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ABSTRACT

Among the initial results from Kepler were two striking light curves, for KOI 74 and KOI 81, in which the relative
depths of the primary and secondary eclipses showed that the more compact, less luminous object was hotter than its
stellar host. That result became particularly intriguing because a substellar mass had been derived for the secondary in
KOI 74, which would make the high temperature challenging to explain; in KOI 81, the mass range for the companion
was also reported to be consistent with a substellar object. We re-analyze the Kepler data and demonstrate that both
companions are likely to be white dwarfs. We also find that the photometric data for KOI 74 show a modulation in
brightness as the more luminous star orbits, due to Doppler boosting. The magnitude of the effect is sufficiently large
that we can use it to infer a radial velocity amplitude accurate to 1 km s−1. As far as we are aware, this is the first time
a radial-velocity curve has been measured photometrically. Combining our velocity amplitude with the inclination
and primary mass derived from the eclipses and primary spectral type, we infer a secondary mass of 0.22 ± 0.03 M�.
We use our estimates to consider the likely evolutionary paths and mass-transfer episodes of these binary systems.

Key words: binaries: eclipsing – stars: evolution – stars: individual (KOI 74, KOI 81) – techniques: photometric –
white dwarfs

Online-only material: color figures

1. INTRODUCTION

It has long been realized that precision photometry from
space could allow detailed probes of stellar interiors through
pulsations, and of planetary and stellar companions through
transits, eclipses, and flux variations due to tides and irradiation.
With the launch of Kepler, measurements with long-term
precision of at least 1 part in 105 are now being collected for an
unprecedented sample of stars (Caldwell et al. 2010; Koch et al.
2010).

Among Kepler’s initial discoveries are two “objects of inter-
est,” KOI 74 and KOI 81, that have striking light curves, showing
both primary and secondary eclipses (Rowe et al. 2010a, here-
after R10; where needed, we refer to the original version posted
on arXiv (Rowe et al. 2010b) as R10v1). In both systems, the
relative eclipse depths show that the more compact, less lumi-
nous object is hotter than its stellar host. This result became
puzzling as R10v1 derived a clearly substellar mass for the sec-
ondary in KOI 74; their mass range for the companion in KOI
81 was also consistent with a substellar object. If the smaller,
hotter companions were indeed planets or brown dwarfs, then it
would not be obvious how their properties could reasonably be
explained.

In this work, we re-analyze the Kepler data for KOI 74
and KOI 81, and show that the photometric data for KOI 74
contain clear evidence for Doppler boosting with orbital phase,
in addition to ellipsoidal light variations. We use this to make
what is, as far as we are aware, the first measurement of a
radial-velocity amplitude from photometry. With our amplitude,
it is clear that the companion is not substellar, but rather has
a mass of ∼0.2 M�. For KOI 81, we find that the mass is

likely similar. We demonstrate that all properties are consistent
with the companions being low-mass white dwarfs (WDs), and
discuss possible evolutionary histories for these systems.

2. THE LIGHT CURVES REVISITED

We retrieved the light curves of KOI 74 and KOI 81 from
the archive, and show the raw aperture fluxes in Figure 1. For
both sources, one sees the eclipses and transits superposed on
roughly quadratic trends; in KOI 81, one also sees the pulsations
reported by R10. We first review what one can infer from the
transits and eclipses, and then discuss additional information
seen at other phases.

2.1. Constraints from the Transit and Eclipse Light Curves

The transit and eclipse light curves were fitted with detailed
models by R10, and we use their ephemerides and inclinations
(see Table 1). For our purposes below, however, it is useful also
to have the ratio R1/a, where R1 is the radius of the primary,
and a the semi-major axis. This ratio is well constrained by the
eclipse, depending on the eclipse duration te (at half maximum
depth) and inclination i via sin2(πte/P ) sin2 i = (R1/a)2−cos2 i
(Russell 1912). We measured te/P graphically and list the
values, as well as the inferred ratios R1/a in Table 1. Note that
the derivation assumes that the stars are spherical; if they are
rotating rapidly, then the constraint is mostly on the equatorial
radius (see Section 2.6).

The measurement of R1/a, combined with Kepler’s
law, constrains the mean density of the primary, ρ1 =
(R1/a)−3(3π/GP 2[1 + q]). For both KOI 74 and KOI 81, the
mass ratios q = M2/M1 are small, and, as discussed by R10,
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Figure 1. Kepler light curves for KOI 74 (left) and KOI 81 (right). The top panels show the raw photometric data, and the bottom panels the detrended and folded light
curves. The larger dips correspond to eclipses of the hot companion, while the smaller ones correspond to transits over its parent star. The smooth curve represents a fit
to the blue data points—those taken outside of transits and eclipses, and within 3σ . The fit includes two sine waves, at the orbital and half-orbital period, representing
Doppler boosting due to orbital motion and ellipsoidal light variations, respectively.

(A color version of this figure is available in the online journal.)

the densities inferred for q � 1, of ∼0.45 and 0.17 g cm−3,
respectively, are consistent with those expected for main-
sequence stars with masses of 2.2 and 2.7 M�, respectively,
as inferred from their spectral types (see Table 1).

The ratio of the transit and eclipse depths εt and εe equals the
ratio of the surface brightnesses. Thus, given the temperatures
for the primaries inferred from their spectra, one can estimate the
temperatures of the secondaries. Assuming blackbody emission,
one has

εe

εt
� ehc/λkT1 − 1

ehc/λkT2 − 1
. (1)

Using the numbers from Table 1 and assuming an effective
wavelength 〈λ〉 = 6000 Å, we infer T2 = 13,000 and 17,000 K
for KOI 74 and KOI 81, respectively, with uncertainties some-
where between 5% and 10%. These temperatures are higher
than inferred by R10, who assumed that the eclipses and tran-
sits measured bolometric surface brightness. (We note that, of
course, one could derive more precise values by folding black-
bodies or model atmospheres through the Kepler passband, but
this would not necessarily be more accurate as long as one does
not account properly for, e.g., gravity darkening on what may
well be a rapidly rotating primary. In any case, for our purposes
the above estimates suffice.)

2.2. Ellipsoidal Variations and Doppler Boosting in KOI 74

For KOI 74, in addition to the long-term trend, eclipses,
and transits, the raw fluxes show sinusoidal modulations at the
orbital and half the orbital period (Figure 1). We fitted the data
outside the eclipses and transits with a 6th degree polynomial
and sine waves at the orbital frequency and its harmonic (and
iterated once, rejecting >3σ outliers). In the bottom panel of the
figure, where fluxes normalized by the polynomial component
of the fit are shown as a function of phase, the modulations are
very obvious. They have much larger amplitude than is seen in
Figure 1 of R10v1, likely because these authors originally had
removed most of the signal in their pre-display median filtering;

their later version shows a larger signal, more similar to what we
find. (Related, we note that the two archive light curves include
a “corrected” flux. In the second, longer light curve, the signal is
clearly present, but in the first, shorter one, it is not, apparently
having been removed by the “correction” applied in the Kepler
pipeline.)

From our fit, we infer fractional amplitudes A1 = (1.082 ±
0.013) × 10−4 and A2 = (1.426 ± 0.018) × 10−4 for the
fundamental and the harmonic, respectively. As can be seen
in Figure 1, these two fit the data quite well; although the fit
is not formally acceptable (χ2

red = 1.5 for 1843 degrees of
freedom), the residuals appear quite white. A Fourier transform
of the residuals confirms this impression; there is no power
above fractional amplitude 10−5, apart from one faint signal
with A � 1.6 × 10−5 and f � 1.66 d−1. In Figure 1, one sees
that the maximum of the fundamental coincides with one of
the maxima of the harmonic; our fit gives a phase difference
of −0.009 ± 0.003 cycles (of the orbital period; the maximum
of the fundamental occurring slightly earlier). The fundamental
has essentially the same offset (−0.008 ± 0.002 cycles) from
the descending node of the massive star, while the harmonic has
maxima coincident with the nodes to within the measurement
errors (0.0005 ± 0.0008 cycles).

The above precisions are remarkable, and hence we checked
whether the error estimates were reliable. We found that the
amplitudes do depend on how we model the long-term trend;
if we reduce the polynomial to 4th degree, we find A1,2 =
(1.034, 1.430) × 10−4; if we fit the pipeline-“corrected” fluxes
in the longer lightcurve with a constant and the two sine waves,
we obtain A1,2 = (1.076, 1.515) × 10−4. This suggests that
the true uncertainty in the amplitudes is about 5% although we
note that these latter fits are not as good (we find χ2

red = 1.7,
and the phases do not agree as well with expectations). Obvi-
ously, the uncertainties will reduce substantially as further data
are added.

Both signals have natural if, for the fundamental, unusual
interpretations. We believe that the fundamental is due to orbital
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Table 1
System Parameters

Property KOI 74 KOI 81

Primary Secondary Primary Secondary

Porb (d) 5.18875 ± 0.00008 23.8776 ± 0.0020
i (◦) 88.8 ± 0.5 88.2 ± 0.3
Eclipse duration (cycle) 0.0362 ± 0.0004 0.058 ± 0.004
Eclipse depth (10−5) 51 ± 5 118 ± 5 160 ± 5 496 ± 5
R/a 0.116 ± 0.002 0.0026 ± 0.0002 0.058 ± 0.004 0.0023 ± 0.0003
Spectral type A1 V · · · B9–A0 V · · ·
Radius (R�) 1.90+0.04

−0.05 0.043 ± 0.004 2.93 ± 0.14 0.117 ± 0.012
Teff (K) 9400 ± 150 13000 ± 1000 10000 ± 150 17000 ± 1300
Luminosity (L�) 25.6 ± 2.4 0.05 ± 0.02 77.3 ± 9.6 0.9 ± 0.4
Velocity amplitude ( km s−1) 14.7 ± 1.0 · · · ∼7 · · ·
Mass (M�) 2.22+0.10

−0.14 0.22 ± 0.03 2.71+0.19
−0.11 ∼0.3

Model mass (M�) · · · 0.20 ± 0.03 · · · 0.25 ± 0.03

Notes. The periods and inclinations are taken from Rowe et al. (2010a), as are the spectral types of the primaries and the quantities inferred
from those. Systematic errors are possible if the star has accreted significant matter, or is rotating rapidly. The eclipse durations and depths were
measured graphically, and have “chi-by-eye” uncertainties. For the temperatures of the secondaries, we assumed an 8% systematic uncertainty
in our conversion of surface brightness to temperature. The velocity amplitude is measured from the Doppler boost signal, and its uncertainty
includes possible systematic effects related to the detrending of the data and the precise spectrum of the primary. The model mass is based on
the theoretical relation between orbital period and WD mass (see Equation (5)).

Doppler boosting, an effect which, as far as we are aware,
was first detected and discussed by Maxted et al. (2000); it
is discussed in the context of Kepler by Loeb & Gaudi (2003)
and Zucker et al. (2007). Here, the precision of the Kepler data
allows us to go beyond detection, and use the Doppler boosting
to measure a star’s radial-velocity amplitude.

Briefly, Doppler boosting occurs because as the primary
orbits, its spectrum is Doppler shifted, its photon emission
rate is modulated, and its emission is slightly beamed forward.
Following Loeb & Gaudi (2003), we use the relativistic invariant
quantity Iν/ν

3 (or Iλλ
5), where Iν is the specific intensity, and ν

the frequency. Then, for a radial velocity vr, the photon rate nγ

observed by a telescope with given effective area Aλ is given by

nγ =
∫

λ

Aλ

Fλ

hc/λ
dλ =

∫
λ

Aλ

Fλ′(1 + vr/c)−5

hc/λ
dλ, (2)

where Fλ ≡ ∫
Ω Iλ dΩ is the observed flux (Ω is the solid angle

subtended by the star; note that the integral is correct only to
first order in vr/c). For a narrow band, the fractional variation
would then be

Δnγ

nγ

≡ fDB
vr

c
=

(
−5 − d ln Fλ

d ln λ

)
vr

c

� − (hc/λkT )ehc/λkT

ehc/λkT − 1

vr

c
, (3)

where we introduced a Doppler boost pre-factor fDB and where
the approximate equality is for blackbody emission. For KOI
74 (T = 9400 K), observed with Kepler (〈λ〉 � 6000 Å), one
thus expects a signal with fractional amplitude of ∼2.8(K/c),
where K is the radial-velocity amplitude. For a more precise
estimate, we folded a 9500 K model atmosphere (Munari et al.
2005) through the Kepler response. This yields fDB = 2.25;
the difference with the blackbody results from the fact that the
model continuum is closer to Rayleigh Jeans inside the Kepler
bandpass, mimicking the emission from a hotter blackbody.
In this temperature range, the boost pre-factor scales approxi-
mately linearly with temperature; for T = 9000 and 10,000 K,
we find fDB = 2.37 and 2.15, respectively. Including reddening

of E(B −V ) = 0.15 (from the Kepler Input Catalog) has only a
small effect, yielding fDB = 2.21. Given that adding the extinc-
tion is equivalent to a relatively large change in effective area,
the small change in fDB found also means that uncertainties in
the response are not important.

Given the above, using fDB = 2.21, our observed light
amplitude corresponds to a radial-velocity amplitude of 14.7 ±
1.0 km s−1, where we assumed 5% uncertainties in both A1 and
in fDB. The corresponding mass function is M = 0.0017 ±
0.0004 M�. If we adopt a mass for the primary star of 2.22 M�
(R10; see Section 2.1), this yields M2 � 0.22 M�.

Turning now to the harmonic, as in R10, we interpret it as
changes in the observable surface area due to tidal distortion.
The expected amplitude is given by

A2 = fEV
M2

M1

(
R1

a

)3

sin3 i, (4)

where fEV is a pre-factor of order unity that depends on
the limb darkening and gravity darkening. For our sys-
tem, the eclipse and transit light curves yield i and R1/a
(Section 2.1). Combining these with the amplitude yields a mass
ratio M2/M1 = 0.092/fEV. If we again adopt a primary mass
of 2.22 M�, and take fEV � 1.5 (see Section 2.5), we derive
M2 � 0.14 M�, somewhat below the value obtained above us-
ing the radial velocity amplitude, but roughly consistent, given
the probably larger uncertainties associated with determining
the mass ratio via ellipsoidal light variations (see Section 2.6).

2.3. Other Signals

Apart from the signals discussed above, one might also expect
to see contributions of other factors, in particular the Doppler
boosting and ellipsoidal variations of the secondary, irradiation
effects on both primary and secondary, and possibly influences
from an eccentric orbit. Following the procedure above, we find
that the fractional amplitudes for the fundamental and harmonic
of the secondary, relative to the secondary’s flux, are ∼10−3 and
∼2 × 10−7, respectively (where we used K2 � 150 km s−1,
fDB = 1.9, R2/a � 0.0026, and fEV = 1). Since the
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secondary’s flux is only 0.2% of the total flux, however, the
contribution to the observed signal is negligible.

For irradiation of the primary by the secondary, one expects a
change in luminosity of ΔL1 � πR2

1(L2/4πa2), corresponding
to a fractional amplitude 1

2 ΔL1/L = 1
2 (L2/L)(R1/2a)2 � 3.0×

10−6 (where L � L1 is the total luminosity). Within the Kepler
passband, this should lead to a modulation of ∼1.7 × 10−6.
Similarly, for the secondary, one expects a fractional amplitude
of 1

2 (R2/2a)2 � 0.8 × 10−6 in bolometric flux, and a signal
of ∼0.4 × 10−6 in the Kepler passband. The two will have
opposite phase; thus, the net expected signal has an amplitude
of ∼1.3 × 10−6, and is phased such that maximum occurs at the
time of transit. This signal may be responsible for the fact that
the fundamental is slightly out of phase with what is expected
from Doppler boosting; the observed out-of-phase amplitude is
A1 sin Δφ1 = (9 ± 3) × 10−7, consistent with what we derived
above.

Finally, we consider possible signals from a non-circular
orbit. For small eccentricity, both the Doppler boost curve and
the ellipsoidal variations would no longer be pure sinusoids,
but have some contribution from higher harmonics. For the
easier case of the Doppler boost curve, we can constrain the
eccentricity from the absence of a signal at the first harmonic that
is out of phase with that expected from ellipsoidal variations (to
a limit of Δφ2 = 0.0005 ± 0.0008 cycles; Section 2.2). We find
that, at 95% confidence, e sin ω = (A2/A1) sin 4πΔφ2 < 0.03
(where ω is the longitude of periastron, and this expression is
valid in the limit of small e). One sees that one cannot constrain
the case where periastron occurs at one of the nodes, since
in that case the harmonic would be hidden by the ellipsoidal
variations. A complementary constraint, however, comes from
the fact that the mid-transit and mid-eclipse times are consistent
with a circular orbit. The measured offset from half a cycle
is Δφ = 0.0003 ± 0.0008 cycles, which, at 95% confidence,
implies e cos ω = πΔφ < 0.006 (with the expression again
being valid in the limit of small e). Thus, from both constraints
combined, we conclude that the orbit is circular to within
e < 0.03.

2.4. Application to KOI 81

For KOI 81, a detailed analysis is not possible, since variations
on its much longer orbital period are strongly covariant with the
trends in the raw data. Furthermore, the star is clearly pulsating;
a Fourier transform shows that there is signal at numerous
frequencies. In order to look for orbital modulation, we fit the
raw fluxes with orbital and half-orbital modulations, a 3rd degree
polynomial, as well as sine waves at the five largest pulsational
signals, at 0.362, 0.723, 0.962, 1.32, and 2.08 d−1 (some of these
are harmonically related, as is often the case for multi-periodic
pulsators). From the fit, orbital modulation does appear to be
present, as is also clear in the folded, normalized light curve,
where we divided the fluxes by the fitted trend and pulsational
signals (see Figure 1). Our fit yields amplitudes A1 � 5 × 10−5

and A2 � 4 × 10−5, which corresponds to K1 � 7 km s−1 and
q � 0.2/fEV. Because of the long orbital period, the results
are very sensitive to, e.g., the degree of the polynomial used.
Comparing with a fit using a 6th degree polynomial, as well
as one using the “corrected” flux from the Kepler archive light
curve (the latter for the second, longer light curve only), the
amplitude of the fundamental changes by up to a factor of 2,
while that of the harmonic changes by ∼20%. Furthermore,
we find relatively large phase offsets, of ∼0.03 cycles. Given

this, we will not try to infer quantities, but simply note that
for a 2.7 M� primary with a 0.3 M� companion, the predicted
amplitudes are ∼8×10−5 and 3×10−5, respectively, consistent
with the observations.

2.5. Verification Using a Light Curve Synthesis Code

We tried to verify our semi-analytical estimates above using
a light curve synthesis code, which is similar to that of Orosz
& Hauschildt (2000), and has been used previously to model
irradiated pulsar companions (Stappers et al. 1999). The code
accounts for tidal distortion and stellar rotation in the Roche ap-
proximation, includes irradiation and gravity darkening, and cal-
culates the flux using NextGen model atmospheres (Hauschildt
et al. 1999), integrated over the Kepler passband. It cannot yet
deal with eclipses, and hence we only attempt to reproduce the
orbital modulations.

As input parameters, we chose to use the set Porb, t0, i, T1,
R1/a, K1, P1,rot, q, and Tirr, where the ones not mentioned before
are t0, the time of conjunction, and Tirr, the effective temperature
corresponding to the secondary flux absorbed by the primary
(i.e., σT 4

irr = (1−A)L2/4πa2, with the albedo A expected to be
close to zero for a radiative star). Our main goal is to constrain
q, K, and Tirr; we assume the other parameters are as inferred
from the eclipses. For our fits, we also assume that the star is
corotating with the orbit (P1,rot = Porb); we will return to this
in Section 2.6. We add to the model the tiny flux contribution
from the secondary (taken to be constant at the level indicated
by the eclipses).

Fitting the raw data of both sources to our model, we
confirmed that for KOI 81, the results depend sensitively on
how one fits the long-term trend. We thus decided to focus
on KOI 74. We searched over a grid in q, K1, and Tirr, and
fitted for the best 4th degree polynomial at each position. The
best-fit synthetic light curve is nearly indistinguishable from the
two-sine fit, and has the parameters q = 0.0689 ± 0.0009,
K = 14.2 ± 0.2 km s−1, and Tirr = 760 ± 40 K. We did
not exclude outliers, and therefore our fit is poorer than the
analytical one (χ2

red = 2.6); we scaled the uncertainties such
that χ2

red = 1 (but did not attempt to include uncertainties in
effective temperature, etc.).

These results reproduce our analytical estimates. The offset
in K1 would be even smaller if we had included reddening in
our numerical model (as this affects fDB; see Section 2.2). The
mass ratio matches our estimates for fEV = 1.34, quite close
to the value of fEV = 1.63 inferred from the tables of Beech
(1989). The secondary luminosity inferred from the irradiation
is 0.08 ± 0.02 L� (for orbital separation a = 16.4 R� and
A = 0, i.e., assuming complete absorption and reradiation),
consistent with our estimate from the surface brightness ratio.
Below, we give our best estimates of the masses based on these
results, but first we discuss possible uncertainties due to rapid
rotation.

2.6. Uncertainties Due to Rotation

In many ways, the light curves of KOI 74 and KOI 81 are easy
to model, since all effects are small and can thus adequately be
treated as perturbations. The one parameter that we have not yet
constrained, however, is the rotation of the primary. Since rapid
rotation is expected in the context of the evolutionary scenario
described below, we discuss the observational consequences in
some detail.

Rotation of the primary has a number of effects. First,
the constraints on inclination and radius of the primary from
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the eclipse and transit change: the true inclination i ′ will
be closer to 90◦ than the inclination i inferred assuming
a spherical star, the radius will be smaller, and the radius
that is constrained is the equatorial radius Req (assuming
aligned rotation). Furthermore, the estimate of the mean density
increases to ρ ′

1 � (Req/a)−3(3π/GP 2[1+q])(Req/Rpole), where
Rpole is the polar radius; thus, one would infer a somewhat
smaller primary mass. For KOI 74, which has an inclination very
close to 90◦, we conclude that it would have Req/a � R1/a. For
KOI 81, Req/a would be somewhat smaller than R1/a inferred
from the eclipses.

The second effect of a rapidly rotating primary is that its pole
will be hotter than the equator; hence, looking at the equator, one
will underestimate its temperature, and thus its luminosity and
mass. This also affects the estimates for the secondary, since the
ratios of the radii (R2/R1), based on the transit depth, and that
of the surface brightnesses (Equation (1)) will be different from
their true values: the cooler equator will lead to a larger inferred
R2/R1 and smaller inferred T2. For the companion radius R2,
however, the change in R2/R1 is partly compensated by the fact
that a rapidly rotating primary also would have a smaller area
(R′

1 � (ReqRpole)1/2; see above). We have used our model code
to test an illustrative case of extreme rotation, with the primary
rotation rate 20 times faster than the orbital one (corresponding
to v sin i � 370 km s−1), and a ratio of equatorial to polar radius
Req/Rpole = 1.32 (similar to what is measured for Regulus; see
McAlister et al. 2005). Keeping the flux-weighted temperature at
9400 K, we find equatorial and polar temperatures of ∼7800 and
11,600 K, respectively. For this particular example, we estimate
that the radius of the hot companion would be R′

2 � 0.045 R�,
i.e., increased by only 5% from that inferred for a slowly rotating
primary, and its temperature T ′

2 � 10,500 K.
Rapid rotation also indirectly affects the ellipsoidal varia-

tions. First, because of the different temperature distribution on
a rapidly rotating primary, different regions are weighted differ-
ently, and as a result the amplitude of the ellipsoidal variations
changes. From our model code, we find that for the above-
mentioned case, the predicted amplitude of the ellipsoidal vari-
ations increases by a factor ∼2. The effect is strongly non-linear,
however; reducing the rotation rate from 20 to 15 times faster
than orbital, the amplitude increases only by a factor of 1.3.

Another indirect effect of a rapidly rotating primary may be
that the inferred q does not necessarily correspond to the true
mass ratio. An implicit assumption underlying the equilibrium
tide is that the primary corotates with the orbit. For stars that
do not rotate synchronously, the work of, e.g., Pfahl et al.
(2008), suggests that the equilibrium tide may be a rather poor
approximation to reality. Thus, it may be that one cannot reliably
infer mass ratios from ellipsoidal variations for systems that are
not tidally locked.

We note that the light curves may contain a clue to the
rotation rates. In particular, for KOI 74, we found evidence
for a weak modulation at ∼0.6 d, which is about 9 times faster
than the orbital period, and corresponds to 30% of break-up for
a 2.2 M� and 1.9 R� star. For KOI 81, it may be possible to infer
the rotation rate from the pulsations by looking for rotational
splitting (though for high rotation rates this is non-trivial).

Of course, it would be simpler and more reliable to measure
the rotational broadening spectroscopically, and the spectra
mentioned by R10 may already hold the answer, but we do
not have access to those. Nevertheless, we note in closing a
much more subtle consequence of rapid rotation, which is the
photometric analog of the Rossiter–McLaughlin effect (Rossiter

1924; McLaughlin 1924). Assuming the rotation is aligned with
the orbit, at the start of the transit more blueshifted light is being
blocked and at the end more redshifted light. For a rotational
velocity of 300 km s−1, Doppler boosting induces a signal in
the blocked light with a fractional amplitude of ∼2×10−3. This
is diluted by the unblocked light, i.e., by a factor equal to the
transit depth. Thus, for KOI 74 and KOI 81, one expects net
signals of ∼1 × 10−5 and 3 × 10−6, respectively, which may be
detectable by averaging about 100 transits.

2.7. Adopted Masses

In principle, given our inferred values of K1 and q, combined
with the inclination, one can derive both masses without
further assumptions. In practice, however, these masses are very
uncertain, since the uncertainties in K1 and q enter to high
powers (for small q, M1 ∝ K3

1 q−3 and M2 ∝ K3
1 q−2). Given

that these uncertainties are of order 5% for K1 and likely larger
for q (see above), the 1σ fractional errors are �20%, and the
distributions are highly non-Gaussian.

Instead, we proceeded by assuming the primary has a mass
of 2.22+0.10

−0.14 M�, as inferred from its spectral type and mean
density (R10; see also Section 2.1). Then, using K1 and i, we
calculate a mass of 0.22±0.03 M� for the secondary. If instead
we use the mass ratio q, inferred from the ellipsoidal variations,
we find M2 = 0.15 M�, with an uncertainty that is difficult to
estimate because we cannot be sure the star is in corotation (see
above). We will proceed by using the value inferred from K1
(see Table 1). For KOI 81, we do not have a good constraint on
K1 (or q), but the signals that are present are consistent with a
similar secondary mass, of ∼0.3 M�.

3. EVOLUTIONARY HISTORY

An obvious explanation for these hot, compact companions
is that they are WD stars. R10 have discussed this possibility
for KOI 81, but their initial very low mass estimate for the
companion in KOI 74 (�0.032 M�; R10v1) was inconsistent
with a WD explanation. Since our re-analysis of the data
gives the mass of the companion in KOI 74 as ∼0.2 M�, a
WD companion is no longer excluded. Cooling tracks from
Panei et al. (2007) for helium-core WDs of appropriate mass
are broadly consistent with the companion luminosities and
temperatures in Table 1 (somewhat more easily for KOI 74 than
for KOI 81). Figure 2 compares a cooling track from our own
calculations6 for a ∼0.2 M� helium-core WD to the WDs in
KOI 74 and 81.

Binary systems resembling these may well be common; the
well-known star Regulus (α Leonis) has recently been found
to be a spectroscopic binary with component masses ∼0.3 and
3.4 M�, and an orbital period of 40.11 d (Gies et al. 2008). The
lower-mass component likely is a WD, making Regulus and its
companion remarkably similar to the pair of systems considered
here. The evolution of Regulus has been considered in detail by
Rappaport et al. (2009).

To estimate the occurrence more quantitatively, we note that
Kepler observed only ∼400 stars with temperatures above about
9000 K (Batalha et al. 2010). Since the eclipse probabilities
for systems like KOI 74 and KOI 81 are ∼12% and 6%,

6 In the binary calculation shown in Figure 2 (from the library of
Podsiadlowski et al. 2002), the companion is a neutron star. The tracks for the
KOI 74 and KOI 81 systems are expected to be very similar (see also
Rappaport et al. 2009). For more details on the hydrogen shell flashes in these
tracks, see Podsiadlowski et al. (2002) and Nelson et al. (2004).
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Figure 2. Representative evolutionary track in the Hertzsprung–Russell (HR)
diagram, illustrating the evolution of the progenitors of the hot companions of
KOI 74 and KOI 81. The solid black curve shows the track of a star with an initial
mass of 1.4 M� that starts to transfer mass to a companion star just after leaving
the main sequence and ultimately becomes a 0.21 M� helium WD. Because of
residual hydrogen in the envelope at the end of the main mass-transfer phase, the
degenerate remnant experiences three hydrogen shell flashes, producing three
large loops in the HR diagram (of progressively larger area), before it settles
on a classical He WD cooling track. Selected ages since the end of the main
mass-transfer phase (labeled as “Δt = 0 yr”) are given next to filled circles.
The dashed lines give lines of constant radius as indicated. The positions of
KOI 74b and KOI 81b are also shown with conservative error bars. They are
consistent with the expected location for ∼0.2–0.25 M� He WDs either on a
classical He WD cooling track or during one of the relatively long-lived phases
of a hydrogen flash loop.

(A color version of this figure is available in the online journal.)

respectively, the detection of two such WD companions suggests
that a surprisingly large fraction of such stars must have
WD companions. With only two detections, it is difficult to
estimate the orbital period distribution. Taking an average
eclipse probability of P � 9%, then for a fraction F of A and B
stars with suitably close WD companions, the mean number of
expected eclipses among the Kepler sample would be ∼400FP .
The Poisson probability for finding two or more eclipses out of
400 systems is ∼50% for F = 0.05 and ∼25% for F = 0.03.
Therefore, we conclude that 1 out of every 20 to 30 A and B stars
is in a close, few tens of days, binary with a WD companion.

The above abundance is very high, and, if confirmed, has
significant implications for our understanding of stellar and
binary evolution (see also Di Stefano 2010). For instance,
the descendants of these systems should also be relatively
numerous—and likely interesting—stars. When the currently
more massive star leaves the main sequence and expands
to overfill its Roche lobe, the resulting mass transfer will
be dynamically unstable, and likely lead to a merger (even
more likely than for Regulus, which has a longer period; see
Rappaport et al. 2009). In this merger, the addition of a helium
WD to the helium core of the subgiant star could lead directly
to core helium ignition, bypassing the usual gradual buildup of
the helium core via hydrogen shell burning. The merger product
would also be rapidly rotating, and hence the natural outcome
would appear to be a rapidly rotating red clump or horizontal
branch star (such as observed by, e.g., Behr et al. 2000 and Behr
2003).

Of course, while the above is interesting, it is possible that we
are dealing with a statistical fluke. Indeed, if WD companions
are very common among A stars, it seems odd that none has
been reported so far for any of the much more numerous cooler

stars in the Kepler sample. On the other hand, this may indicate
that binary systems with initially lower-mass stars, which would
evolve to G and F stars with low-mass WD companions, have a
difficult time forming and/or surviving.

Turning now to the formation of KOI 81 and KOI 74, for
both the initial masses of the WD progenitors must have been
greater than the initial masses of the current A stars, since the
progenitors of the WDs have evolved more rapidly. Some form
of binary interaction is needed in order to remove mass and
produce the WDs. Either stable mass-transfer from the more
massive to the less massive star has occurred; in this case, the
current mass of the A star may be substantially higher than
its initial mass (see, e.g., Rappaport et al. 2009). Alternatively,
the system may have passed through a common-envelope phase
(Paczynski 1976).

3.1. Stable Mass Transfer

If the mass loss from the progenitor of the WDs were simply
through stable Roche-lobe overflow, then we could assume that
the current orbital periods are very close to the orbital periods
at the end of mass transfer, i.e., the point at which the mass
of the envelope about each current WD became too small to
maintain a giant structure and collapsed.7 Hence, we can apply
the relationship between core mass and radius to predict the
mass of each WD based on the current orbital periods. Using this
relationship, Rappaport et al. (1995) approximated the orbital
period Porb as

Porb ≈ 1.3 × 105 M6.25
wd(

1 + 4M4
wd

)1.5
days, (5)

where the WD mass Mwd is in units of solar masses. At a given
Porb, the spread in Mwd is expected to be at most ±15%.

Applying Equation (5) we find Mwd = 0.20 ± 0.03 M� for
KOI 74, which matches the value independently derived in
Section 2. For KOI 81, this becomes Mwd = 0.25 ± 0.03 M�,
again consistent with a low-mass WD.8

Stable mass transfer seems to provide a simple way to
produce both these systems. The match between the WD
masses from Equation (5) and from the light curve data is
encouraging. Furthermore, the full binary evolution calculations
of Podsiadlowski et al. (2002) produce systems with very similar
orbital periods and WD masses (see their Figure 13). In Figure 3,
we show examples of how the two systems could have reached
their current state, using simple analytic formulae for orbital
evolution (Equation (3) of Rappaport et al. 2009; see also
Podsiadlowski et al. 1992). The curves in Figure 3 take initial
conditions {M1,init, M2,init, Porb,init} of {1.6 M�, 1.2 M�, 19.3 h}
for KOI 74 and {1.8 M�, 1.3 M�, 31 h} for KOI 81. In both
cases we assume that any mass lost from the system carries
away the specific orbital angular momentum of the binary. For
KOI 74, this example assumes that the mass transfer is 73%
conservative, and for KOI 81 it is 91% conservative. There are
certainly other possible paths to the current systems, in particular
since the above ignores the possible role of magnetic braking (in
evolutionary stages where either star has a convective envelope).

The currently more massive stars are almost certain to have
accreted significant amounts of matter and are therefore likely

7 A-type stars typically experience no magnetic braking, which might
otherwise have shortened the orbital period since the end of mass-transfer.
8 Tauris & Savonije (1999) provide an alternative expression, from which we
obtain similar values: Mwd = 0.24 ± 0.02 M� for KOI 74 and
Mwd = 0.29 ± 0.02 M� for KOI 81.
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Figure 3. Example of evolutionary histories in the mass-period plane. The red
curves are for the mass-gaining stars, the blue curves for the mass-losing stars.
The orbital periods of KOI 74 and KOI 81 are marked with green lines. The
Mwd–Porb relation, where the mass transfer terminates, is marked by a black
curve. Many different such potential histories could be constructed.

(A color version of this figure is available in the online journal.)

to be very rapidly rotating (see, e.g., Rappaport et al. 2009
and references therein). Their spin angular momentum could, in
principle, have been lost by magnetic braking. However, typical
A-type stars do not experience strong magnetic braking (see,
e.g., Kawaler 1988). Alternatively, for KOI 74, tides might have
been strong enough to slow the rotation of the star (and slightly
widen the orbit).

3.2. Alternative: Common-envelope Evolution?

Common-envelope evolution seems to provide a much less
satisfactory explanation for these systems than stable mass
transfer. If the envelopes of the initially more massive stars
were ejected during common-envelope evolution, then using
the current Porb in Equation (5) would only yield a minimum
WD mass. So, if the observational data cannot allow more
massive WDs than ∼0.25 M�, it seems unlikely that either of
these systems have experienced a significant common-envelope
phase.

In addition, any scenario in which the currently more massive
stars have not accreted a significant amount of mass seems
difficult. The >2 M� current primary stars in these systems
would produce WDs more massive than �0.28 M� if their
envelopes were removed at the end of the main sequence. If
those initially less massive stars had not gained matter then, at
best, significant fine-tuning would be required for the initially
more massive star to have both evolved off the main sequence
and produced the low-mass WDs observed.

3.3. Other Expected Compact Hot Companions: Hot
Subdwarfs

Another class of hot compact companion stars that should
result in light curves similar to those in Figure 1, are hot
subdwarf (sdB, sdO) stars, sometimes referred to as extreme
horizontal branch stars. The calculations of Han et al. (2002,
2003) predict that sdB stars should exist in binaries of these
orbital periods about A- and B-type stars (see Han et al. 2003,
Figure 15). However, at the temperatures inferred for KOI
74 and 81, sdB stars would be expected to be considerably
more luminous. Typical hot subdwarfs properties are anywhere

between ∼20,000 and 40,000 K and ∼3 and 100 L�. In addition,
the inferred companion masses in KOI 74 are somewhat too low
to have ignited helium, even non-degenerately; masses greater
than ∼0.3 M� are required. Such hot subdwarfs should be found
in current and future planetary transit searches.

4. SUMMARY

The wonderful photometric precision of Kepler has allowed
us to measure the radial velocity amplitude of KOI 74. Com-
bined with the primary mass inferred from its spectral type
and mean density, we estimated a companion mass of 0.22 M�,
and argued it was a WD. We showed that its properties are in
very good agreement with theoretical expectations based on a
stable-mass transfer phase inside a binary system. A similar
evolutionary history is also likely to have formed the current
KOI 81 system. The many binaries that will be discovered by
photometric surveys should be interesting and useful, both in-
dividually and collectively (see, e.g., Willems et al. 2006 for a
quantitative study), in helping us to increase our understanding
of binary evolution.

Future observations by Kepler should allow measurements
of the photometric Doppler effect in more systems, perhaps
including systems such as “ultra-cool WDs,” where the lack
of spectral lines has precluded searches for radial velocity
variations. Given long enough baselines, the photometric analog
of the Rossiter–McLaughlin effect also seems likely to be
observed.

Coffee-time astro-ph discussions at the Kavli Institute for
Astronomy & Astrophysics triggered this work; in particular, we
thank Yanqin Wu, Andrew Shannon, & Matthias Gritschneder.
We thank the referee, Scott Gaudi, for his careful reading and
useful comments. S.A.R. and Ph.P. thank J. Rowe for sharing
his work in advance of submission. S.J. thanks Bill Paxton for
the plotting package Tioga.

Facilities: Kepler

Note added in proof. After acceptance of this article, high-
resolution spectra were taken for us by E. Kirby using HIRES
on the Keck I telescope. From these, we measure projected
rotational velocities of 150 and 225 km s−1 for KOI 74 and
KOI 81, respectively, and infer rotational periods of about 0.6
days for both sources. For KOI 74, the period is consistent with
that inferred from the weak non-orbital modulation shown in
the power spectrum (Section 2.2).
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