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Abstract. Simultaneous observations of cloud microphysi-

cal properties were obtained by in-situ aircraft measurements

and ground based Radar/Lidar. Widespread mid-level stra-

tus cloud was present below a temperature inversion (∼ 5 ◦C

magnitude) at 3.6 km altitude. Localised convection (peak

updraft 1.5 m s−1) was observed 20 km west of the Radar

station. This was associated with convergence at 2.5 km al-

titude. The convection was unable to penetrate the inversion

capping the mid-level stratus.

The mid-level stratus cloud was vertically thin (∼400 m),

horizontally extensive (covering 100 s of km) and persisted

for more than 24 h. The cloud consisted of supercooled wa-

ter droplets and small concentrations of large (∼ 1 mm) stel-

lar/plate like ice which slowly precipitated out. This ice

was nucleated at temperatures greater than −12.2 ◦C and

less than −10.0 ◦C, (cloud top and cloud base temperatures,

respectively). No ice seeding from above the cloud layer

was observed. This ice was formed by primary nucleation,

either through the entrainment of efficient ice nuclei from

above/below cloud, or by the slow stochastic activation of

immersion freezing ice nuclei contained within the super-

cooled drops. Above cloud top significant concentrations of

sub-micron aerosol were observed and consisted of a mixture

of sulphate and carbonaceous material, a potential source of

ice nuclei. Particle number concentrations (in the size range

0.1< D < 3.0 µm) were measured above and below cloud in

concentrations of ∼25 cm−3. Ice crystal concentrations in

the cloud were constant at around 0.2 L−1. It is estimated that
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entrainment of aerosol particles into cloud cannot replenish

the loss of ice nuclei from the cloud layer via precipitation.

Precipitation from the mid-level stratus evaporated before

reaching the surface, whereas rates of up to 1 mm h−1 were

observed below the convective feature. There is strong ev-

idence for the Hallett-Mossop (HM) process of secondary

ice particle production leading to the formation of the pre-

cipitation observed. This includes (1) Ice concentrations

in the convective feature were more than an order of mag-

nitude greater than the concentration of primary ice in the

overlaying stratus, (2) Large concentrations of small pris-

tine columns were observed at the ∼ −5 ◦C level together

with liquid water droplets and a few rimed ice particles, (3)

Columns were larger and increasingly rimed at colder tem-

peratures. Calculated ice splinter production rates are consis-

tent with observed concentrations if the condition that only

droplets greater than 24 µm are capable of generating sec-

ondary ice splinters is relaxed.

This case demonstrates the importance of understanding

the formation of ice at slightly supercooled temperatures, as

it can lead to secondary ice production and the formation of

precipitation in clouds which may not otherwise be consid-

ered as significant precipitation sources.

1 Introduction

Stratus clouds have an important impact on global climate

as they typically have a high albedo, cover significant areas

of the Earths surface and are relatively long lived (for liq-

uid clouds see Bretherton et al., 2004; Ramanathan et al.,

1989). The formation of ice in these clouds is also critical in
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determining their radiative properties (Hogan et al., 2003a,b,

2004). Therefore, knowledge of the dynamical and micro-

physical processes leading to formation and dissipation of

these clouds is important for predicting their radiative im-

pacts and precipitation evolution.

The formation of precipitation from stratus clouds can re-

sult from both collision and coalescence of cloud droplets

and also from the formation of ice. Ice which does form in

stratus clouds is typically low in number concentration and is

quickly precipitated due to rapid growth. The formation rate

of ice in stable stratus clouds is poorly quantified or under-

stood. Most laboratory studies of ice formation investigate

the role of aerosol particles as Ice Nuclei (IN) by exposing

them to changes in temperature and humidity to represent

vertical ascent and then observing when a given aerosol type

allows ice to form, (e.g., Mohler et al., 2006; Connolly et al.,

2009).

Slightly supercooled stratus clouds are generally assumed

to contain very few active ice nuclei and hence little ice

would be expected to form (Meyers et al., 1992). Micro-

physical schemes used in Cloud Resolving Models (CRMs)

and Single Column Models (SCMs) generate differences

in predicted cloud microphysical properties for slightly

(>−15 ◦C) supercooled marine stratocumulus clouds (Klein

et al., 2009). This demonstrates the need for measurements in

mixed phase layer clouds in slightly supercooled conditions.

In convective clouds precipitation arises from the forma-

tion of large water drops as well as the development of ice.

Convective clouds span a larger range of temperatures than

stratus clouds, allowing a larger range of microphysical pro-

cesses to occur. The formation of ice in convective clouds

due to primary processes can cause secondary ice production

(SIP) to occur without any additional IN. Splinter ejection

during riming of ice crystals, known as the Hallett-Mossop

process (referred to as HM) is one such SIP mechanism and

is effective in the temperature range −3 to −8 ◦C, being most

active at −5 ◦C (Hallett and Mossop, 1974; Mossop and Hal-

lett, 1974). It can lead to the formation of large concentra-

tions of ice at slightly supercooled temperatures. Several

aircraft and modelling studies suggest the HM process can

be responsible for the formation of the majority of ice in

convective clouds which span the temperature range −3 to

−8 ◦C and have cloud top temperatures > −30 ◦C (Harris-

Hobbs and Cooper, 1987; Blyth and Latham, 1997; Hogan

et al., 2002; Clark et al., 2005; Huang et al., 2008), although

not all (Rangno and Hobbs, 2001). The development of con-

vection can be inhibited by temperature inversions. SIP is

an important process to understand since in marginal cases

of convection, that may not otherwise penetrate through the

temperature inversion, the additional latent heat energy re-

leased from ice formation may provide enough buoyancy to

overcome such barriers (Clark et al., 2005).

In this study, simultaneous in-situ and remote measure-

ments using the UK BAe146 Facility for Airborne Atmo-

spheric Measurement (FAAM) aircraft in conjunction with

the Chilbolton Facility for Atmospheric and Radio Research

(CFARR) were used to examine the microphysical properties

of an extensive layer of mixed-phase stratus cloud. A case is

presented where the properties of a narrow lower level con-

vective cloud feature penetrating into the overlying stratus

layer cloud above was also examined in detail. The interac-

tion between these two clouds in terms of the detailed mi-

crophysical and dynamical structure that arose is discussed.

This case highlights the importance of primary ice nucleation

at slightly supercooled temperatures, SIP via the HM process

and the interaction and coupling of the two cloud systems on

precipitation initiation.

2 Instrumentation and sampling strategy

The FAAM BAe146 aircraft flew in mixed-phase clouds on

the 18 February 2009 (flight reference B430) in the vicinity

of the CFARR ground site as part of the APPRAISE-Clouds

project. CFARR is located in Southern England (51.1145◦ N,

1.4370◦ W). The BAe146 aircraft flew a combination of pro-

file accents/descents, and constant altitude runs. A summary

of aircraft manoeuvres during the flight is shown in Table 1.

Aircraft operations were restricted by Air Traffic Control to

an area to the west of CFARR, so the majority of the aircraft

time was spent flying along a radial of 253◦ from CFARR

at distances ranging from 0 km (overpass) to 100 km at the

furthest point. A Radar at the CFARR ground site (see be-

low) performed Range Height Indicator (RHI) scans along

the 253◦ radial while other Radars/Lidars pointed vertically.

See Fig. 1 for an overview of the flight location, as well as

the location of the CFARR ground site.

2.1 In situ measurements

The FAAM aircraft measured meteorological parameters

such as ambient pressure, temperature (di-iced and non

de-iced Rosemount sensors), dew point (General Eastern

chilled mirror hygrometer) and wind speed/direction. Mea-

surements of trace gas mixing ratio (CO, Model Aero-

Laser AL5002, Ozone Model TECO TE49C and NOx,

TECO TE42C), aircraft position (GPS) and aerosol parti-

cles were also taken. De-iced Rosemount temperature is

used in this paper as the aircraft was frequently in super-

cooled cloud/icing conditions. Aerosol particle size dis-

tributions (0.1<Diameter<3.0 µm) were measured with a

wing pylon mounted Passive Cavity Aerosol Spectrometer

Probe (PCASP, PMS). The submicron non-refractory aerosol

chemical composition was measured using an Aerodyne Re-

search Inc (ARI) Compact Time-of-Flight Aerosol Mass

Spectrometer (C-ToF-AMS, see Canagaratna et al. (2007)

for further description). The C-ToF-AMS sampled aerosol

via a Rosemount inlet (Crosier et al., 2007). The C-ToF-

AMS is unable to detect mineral dust particles and has not

been shown to be able to identify biological particles in the
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Fig. 1. Flight track of the FAAM BAe146 aircraft (in red) on 18

February 2009. Locations identified by markers include London

(yellow), Exeter (red), Cranfield (green), Birmingham (purple) and

the CFARR ground site (blue). Range rings at 20 km spacing and

along the 253◦ radial from CFARR are in grey.

ambient aerosol population. These have both been reported

as efficient ice nuclei (Connolly et al., 2009; DeMott and

Prenni, 2010). Therefore the C-ToF-AMS is unable to char-

acterise an important subset of the ambient aerosol popula-

tion with regards to potential Ice Nuclei.

Cloud droplets (2<Diameter<50 µm) were measured us-

ing a wing pylon mounted Cloud Droplet Probe (Droplet

Measurement Technologies (DMT), CDP-100 Version 2) and

a Forward Scattering Spectrometer Probe (FSSP, DMT SPP-

100). The data from the CDP are used in this paper as the

FSSP and similar forward scattering (FS) probes can suffer

from significant artefacts (particle shattering) in mixed-phase

conditions (McFarquhar et al., 2007). This is discussed in

more detail in Appendix A. The CDP has a sample area of

0.24 mm2, resulting in sample volume of 28.8 cm3 s−1 at typ-

ical airspeeds (120 ms−1). The precision and lowest mea-

surable concentration from the 1 Hz CDP data is approxi-

mately 0.035 cm−3. Large water droplets and ice crystals

were measured using a wing pylon mounted SPEC Inc., 2DS-

128 (referred to as 2DS) probe. The 2DS is a high volume

2-D Optical Array Probe (2D-OAPs, see Knollenberg, 1981,

for further description). An overview of all the wing pylon

mounted cloud probes is shown in Table 2. Details of data

processing techniques used with the 2DS probe can be found

in Appendix B.

2.2 Remote sensing instrumentation

A 3 GHz Doppler-Polarisation Radar (Chilbolton Advanced

Meteorological Radar – CAMRa, Goddard et al., 1994) at

CFARR performed RHI scans along the 253◦ radial, while

a 35 GHz cloud Radar at CFARR pointed vertically. Due to

Fig. 2. Colour plot of MODIS derived cloud top temperature from

the 11:20 UTC Terra overpass on 18 February 2009. Data have been

remapped onto a 0.1◦ cartesian grid using nearest neighbour values.

Surface pressure contours (4 mBar intervals) from the ECMWF in-

terim reanalysis dataset are shown in black dashed lines.

the relatively low frequency at which the CAMRa operates,

it mainly detects precipitation sized particles. The Doppler

capability allows the radial velocity of the Radar targets in

the moving airmass to be determined. The 35 GHz cloud

radar is sensitive to both precipitation sized particles and also

cloud droplets in low level liquid clouds. A Lidar ceilometer

was also positioned at CFARR. The latter two instruments

are described in Illingworth et al. (2007).

3 Meteorological conditions and radar data

On the 18 February 2009 the UK was experiencing high pres-

sure conditions resulting in large scale descent of relatively

warm, dry air. The surface was influenced by an initially

slow moving (to the west) and then (at the time of the flight)

virtually stationary frontal system, which was composed of

warm air to the west and cold air to the east. The frontal

boundary was roughly aligned north-south. The majority of

the UK was covered by cloud at this time.

Figure 2 shows the surface pressure field (ECMWF

12:00 UTC reanalysis) and MODIS derived cloud top tem-

perature (11:20 UTC Terra overpass) for 18 February 2009.

Surface pressure over the UK was over 1020 mBar and iso-

bars were distant resulting in low surface wind speeds. The

MODIS data shows a large area of supercooled cloud over
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Table 1. Summary of constant altitude runs conducted by the FAAM BAe146 aircraft along a CFARR radial on 18 February 2009.

Reference Start Time End Time Headinga Altitudeb Temperaturec

UTC UTC ◦ km ◦C

R1 11:57:00 12:12:04 101 4.08 −9.2

R2 12:13:52 12:25:12 255 3.48 −11.7

R3 12:25:26 12:44:35 96 3.18 −9.3

R4 12:45:55 12:58:13 255 2.88 −6.9

R5 13:00:04 13:18:55 95 2.57 −4.3

R6 13:20:23 13:32:57 255 2.27 −2.1

R7 13:34:27 13:54:02 90 1.97 −0.2

aApproximate value
bMean value from the GPS receiver
cMean value from the de-iced Rosemount sensor

Table 2. Wing pylon mounted cloud probes on the FAAM BAe146 aircraft on 18 February 2009.

Name Technique Dmin Dmax Pixel/Bin Num Bins GrayScale

(µm) (µm) Width (µm)

FSSP/SPP-200a FS 2 50 Variable 30 n/a

CDPb FS 2 50 Variable 30 n/a

CIP-100c OAP 100 6200 100 62 1-bit

2DS-128d OAP 10 1260 10 126 1-bit

Probes are described in detail in a Knollenberg (1981), b McFarquhar et al. (2007), c Baumgardner et al. (2001), and d Lawson et al. (2006) .

the UK in the region influenced by the warm front (cloud

top temperature approximately −12 ◦C). The MODIS data

also show cloud to the east and west of the mid-level band

of cloud (cloud top just below freezing in Fig. 2). Low level

liquid water clouds were also observed overhead CFARR by

the Lidar ceilometer (Fig. 4).

Profiles of temperature and dew point from radiosonde as-

cents from various stations at 12:00 UTC are shown in Fig. 3.

The majority of the radiosonde profiles in the region show

evidence of a saturated layer at altitudes below 2 km (around

−2 ◦C). Profiles from stations LK (<30 km west of CFARR),

NT and AB also showed evidence of another saturated layer

at approximately 3.6 km altitude (−12 ◦C) which extended

only a few 100 m in the vertical. All stations show warm dry

air aloft, which is consistent with large scale descent dur-

ing high surface pressure conditions. Saturated layers were

capped by temperature inversions (varying between 1 and

7 ◦C).

Also shown in Fig. 3 are in-situ data from the BAe146 air-

craft taken during a profile ascent (11:42–11:57 UTC) in the

region of CFARR. This shows a saturated layer (400 m ver-

tical extent) with cloud top and cloud base temperatures of

−12.2 ◦C and −10.0 ◦C, respectively. This layer was found

at around 3.5 km altitude, and was overlying a thicker layer

of warm cloud (cloud top <2 km altitude) which approached

the surface. The lower level cloud (<2 km altitude) is not

studied in this paper. The upper level cloud was capped by a

temperature inversion (∼5 ◦C in magnitude) and dry air (dew

point ∼−30 ◦C). The in-situ measurements of cloud top tem-

peratures are in agreement with both radiosonde and MODIS

data. All three data sources confirm the presence of an ex-

tensive layer of supercooled mid-level stratus cloud over the

UK.

The 35 GHz vertical pointing Radar at the CFARR ground

site measured returns from the two saturated layers (iden-

tified in the sonde ascents above) for over 24 h, starting at

∼06:00 UTC. The time series of radar reflectivity during the

flight period is shown in Fig. 4. Echos from the mixed-phase

layer are dominated by the large ice particles present and val-

ues of −5 dBZ were measured both in the supercooled layer,

and in the glaciated virga below. Key features are annotated

on the plot. Also shown in Fig. 4 is the time series from

the Lidar ceilometer. Lidar is very sensitive to liquid water

clouds, and strong reflections (red colours: note the logarith-

mic colour scale) were recorded from low level liquid water

layers at 600 m, 800 m and 1200 m. These layers were op-

tically thick, and prevented further penetration of the Lidar

beam to the higher cloud layers.

The ice particles falling from the supercooled layer are

observed to evaporate at 2.5 km; however some streaks ap-

peared to survive to lower levels, influencing the low level

water clouds. Appreciable drizzle was observed at low levels

during this period in both the radar and Lidar observations

(up to +5 dBZ at 14:00 UTC).
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Fig. 3. Profiles of temperature (black) and dewpoint (grey) from radiosonde station soundings at 12:00 UTC and the FAAM aircraft profile

(11:42–11:57 UTC). Radiosonde station locations are highlighted in Fig. 2.

Fig. 4. Time series of vertically pointing cloud Radar and Lidar

ceilometer measurements during the flight. Key features are anno-

tated for reference.

RHI scans from the 3 GHz CAMRa along the 253◦ ra-

dial are shown for runs R2–R5 in Figs. 5–8. The CAMRa

recorded reflectivities of around −5 dBZ in/below the su-

percooled stratus cloud, as observed overhead. These scans

also show regions of enhanced reflectivity (0–20 dBZ) from

cloud top to the surface at distances of around 20 km from

CFARR, and are associated with a region of localised con-

vection. Due to the stationary nature of the enhanced re-

flectivity/convective feature, the system can be considered to

be in steady state. The local convection was also identified

on the Met Office operational Radar network and consisted

of a band of enhanced reflectivity orientated approximately

north-south ∼20 km to the west of CFARR.

Figure 9 shows an RHI scan from CAMRa focussing

on the region of convective activity, showing a cross sec-

tion taken approximately perpendicular to the line of show-

ers (azimuth=265◦). The radar reflectivity is shown in

panel (a): as before values in the range −10 to 0 dBZ are

observed in the layer of ice crystals falling from the su-

percooled liquid at cloud top. Much larger reflectivities

(up to +20 dBZ) are observed in the region around 20 km

west of CFARR, corresponding to the embedded convec-

tive feature, and are likely dominated by rimed crystals

www.atmos-chem-phys.net/11/257/2011/ Atmos. Chem. Phys., 11, 257–273, 2011
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and graupel particles (also observed in the aircraft imagery:

Fig. 11b and c). Reflectivities below the melting layer

(1.4 km height approximately) peak just below +30 dBZ,

suggesting a peak rainrate of around 2 mm h−1 (Marshall and

Palmer, 1948).

Figure 9b shows the Doppler velocity field: Superimposed

on this plot are arrows highlighting the motion of the air-

masses (perpendicular to the line of showers). Convergence

of weak easterly (warm colours) and westerly winds (cold

colours) leads to air being lifted around 1–2 km in height to

cloud top, where the updraught is capped by the strong inver-

sion (cf. Fig. 3) and spreads out horizontally. Note therefore

that the air in this convective feature is entrained from the

ice-saturated air at 2–3 km height, and not from the boundary

layer. Since the flow producing this updraught is quasi-two

dimensional, the Doppler measurements can be used to infer

the vertical velocity field w, by integration of the continuity

equation. Assuming w=0 at cloud top (because of the in-

version) Fig. 9c shows the calculated values of w (zoomed

in on the region of convergence). A clear up/down-draught

structure is observed: The peak updraught was estimated to

be 1.5 m s−1. Note the sensitivity of the derived velocities

to the fall velocity of the ice particles is weak at this range:

Correcting the Doppler velocities for a particle fall-speed of

2 ms−1 only changed the derived vertical velocities by 10%.

4 Cloud properties

The FAAM aircraft conducted a series of constant altitude

runs along the 253◦ radial from the CFARR ground site as

summarised in Table 1. The first of these runs (R1) was

performed above the supercooled cloud (altitude= 4.08 km,

temperature= −9.2 ◦C) to characterise any possible ice seed-

ing from above. During R1 none of the cloud probes detected

any particles within their respective size ranges; this was con-

firmed by the radar time series (Fig. 4), ruling out the possi-

bility of ice seeding from above. This is not surprising as

the air above the cloud was found to be warm and dry due to

the large-scale descent associated with the high pressure sys-

tem. Measured cloud droplet number/mass concentrations

from the CDP, as well as round and irregular particle num-

ber/mass concentrations from the 2DS, are shown as a func-

tion of distance from CFARR along the 253◦ radial for runs

R2–R5 in Figs. 5–8, respectively. Also shown in Figs. 5–8

is the Radar reflectivity from RHI scans performed half way

through the aircraft constant altitude run. The measured in-

situ cloud microphysical properties are binned at 1 Hz time

resolution which corresponds to approximately 120 m spatial

resolution. Number concentrations of cloud particles from

the CDP and 2DS probe gathered during runs R2–R5 are also

shown in Fig. 10. The data in these plots are separated into

data at different temperature levels and geographical loca-

tions. Based on the CAMRa RHIs, the region of convective

activity is defined here as being 15–25 km horizontal distance

from CFARR, whereas data from cloud unaffected by this

convection is defined as being 25–100 km horizontal distance

from CFARR.

Run R2 (Fig. 5) was performed inside the supercooled

stratus cloud (3.48 km, −11.7 ◦C). The droplet concentra-

tion from the CDP was around 50 cm−3 for the majority of

R2 (west of 45 km). Cloud droplet number/mass concen-

trations dropped to around zero at distances <40 km from

CFARR. This was a result of a slight increase in cloud base

altitude. The measured cloud droplet water concentration

from the CDP along R2 peaked at 0.5 g m−3. At around

50 km distance from CFARR the 2DS data suggest there was

an area of cloud with enhanced concentrations of large cloud

droplets/drizzle droplets (up to 20 L−1). This is confirmed by

the other probes including the CPI and Hotwire LWC sen-

sor. Throughout the cloud a small number of ice crystals

were found along the entire straight and level run, with con-

centrations of around 2 L−1 common, contributing around

0.01 g m−3 to the total cloud water content. These crystals

were a combination of stellar and plate like habits. Images of

particles which were classified as ice crystals from the 2DS

along R2 are shown in Fig. 11a. These data were gathered

over a distance of ∼5 km in the horizontal, between 32 and

37 km from CFARR. A composite average particle size dis-

tribution from the CDP and 2DS probes along R2 is shown in

Fig. 12a. Also shown in the plot is the size distribution from

particles measured by the 2DS which are too small for shape

analysis based on a pixel threshold of 16. Number concen-

trations are consistent in the overlap region between different

probes.

Run R3 (Fig. 6) was performed below the supercooled

layer cloud (3.18 km, −9.3 ◦C) and included a short penetra-

tion of the convective feature located 20 km west of CFARR.

During this flight turbulence data from a 5-hole pressure port

probe was unreliable due to ice build up on the probe in

the mixed phase conditions. Therefore it was not possible

to measure the updraft velocity within the convective fea-

ture. In this case the aircraft vertical acceleration determined

from the 3-D accelerometers was used as a measure of tur-

bulence levels. The vertical acceleration was shown to be

significantly perturbed during transit through the boundaries

of the convective feature. The CDP derived cloud droplet

number concentration was approximately zero throughout

the majority of the run. Ice crystal concentrations measured

by the 2DS were relatively low (approximately 0.1 L−1) be-

low the supercooled cloud. There was an area (approxi-

mately 20 km horizontal distance from CFARR) where the

CDP cloud droplet concentration increased to over 50 cm−3.

This was in the convective feature characterised by high re-

flectivity as seen by the CAMRa. In this region the ice crys-

tal and large droplet number concentration measured by the

2DS also greatly increases to over 20 L−1 and 40 L−1, re-

spectively. The mass concentration of the ice in this re-

gion is over 0.1 g m−3 whereas the large drops/drizzle mass

only increases to around 0.005 g m−3 which suggests that
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Fig. 5. Total particle mass (left axes, black lines) and number (right axes, blue lines) from the CDP and 2DS as a function of distance/time

from CFARR. Data from the 2DS are separated into round and irregular categories. In-situ temperature from the de-iced Rosemount sensor

is also shown. Data are from the BAe146 aircraft along the 253◦ radial during constant altitude run R2. Also shown is the reflectivity from

the 3 GHz CAMRa RHI scan (12:19:29–12:21:29 UTC) along the 253◦ radial.

Fig. 6. Same as Fig. 5, except for run R3. The CAMRa RHI scan shown was from (12:32:22–12:34:22 UTC).

the ice crystals were much larger than the largest drops seen

in the feature. Images of particles classified as ice in the

convective feature are shown in Fig. 11b and are present

as heavily rimed crystals, some of which may be heavily

rimed columns. These images were collected over a horizon-

tal distance of around 0.1 km, at ∼19.8 km horizontal dis-

tance from CFARR. The ice particles (precipitation) below

the supercooled cloud outside the convective feature (dis-

tances >25 km) were similar to those found in the super-

cooled cloud as shown in Fig. 11a.

Data from runs R4 (2.88 km, −6.9 ◦C) and R5 (2.57 km,

−4.3 ◦C) are shown in Figs. 7 and 8. Both runs were

performed below the supercooled layer cloud and briefly

passed through the convective feature located 20 km west of

www.atmos-chem-phys.net/11/257/2011/ Atmos. Chem. Phys., 11, 257–273, 2011
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Fig. 7. Same as Fig. 5, except for run R4. The CAMRa RHI scan shown is from (12:51:12–12:53:12 UTC).

Fig. 8. Same as Fig. 5, except for run R5. The CAMRa RHI scan shown is from (13:08:12–13:10:12 UTC).

CFARR. Both of these runs have similar characteristics to the

previous run (R3), namely small concentrations of ice crys-

tals below the supercooled cloud, with enhanced concentra-

tions of ice and large cloud droplet concentrations in/around

the convective region. Ice particle number concentrations

from the 2DS peak at over 20 L−1 during both passes through

the convective feature. Ice and drop/drizzle mass from the

2DS peak at around 0.2 g m−3 and 0.008 g m−3 in the con-

vective region, respectively. Images of ice crystals from the

2DS in the convective cloud along runs R4 and R5 are shown

in Fig. 11c and d, respectively. These images were obtained

along an ∼0.2 km horizontal section in regions of high cloud

droplet concentrations as measured by the CDP, and there-

fore most likely updrafts. They show marked differences

from each other and those seen in the convective cloud at

lower temperatures (Fig. 11b) and in/beneath the supercooled

layer cloud (Fig. 11a). The ice crystals in R4 appear to be

lightly rimed columns typically around 500 µm in length,
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Fig. 9. RHI scan perpendicular to line of showers. Panel (a) shows radar reflectivity; (b) is Doppler velocity. Arrows indicating the air

motion responsible for the convergence have been overlayed on panel (b). Panel (c) shows a zoomed-in view of vertical velocity in the

region of convergence (boxed area in panel b), derived from integration of the 2-D continuity equation using the Doppler winds.

Fig. 10. Number concentration of round particles recorded by the

2DS probe from runs R2-R5. Whiskers extend to 5th and 95th per-

centiles, boxes encompass 25th to 75th percentiles and 50th per-

centiles are vertical lines. Mean values are represented by black

markers. The convective region is defined as being 15–25 km dis-

tance from CFARR, whereas the stratus region is defined as being

25–100 km from CFARR.

whereas at the lower altitude/warmer temperature the ice

crystals in R5 appear to be a mixture of smaller columns and

hollow columns generally around 200 µm or less in length,

with no evidence of riming. Runs R3 and R4 also contained

a significant number of large (>1 mm or more) graupel or

heavily rimed ice particles, as well as liquid water droplets

in/around the convective region of the cloud. The different

types of cloud particle are not uniformly mixed horizontally

across the convective region, but appear in discrete pockets

due to the presence of the up/down-draughts.

The vertical profile of the number concentration of round

drizzle/droplets and irregularly shaped (most likely ice) par-

ticles from the 2DS probe from constant altitude runs R2–R5

are shown in Fig. 10. Also shown are the number concentra-

tions of droplets from the CDP. The plot contains statistical

information on the 5th, 25th, 50th, 75th and 95th percentiles

as well as the mean of number concentrations. In the region

of convective activity, cloud droplet concentrations measured

below the supercooled layer cloud are highly variable, with

peak values of the same order as values found in the super-

cooled layer cloud itself. Away from this region of convec-

tive activity, cloud droplet concentrations are very low below

the layer cloud. Ice crystal number concentrations below the

layer cloud are around 20 times larger in the convective re-

gion than away from it (up to 20 L−1 compared to 1 L−1).

No drizzle was found below the layer cloud away from the

convective region, despite being observed at 50 km distance

within the layer cloud during R2. Large drops/drizzle parti-

cles (from the 2DS) were measured in the convective region

in/below the layer cloud.

Average ice particle size distributions in the convective re-

gion (15–25 km distance from CFARR) for runs R3-R5, con-

ditionally averaged for cloud droplet number concentrations

greater/less than 1 cm−3, are shown in Figs. 12b/c respec-

tively. Conditional sampling by droplet number concentra-

tions is undertaken to identify regions of updraft. The sam-

pling is performed on the 1Hz data representing averaging

over spatial scales of about 120m. It is possible that regions

of updraft may contain only low concentrations of cloud

droplets after ice develops as the majority of droplets are

removed by the Bergeron-Findeison or accretion processes.

This could result in some regions of updraft which contain

very low droplet concentrations being identified as regions

of downdraft. In order to make this very unlikely a thresh-

old of particle concentration of 1 cm−3 is used to separate

updraft from downdraft/quiescent regions. This value was

chosen as it is much smaller than likely droplet concentra-

tions measured in the cloud and much larger than realistic

concentrations of ice crystals likely to occur (or be observed)

in the cloud. The sizing metric used in these plots is the di-

ameter of a circle which would have the same total area as

the original particle. This is done because column particles

of the same size could have a variety of across/along array

measured lengths depending on orientation upon sampling.

The ice particle size distribution at the lowest alti-

tude/warmest temperature (−4.3 ◦C) is dominated by small

(< 300 µm) particles in regions of high cloud droplets (Figure

12b) and thus updrafts. These ice particles are those which
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Fig. 11a. Particle images from the 2DS probe. Each image strip

is approximately 1.28 mm wide and 12.8 mm long. Data are from

R2 (T =−11.7 ◦C, altitude=3.48 km) in the supercooled layer cloud

above CFARR.

Fig. 11b. As Fig. 11a. Data are from R3 (T =−9.3 ◦C,

altitude=3.18 km) in the region of convective cloud encountered ap-

proximately 20 km west of CFARR.

have been generated by Secondary Ice Production. The par-

ticle size distribution in low cloud droplet number concentra-

tion regions at the same altitude/temperature is instead domi-

nated by larger particles extending to over 1 mm in size (12c).

These are rimed particles which are most likely falling out

of the convective system. At colder temperatures (−6.9 ◦C

and −9.3 ◦C), the high droplet concentration regions have a

significant contribution of ice particles > 300 µm to the total

number concentration (Fig. 12b). This is in strong contrast to

the −4.3 ◦C distribution which only contains the smaller par-

ticles, and is due to the growth of the columns seen at lower

altitudes in the updraft as they are lifted. In the region of low

droplet concentrations, large numbers of rimed particles (D

∼ 300 µm) are seen at the intermediate level (−6.9 ◦C) falling

out of the system. Above this (−9.3 ◦C), little ice is detected

in the low cloud droplet concentration region, presumably as

most of the large precipitation has already fallen out.

Fig. 11c. As Fig. 11a. Data are from R4 (T =−6.9 ◦C,

altitude=2.88 km) in the region of convective cloud encountered ap-

proximately 20 km west of CFARR.

Fig. 11d. As Fig. 11a. Data are from R5 (T =−4.3 ◦C,

altitude=2.57 km) in the region of convective cloud encountered ap-

proximately 20 km west of CFARR.

5 In-situ aerosol properties

Composition of the submicron aerosol measured using the

C-ToF-AMS during a profile ascent (11:42–11:57 UTC) in

the region of CFARR is shown in Fig. 13. Also shown in

Fig. 13 is the CDP measured cloud droplet number concen-

tration. The CDP data are included on Fig. 13 to inform the

reader when in-cloud conditions were encountered. No data

from the C-ToF-AMS is shown in Fig. 13 during the pro-

file ascent between 1–1.5 km altitude, as sampling was sus-

pended to prevent instrument contamination with water. The

C-ToF-AMS sampling was also suspended during runs R2–

R4 for the same reason. Poor transmission of large particles

through rosemount inlets will mean that aerosol mass mea-

sured will mostly be from interstitial aerosols. Artefacts from

droplet/crystal breakup on the rosemount cannot be ruled out

but are of little consequence, as we are only concerned with

the out of cloud aerosol. Aerosol composition at the low-

est altitudes (<0.4 km) was dominated by ammonium ni-

trate and organic species. Above this (0.4–3.3 km) was a

region where the aerosol consisted of a partly ammonium

neutralised sulphate aerosol. Mixing between these layers
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Fig. 12a. Average cloud particle size distribution from the

FAAM aircraft. Data are from R2 in the supercooled layer cloud

(T =−11.7 ◦C, altitude=3.48 km) observed above CFARR.

Fig. 12b. Ice particle size distribution from the 2D-S in the convec-

tive region (15–25 km distance from CFARR) in high (> 1cm−3)

cloud droplet number concentration regions.

is limited due to the presence of a temperature inversion.

Above the supercooled cloud, significant amounts of sul-

phate and organic mass were found in the submicron aerosol.

Mean concentrations of sulphate, nitrate, ammonium and or-

ganic aerosol mass from the above cloud run (R1) are also

shown in Fig. 13. The data from the above cloud run (R1)

confirm the presence of sulphate and organic material in the

aerosol particles (concentrations of the order of 0.1 µg m−3).

Aerosol composition information was not obtained from the

below cloud constant altitude runs. Quantification of dust

and biological particle concentrations was not possible due

to instrumentation limitations. Aerosol number concentra-

tions (0.1<Diameter<3 µm) from the PCASP during runs R1

(above cloud) and R3 (below cloud) are shown in Fig. 14.

Data plotted are 5th, 25th, 50th, 75th and 95th percentiles, as

well as means as diamond markers. Data from below cloud

were taken from a subset of the run due to the presence of

cloud and precipitation. PCASP data were additionally fil-

tered to remove contamination from precipitation shattering

on the inlet by removing any data with 1 s total volume con-

centrations exceeding 0.1 µm3 cm−3, which occurred in short

infrequent pulses. The PCASP data in Fig. 14 show particle

concentrations of around 25 cm−3 above and below the layer

Fig. 12c. Ice particle size distribution from the 2D-S in the con-

vective region (15-25 km distance from CFARR) in low (< 1cm−3)

cloud droplet number concentration regions.

Fig. 13. Vertical profile of mass concentration for submicron

aerosol species from the C-ToF-AMS. Cloud droplet number con-

centrations (measured by the CDP) are also shown on the top axis.

cloud. Measurements of trace gases did not show any mea-

sureable evidence of transport of boundary layer air upwards

in the convective region into the layer cloud aloft. This is

consistent with the evidence from the Doppler radar obser-

vations in Fig. 9.

6 Discussion and conclusions

In-situ observations of cloud microphysical properties show

that small concentrations of ice particles were formed in a

slightly supercooled stratus cloud (cloud top and cloud base

temperatures −12.2 and −10.0 ◦C, respectively) during win-

ter over the UK. These measurements are in broad agree-

ment with Lidar observations of lightly precipitating slightly
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Fig. 14. Aerosol number concentrations (0.1<Dp<3 µm) from the

PCASP measured above (R1) and below (R3) the supercooled layer

cloud. Whiskers extend to 5th and 95th percentiles, boxes encom-

pass 25th to 75th percentiles and 50th percentiles are horizontal

lines. Mean values are represented by black markers.

supercooled Arctic stratus clouds (Verlinde et al., 2007). The

ice crystals in this cloud were predominantly around 1 mm

in size and consisted of stellar and plate like habits. The

formation of this ice at these relatively warm temperatures

(>−13 ◦C) could be a result of either (a) all or some cloud

droplets containing inefficient IN (which nucleate via a slow

stochastic process) which are activated over time, or (b) en-

trainment of aerosol into cloud and/or droplets, a small frac-

tion of which act as a more efficient IN. By inefficient IN,

we mean IN which do not nucleate ice instantaneously at a

given temperature and humidity, but may do so in the same

environment given sufficient time. If the nucleation is trig-

gered by a small number of efficient IN then in the absence

of entrainment these will quickly be depleted by precipita-

tion. These IN would thus have to be replenished through

entrainment from directly above or below the stratus cloud,

otherwise the cloud would soon contain liquid water only.

Significantly, an enhanced number of sub-micron aerosols

were observed just above cloud top. The C-ToF-AMS mea-

surements showed the bulk submicron non-refractory partic-

ulate mass consisted of a mixture of sulphate and carbona-

ceous material. Ground based observations in clouds on the

Jungfraujoch mountain-top in Switzerland (Choularton et al.,

2008; Targino et al., 2009) suggest that polluted air masses

containing carbonaceous aerosol are associated with an in-

crease in ice crystal concentration in clouds in this tempera-

ture range (−10 to −12 ◦C). It is possible that these particles

are gradually being entrained into the cloud and acting as ice

nuclei. The instrumentation used in this study could not con-

firm/rule out the presence of either mineral dust or biological

particles. Both of these particle types have been shown to

be efficient ice nuclei at colder temperatures (Connolly et al.,

2009; DeMott et al., 2010). Biological particles could also

be responsible for heterogenous ice nucleation at relatively

warmer temperatures (> −15 ◦C, DeMott and Prenni, 2010).

Studies have demonstrated the ability of some organic com-

pounds to form a glassy phase at low temperatures which can

act as ice nuclei (Murray et al., 2010). Glassy organic aerosol

particles have recently been detected at room temperatures

(Virtanen et al., 2010), and these could also be a potential

source of efficient ice nuclei at relatively warm temperatures.

There is no evidence of dust out flow from Africa based on

7 day back trajectories generated from ECMWF wind field

data.

Aerosol particle number concentrations

(0.1<Diameter<3.0 µm) measured above/below cloud

were of the order of 25 cm−3, whereas ice/precipitation

concentrations in and below the layer cloud were around

0.2 L−1. Assuming an entrainment velocity of around

0.3 cm s−1 across the ∼4 ◦C cloud top inversion (Moeng

et al., 1999) results in a flux of around 8 cm−2 s−1 particles

being entrained at cloud top. For an ice crystal concentration

of 0.2 L−1 and assuming an ice crystal fall speed of 1 m s−1

(Mitchell, 1996) an ice particle loss rate of 0.02 cm−2 s−1

is calculated. Therefore if the entrained aerosols are acting

as efficient IN to maintain the ice crystal population in the

cloud, roughly 1 in every 400 particles entrained would need

to be an IN at temperatures >−12.0 ◦C. This would require

an ambient IN population of about 62 L−1 at >−12.0 ◦C,

a value which is more than one, two and three orders of

magnitude larger than that predicted by the Meyers, Fletcher

and Cooper schemes respectively (DeMott et al., 2010).

Uncertainties of a factor of 2 in entrainment velocities are

not large enough to generate IN concentrations more in

keeping with those reported in the literature. Also, it has

been demonstrated that ambient IN concentrations are highly

correlated with larger particles (Diameter>0.5 µm, DeMott

et al., 2010), which only represent a small fraction (<1%)

of the aerosol number concentrations measured. Therefore

the argument that ice is formed in the stratus cloud via

entrainment of IN from outside cloud seems highly unlikely.

This lends weight to the argument that ice is formed via a

slow stochastic process. The cloud in this case was observed

to precipitate lightly for several hours, which drives the

requirement for new ice formation. If the ice is formed

through a sufficiently large number of in-efficient IN, then

the source of IN from entrainment is not required.

An area of convective cloud initiated below the stratus

cloud contained both liquid water droplets and ice particles.

This convective feature was observed to be in steady state

according to the radar reflectivity structure. The cloud was

precipitating large rimed ice crystals. Large number con-

centrations of pristine column ice crystals were also mea-

sured in the region of the convective cloud, which must have

formed not at cloud top but at around −5 ◦C. There are a

number of pieces of evidence for this. The ice appears to be

smaller and less rimed at warmer temperatures than that at

cloud top. Also, previous studies have demonstrated that nee-

dles/columns grow at temperatures above −10 ◦C, whereas

plates/stellars grow at colder cloud temperatures (Pruppacher
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and Klett, 1997). The vertical profile of ice crystal number

concentration shows that the concentrations in the convective

cloud are more than 10 times larger than in the mid-level stra-

tus, despite both cloud tops being capped at the same level

(−12.2 ◦C). Taking all these factors into account, it seems

most likely that ice is forming in the convective region as a

result of a SIP mechanism, most likely due to the process of

splinter production during riming (the Hallett-Mossop pro-

cess, HM, Hallett and Mossop, 1974). This process occurs

when ice crystals accrete supercooled water droplets. The

freezing of the supercooled droplets on the surface of the ice

crystals can result in small ice splinters being ejected from

the surface of the newly freezing drops due to the build up of

large surface stresses. The process is at its most effective for

rimer surface temperatures close to −5 ◦C (Pruppacher and

Klett, 1997), the same temperature at which pristine columns

are observed. In order for the process to occur both su-

percooled water and ice are needed. The HM process has

been identified in several other studies as being an important

mechanism for accounting for observed ice crystal concen-

trations (Blyth and Latham, 1997; Rangno and Hobbs, 2001;

Hogan et al., 2002).

In this case the supercooled water is provided by the up-

draft within the convective cloud, while the initial rimer sur-

face is provided by the ice crystals falling from the mid-level

stratus (which formed via primary nucleation). After the for-

mation of the ice splinters and their subsequent growth into

pristine columns in the convective region due to the HM pro-

cess, the columns continue to grow by vapour diffusion and

riming until either their fall speed exceeds that of the up-

draft, or they reach the top of the cloud. At cloud top the

ice is transported horizontally due to divergence of air at the

inversion to a region of reduced updraft, where they can sub-

sequently precipitate. These crystals then fall as large grau-

pel type precipitation which is observed in proximity to the

core liquid water updraft, and may participate in further SIP.

It is highly likely that the HM process is responsible for the

formation of precipitation which reaches the ground and that

without this process the convective cloud would not be pre-

cipitating with rates of around 1 mm h−1 as observed by the

operational rainfall radar. Therefore an accurate representa-

tion of this process in weather forecasting models could be

important, as well as being needed to accurately predict the

onset of ice formation in slightly supercooled clouds.

To quantitatively discuss whether the HM process could be

responsible for the observed enhancement in ice crystal con-

centrations seen, we have adopted the approach of Harris-

Hobbs and Cooper (1987). Firstly, an ice crystal size dis-

tribution measured in the vicinity above the HM region was

used to calculate the ice particle production rate that must

have occurred to yield the concentration of ice crystals be-

tween 90 and 140 µm length. These crystals have a linear

growth rate of around 1.4 µm s−1 as described by Ryan et al.

(1976).

Assuming that ice particles are constantly growing in

a water saturated environment, if we are to have a

steady state then a particle exiting this size range at

D=140 µm must be replaced by one entering it at D=90 µm.

The time taken for that to occur, τ , is the amount of

growth (δD=140−90=50 µm) divided by the growth rate

(1.4 µm s−1), 35.7 s. If we assume that the only source of ice

crystals moving through this size range is ice splinters then

the production rate is the number concentration of crystals in

this size range, δN , divided by the time taken or δN/τ . This

yields a measured splinter production rate of 43 m−3 s−1.

Theoretically the riming rate of the ice particles as they fall

through a supercooled cloud determines the ice splinter pro-

duction rate. We chose to apply Eq. (1) from Harris-Hobbs

and Cooper (1987) to the data from this study. For input we

chose a supercooled liquid distribution from R6 (−2.1 ◦C) as

measured with the CDP. This level was chosen as the input

size distribution as it is outside the active region of the HM

process and so likely unchanged by it. For the ice size dis-

tribution we used the measured ice size distribution within

the stratus layer at −12 ◦C. As mentioned earlier, these ice

crystals were comprised mainly of plates and stellars and so

should have a smaller terminal velocity than graupel, but nev-

ertheless still be capable of riming.

In order to complete the calculation, collection efficien-

cies between drops and ice particles were assumed to be 1

and the terminal velocities/densities of the crystals were de-

rived using the approach of Heymsfield et al. (2002) for snow

flakes. Inputs to the calculation of terminal velocity (area ra-

tio and length) were taken from the 2DS probe image data.

Using the mean drop size distribution for the in-cloud period

with the constraint that only drops with diameter D>24 µm

can produce splinters leads to a predicted splinter production

rate of 0.01 m−3 s−1. This is lower than the measured rate

of 43 m−3 s−1. Removing the constraint where only drops

with D>24 µm allow splinter production to occur (to a sit-

uation where all droplets measured by the CDP can allow

splinter production) results in a rate of 14 m−3 s−1, which

is in better agreement with the measured production rate.

The cloud droplet concentration in the convective region was

highly variably resulting in an average number concentra-

tion of ∼7 cm−3. Predicted splinter production rates using

the same shape spectrum but with higher total concentrations

of droplets (50 cm−3, approximately the peak concentration

observed) were 0.08 and 101 m−3 s−1 (with and without the

D>24 µm constraint, respectively). The predicted produc-

tion rates using the mean and peak droplet concentrations

bound the measured production rate assuming drops with

D<24 µm can produce splinters.

Using the collection efficiencies between drops and ice

from Beard and Grover (1974) results in only small changes

in predicted production rates (<5%). The droplet spectrum

used to calculate the predicted splinter rate was obtained at

−2.1 ◦C. While droplets would grow to larger sizes at colder

temperatures in the convective cloud, measurements show
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Fig. A1. CDP total number concentration as a function of CIP-100

total particle number concentration. Data are from flight B434 in a

large frontal system. Data are coloured to the log10 of FSSP:CDP

total number concentration ratio.

little increase in the number of droplets with D>24 µm at

−4.3 ◦C relative to those at −2.1 ◦C (both concentrations are

less than 0.1 cm−3). Therefore, predicted production rates

using the D>24 µm criteria are not dependant on the size

distribution used as measurements from relevant temperature

levels lack significant numbers of large droplets. However,

the lack of large droplets in the convective region may be a

result of the evaporation of droplets in mixed phase condi-

tions.

The predicted production rates also assume no recycling of

ice splinters back into the HM zone for further splinter pro-

duction. An estimation of this effect has been calculated by

altering the total number concentration of the input ice size

distribution of rimers by a factor of 100 (from 0.2 to 20 L−1).

This results in a production rate ∼100 times larger which is

still below the measured production rate by around an order

of magnitude if we maintain the D>24 µm criterion. How-

ever, it may be possible that for the large stellar/plate like

crystals (the observed rimers in this case), the need for large

drops (>24 µm) may not be necessary for SIP production via

the HM process as it is for graupel particles acting as the

rimers. This will be further investigated in future laboratory

studies.

Appendix A

Cloud droplet measurements

Both a Cloud Droplet Probe (CDP, Droplet Measurement

Technology Inc) and a Forward Scattering Spectrometer

Probe (FSSP) were installed on the BAe146. Both of

these use forward scattered light intensity to determine cloud

droplet size (1–50 µm in up to 40 bins). However the hard-

ware containing the optics for the CDP is a greater distance

from its sample area than for the FSSP, making it likely that

the CDP is less prone to artefacts resulting from ice crystals

Fig. A2. Histogram of FSSP and CDP number concentrations mea-

sured in frontal cloud during flight B434.

shattering on the probe which is commonly seen on the FSSP.

Figure A1 shows the measured cloud droplet concentration

from the CDP as a function of the large cloud particle number

concentration as measured by the CIP-100. Each data point is

coloured to the log10 of the ratio of the FSSP to CDP number

concentration. Values of 3 (red markers) are regions where

the FSSP over-counts relative to the CDP by a factor of 1000.

The FSSP appears to overcount relative to the CDP in regions

of high (> 5L−1) large particle concentrations as measured

by the CIP-100. The ratio of detected cloud droplet concen-

trations from the FSSP and CDP is 1 (blue markers with log10

value of 0) when the ice crystal number concentrations mea-

sured by the CIP-100 were below ∼ 5L−1. This suggests that

large ice crystals impacting and shattering on instruments af-

fect the FSSP measurements more than the CDP. Shattering

artefacts identified through the FSSP to CDP number con-

centration ratio appear to be small when droplet concentra-

tions are high, suggesting the shattered fragments are greatly

outnumbered by genuine droplets. Histograms of measured

number concentration from the CDP and FSSP for the entire

flight are shown in Fig. A2. This shows that both the FSSP

and CDP show similar frequencies of high (>50 cm−3) par-

ticle concentrations. However, the FSSP shows a large mode

centred at 10 cm−3 which is not evident in the CDP data. In-

stead, the CDP has a mode below 1 cm−3. The data shown

in Fig. A1 and Fig. A2 are from a subsequent flight and not

the study presented in the main article text. However, probe

configurations were identical for both flights. The data pre-

sented in Fig. A1 and Fig. A2 are from a case with signif-

icantly larger ice mass concentrations/sizes, with ice being

found over larger spatial scales. This makes the data from

the case presented in the Appendix more suitable for identi-

fication of instrumentation artefacts.
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Fig. B1. Frequency histograms of particle interarrival time from

the 2DS measured during flight B430. The “Number” curve (gray

– weighted by number) and the “Area” curve (black – weighted by

particle area) are plotted on the left axis. Average particle area is

plotted in red on the right axis.

Appendix B

OAP data processing

Ice mass and number concentrations are calculated following

an analysis of the raw images recorded from the OAPs (Op-

tical Array Probes, specifically the 2DS). The particle statis-

tics used to discriminate between liquid and ice are the total

area of the particle and the perimeter around the edge of the

particle. These parameters are adjusted to account for in-

ternal voids which alter particle areas and perimeters differ-

ently, and would cause out-of-focus circular particles to be

classified as non-circular with the approach used. The def-

inition of circularity (C) for the image analysis is shown in

Eq. (B1), where P is the measured particle perimeter, and A

is the measured particle Area. While the pixel width is con-

stant and defined by the instrument optics, the pixel length

is defined by the data acquisition rate and airspeed. Assum-

ing the probes were acquiring data at the correct rate, pixels

are square and the calculation of particle properties is sim-

ple. If the data acquisition rate is incorrect the pixels are

no longer square the particle statistics need to be scaled to

account for pixel stretching/compression. Particles with cir-

cularity greater than 1.25 are considered to be ice, and less

than 1.25 considered liquid due to the compact nature of the

image. A perfect circle has a circularity of 1, with all other

shapes having a larger value. This large circularity thresh-

old for ice relative to the ideal value is required to prevent

poorly imaged drizzle sized water drops from being counted

as ice particles which leads to unrealistically high ice con-

centrations. Circularity values less than 1 are possible in

practise due to the discretisation of images into pixels and

images consisting of only a small number of pixels. Only

particles with an area greater than 16 pixels are used in this

analysis, as small images consisting of only a few pixels are

not imaged with enough resolution to accurately determine

shape. Images are rejected if any of the end elements on

the OAP are occulted due to incomplete sizing as the sample

area and size of partially viewed images is poorly defined.

Ice mass concentrations were calculated from the maximum

dimension of the ice crystal (measured in the along array or

aircraft movement direction) using the parameterisation of

Brown and Francis (1995). The separation of ice/liquid using

circularity would count any round ice as being liquid but this

is quite unlikely due to the non-circular shape of pristine ice,

and also due to the rough surface of graupel and aggregates.

The masses associated with the round and small classes of

particles are calculated using the maximum width along the

array as the particle diameter and assumes the particle was

a perfect sphere. Round particles were size corrected due to

being out of focus using the results of Korolev (2007). Small

ice (approx<80 µm diameter) cannot be determined from the

OAPs (due to the size threshold for analysis) nor from the

CDP as there are no measurements of a parameter associated

with phase. Particles detected within an interarrival time less

than 10µs (relating to roughly 1 mm distance during flight)

are also rejected as they are most likely a result of particle

shattering on the OAP inlet. This has been seen in other stud-

ies (Field et al., 2006). The inter-arrival time threshold was

determined from examining the inter-arrival time histogram

for the entire flight (see Fig. B1). The derived number con-

centrations are not sensitive to small changes in the inter-

arrival time threshold.

C =
P 2

4πA
(B1)
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