but Fe-Mn clusters, served as heterogeneous nucleation sites for these 
precipitates.
                                        

Table III. Characterisation of clusters and precipitates after 5 and 600s ageing, respectively.

Clusters /
precipitates

Composition, at. %
Fe Ni Mn Ti Al rG, nm/

xyz precipitates
No. ions per 

cluster/morphology
Mn+Fe 0-18 0-12.5 65 -100 - - 1.0±0.2 20-146

Ti+Al-rich 25-36 3 -18 - 16 -39 17 -47 1.4±0.3 28-441
2-24 0-22 - 16-75 14 -72 1.1±0.2 22-177

0 0-11 - 18-80 21-74 0.8±0.1 20-62
(Ni,Fe)3Ti 9 3 60 3 1.7 0.6 22 2 3.1 0.6 ~9x3x16

~9x8x14
plate-like
rod-like

(Ni,Fe)3(Al,Mn) 27 5 40 6 10 4 2 1 17 3 ~4x4x5 spheroidal

a) b) c)

Fig. 3.  Al (a) and Mn (b) atom maps with corresponding 30%(Al+Mn) iso-concentration surfaces showing formation of  
(Fe,Ni)3(Mn,Al) particles after 600 s ageing at 550oC.

After 600s ageing in addition to spherical precipitates, complex arrangements of plate-shaped and rod-like 
particles were clearly visible (Fig. 4). The selected volume analysis of these precipitates has shown that their 
composition is close to (Ni,Fe)3Ti (Table III). It could be suggested that Ti+Al-rich clusters together with 
substrucure were preferential nucleation sites for this precipitation. Based on TEM data, there was a long 
standing debate regarding the exact shape of Ni3Ti precipitates in maraging steels being plate-like [16], needle-
like [23-25] or rod-like [24,26]. As we now could conclude, both plate and rod morphologies of these 
precipitates co-exist at certain stages of decomposition. However, our atom probe tomography (APT) data also 
indicates that with further coarsening both type of precipitates, e.g. (Ni,Fe)3Ti  and (Ni,Fe)3(Al,Mn), tend to 
exhibit a predominantly rod-like morphology.

4. Conclusions

It has been shown that atom probe tomography is a powerful technique which allows complete chemical and 3D-
spatial information on nanoscale features in steels to be obtained. The evolution from clustering to precipitation 
could be followed using APT, as was highlighted using TRIP and maraging steels as examples. However, some 
deficiencies of APT are noted and care needs to be taken when interpreting results for the features with the sizes 
about rG=1nm.
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a) b)
Fig. 4. Ti map (a) and 40% (Ni+Ti) iso-concentratin surfaces (b) showing formation of predominantly (Fe,Ni)3Ti precipitates 
in martensite after 600 s ageing at 550oC. All other atoms removed by maximum separation method in a).
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