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Observations of lattice curvature near the interface of a

deformed aluminium bicrystal

S. Sun, B. L. Adams

Materials Science and Engineering, Carnegie±Mellon University, Pittsburgh,
Pennsylvania 15213-3890, USA

and W. E. King

Chemistry and Materials Science Directorate, Lawrence Livermore National
Laboratory, Livermore, California, USA

Abstract

Reported here is a study of the pattern of lattice curvature near the inter-
face of deformed high-purity aluminium (99.9999%) bicrystals of speci®ed
crystallographic character (large-angle random). Curvature data are obtained
from electron back-scattering di�raction pattern observations using orientation
imaging microscopy. The concept of geometrically necessary dislocations (GNDs)
is used as the central tool in the description of the observations. The samples
studied were channel-die compressed perpendicular to the interface to plastic
strain levels of 0.1 and 0.3. At a strain level of 0.1 the primary observation is
the development of a pile-up of GNDs (i.e. lattice curvature) near the interface.
At the higher strain level of 0.3, however, a dramatic change in the distribution is
observed. The nature of this change suggests that the interface has absorbed (or
emitted) some components of the nearby GND ®eld, with an accompanying
change in the local character of the interface towards a broader dispersion of
misorientation character.

} 1. Introduction

During plastic deformation, the constituent grains of polycrystals are observed
to develop complex heterogeneous deformation patterns with variations in local
strain and crystal orientation occurring over a wide range of length scales.
Considerations of deformation heterogeneity are central to a deeper understanding
of such phenomena as the Hall±Petch relationship, strain hardening in crystalline
materials, and recrystallization and grain growth during recrystallization. The occur-
rence of this heterogeneity is not predicted by the classical theory of crystal plasticity

(Taylor 1938) although the ®rst-order features of crystallographic texturing are
explained. Taylor’s theory enforces only the mechanical compatibility of neighbour-
ing grains during deformation and does not consider the equilibrium of mechanical
forces across interfaces. It has been amply demonstrated by more recent ®nite-ele-
ment simulations of polycrystalline plasticity (Harren et al. 1988, Becker 1991) that
consideration of both compatibility and equilibrium naturally results in hetero-
geneous intragranular deformation patterns. There remains, however, a concern



that consideration of these purely mechanical e�ects may not be a su�cient physical
basis to predict reliably the complex patterns of heterogeneity that are observed.
What is clearly missing is a consideration of the boundary itself, with its structure
and (excess) free energy which must necessarily change with plastic deformation. It is
anticipated that such considerations may help to establish the missing length scale in
the theory of plasticity, the necessity of which is clearly indicated by the Hall±Petch
relationship. The nature of this missing length scale has been discussed in the context
of strain gradient plasticity by Fleck et al. (1994), and from the energetics perspective
by Becker (1995).

Experimental evidence indicates that interfaces can resist the motion of lattice
dislocations, or absorb or emit them depending upon the structure of the interface
and local mechanical conditions. (An extensive literature review on the interactions
of dislocations with grain boundaries and interfaces has been provided in the recent
work of Sutton and Ballu� (1995).) These interactions, in connection with the
aforementioned mechanical e�ects, will determine the patterns of lattice curvature
observed in the vicinity of interfaces. The purpose of the study reported here is to
describe observations of the ®elds of lattice curvature near the grain boundary in the
deformed state of bicrystals of controlled crystallographic character (speci®ed lattice
orientations and boundary plane relative to the principal axes of channel die com-
pression). (Comparisons of these observations with crystal-plastic ®nite-element
simulations are described in the work of Sun et al. (1999).) Electron back-scattering
pattern (EBSP) observations obtained by orientation imaging microscopy (OIM)
were used to measure the local ®elds of lattice curvature. The methods employed
are substantially the same as those described by Randle et al. (1996) for their char-
acterization of the lattice rotation parameters in deformed polycrystalline samples.
The main di�erence in approach is in the analysis of the data obtained. Whereas
Randle et al. considered the spatial variation of a single parameter of misorientation
`distance’ with respect to a ®xed reference orientation, the present work considers the
complete lattice curvature tensor, determined locally at each point in the ®eld. The
lattice curvature tensor can be used to obtain estimates of the second-order disloca-
tion density tensor described by Nye (1953), KroÈner (1958) and Bilby et al. (1958).
Thus, a connection is made between the observations of the ®elds of lattice curvature
and the geometrically necessary dislocations (GNDs) which support the observed
curvatures.

The work of Randle et al. (1996) established congruence between the observa-
tions of misorientation and microstructural observations obtained by transmission
electron microscopy (TEM). TEM observations of misorientation angles (5±108)
across cell block boundaries obtained by the Kikuchi technique (Liu 1994) compare
well with the variations observed in neighbouring EBSPs in aluminium at strain
levels comparable with those discussed here. The regularity of orientation perturba-
tions observed in this study is consistent with the TEM observations of cell block
boundaries and the cell walls found in their interiors (Barlow et al. 1985).

In } 2 we review the fundamental equation of continuum dislocation theory,
linking curvatures of the lattice and the elastic strain ®eld with the dislocation tensor.
A precise connection is established between lattice curvature and orientation mea-
surements obtained from EBSPs. When the curvature of the elastic strain ®eld is
negligible compared with the lattice curvature, Nye’s (1953) original formulation of
the dislocation tensor is retrieved. It is in this context (i.e. in the absence of long-
range stress ®elds) that we proceed in } 3 to link the measured lattice curvatures with



the GND content described by Ashby (1970). In order to make this connection we
have opted to consider the lattice curvatures to be supported by the set of 24 pure
edge and 12 pure screw dislocations associated with the {111}h110i dislocation slip
systems in fcc crystals. Using classical methods of linear programming (Dantzig
1963) we solve for the minimum density of dislocations required to support the
observed lattice curvatures. GND distributions obtained following Nye’s orthogonal
deconstruction of the sc lattice are also compared with those supported on fcc
lattices. In } 4, bicrystalline samples which were strained by channel-die compression
perpendicular to the interface, to two di�erent height reductions, are discussed. The
character of the bicrystalline interface is that of a random large-angle grain bound-
ary. We also describe the determination of lattice curvatures by ®ne-scale OIM. The
results are presented in } 5 where densities of the GND distributions are depicted
along two directions with respect to the bicrystalline interface. GND densities adja-
cent to the interface with those removed some distance are compared. It is found that
GNDs mainly concentrate near the interface, and that their spatial distributions vary
with strain level. Examination of the distributions suggests that the role of the
bicrystalline boundary varies with strain level, and with the evolution of the crystal-
lographic character of the interface.

} 2. Basic relationships

Here we brie¯y review the main ideas behind the fundamental equation of con-
tinuum dislocation theory. First, consider the continuity condition on the displace-
ment ®eld u… x† . (The displacement ®elds are de®ned only in an in®nitesimal
neighbourhood of position x. For a more complete discussion the reader is referred
to the book by KroÈner (1958).) Around a closed curve, continuity demands that

‡

C

du ˆ

‡

C

b dx ˆ 0; … 1†

where b is the distortion tensor de®ned by dui ˆ ­ ji dxj . After separation of the
distortion tensor into its elastic and plastic parts: b ˆ b

e
‡ b

p
, application of

Stokes’ theorem to equation (1) obtains the expression:
… …

S

curl … b
e

‡ b
p

† ds ˆ 0; … 2†

where S is any continuous surface patch bounded by C and ds denotes the outward
normal associated with an element of the surface patch, weighted by its surface area.
Since equation (2) must be valid at any point in the crystal, and for any closed curve
C, it follows that the plastic and elastic curvatures must be related by

curl b
e

ˆ ¡ curl b
p
: … 3†

The net Burgers vector B, associated with the Burgers circuit C, is de®ned in con-
nection with the dislocation tensor a by the expression

B ˆ

… …

S

a ds ˆ ¡

… …

S

curl b
p
ds: … 4†

Comparing equations (2), (3) and (4), it is evident that the dislocation tensor can be
de®ned in terms of the curvature of the elastic distortion tensor:

a ˆ curl b
e
: … 5†

0

00



Equation (5) is called the fundamental equation of continuum dislocation theory.
We next proceed to establish the connection between the dislocation tensor, the

lattice curvature tensor and lattice misorientation. It is clear from the de®nition of
the elastic distortion tensor that the following connection exists between the in®ni-
tesimal elastic strain tensor e and the rotation tensor x (expressed here in component
form for additional clarity):

¬ ij ˆ eikl ­
e
lj ;k ˆ eikl … "

e
jl ;k ‡ !

e
jl ;k † : … 6†

Here eikl denotes components of the permutation tensor. x is related to the (small
rigid-body) rotations of the lattice. It is customary to express ®nite rotations in terms
of a related tensor g, the rotation of which is taken in a right-handed sense by an
angle ³, about the direction m̂ according to the formula

gij ˆ ¯ij cos ³ ¡ eijkmk sin ³ ‡ … 1 ¡ cos ³† m im j : … 7†

In the present context it can be assumed that ³ ½ 1, in which case equation (7) is
adequately approximated by

gij ˆ ¯ij ¡ eijk³mk : … 8†

The relationship between the tensor g (in its small angle form) and x is just

!
e
ij ˆ gij ¡ ¯ij : … 9†

Thus

¬ ij ˆ eikl … "
e
jl ;k ‡ gjl ;k † : … 10†

For our purposes here, equation (10) is the most convenient form of the fundamental
equation.

Other expressions for the fundamental equation make use of the lattice curvature
tensor j. The lattice curvature tensor represents the lattice orientation change d¿ i

along dxj according to the relation

d¿i ˆ µ ij dxj ˆ ¿ i ;j dxj : … 11†

The physical meaning of the components of the curvature tensor is that the diagonal
components of µij are twistings about the xi axes and the o�-diagonal terms are
bendings of the xi plane about the xj direction. It is then clear that ¿ i is identi®ed
with ³m i in equation (8), and d¿ i ˆ d³m i. When these de®nitions are used, two
additional forms of the fundamental equation can be stated:

µij ˆ ¡ ¬ ij ‡ 1
2 ¯ij¬kk

¡ eijk"
e
jk ;l … 12†

and

¬ ij ˆ ¡ µij ‡ ¯ijµpp
¡ eikl "

e
jl ;k : … 13†

The physical meaning of equations (10), (12) and (13) is that lattice curvature obtains
from two sources: gradients in the elastic strain tensor, and the presence of disloca-
tion networks which possess a net Burgers vector. In the absence of long-range
elastic stress ®elds the term containing the elastic strain tensor in equations (10),
(12) and (13) vanishes and we retrieve the original results of Nye (1953).

Equation (10) establishes a close connection with gradients in the local lattice
orientation, or the presence of misorientations in the orientation ®eld g… x† over small
variations in position dx. Experiments are limited in the magnitude j dxj over which



distinctive measurements of orientation, g, can be obtained. With respect to EBSPs,
the limiting spatial resolution is dependent upon the accelerating voltage of the
electron microscope, the atomic-number of the material, and other factors (Adams
et al. 1993). Typical resolution limits are about 100 nm in metal and ceramic alloys.

} 3. Geometrically necessary dislocations

To the extent that Nye’s approximation holds, the fundamental relation can be
expressed in the following form:

¬ ij ˆ eiklgjl ;k : … 14†

Thus, a connection is made between experiments (®ne-scale OIM, based upon
EBSPs) and the dislocation tensor ®eld a… x† . What is necessary is the capability to
measure the components of the curvature of the orientation ®eld.

As was shown by Nye (1953), there exists a precise connection between the
dislocation tensor and the network of dislocations in the neighbourhood of the
point in question. The relationship can be expressed as

a ˆ
X

S

sˆ 1

»
… s†

b
… s†

« ẑ
… s†

; … 15†

where the sum is over the types of dislocation present in the neighbourhood of the
point, »

… s†

denotes the density of dislocations of type s, b
… s†

is the Burgers vector of
that type, and ẑ

… s†

means the line direction of the same. The dyadic b
… s†

« ẑ
… s†

pro-
vides a geometrical de®nition of dislocation s. We shall further presume that s
enumerates the set of all possible dislocations which may be present in the crystal.
This set we shall denote as D , where

D ˆ f b
… 1†

« z
… 1†

; . . . ;b
… s†

« z
… s†

; . . . ;b
S

« z
S

g : … 16†

Dislocations which give rise to lattice curvature are identi®ed as `geometrically
necessary’ by Ashby (1970). Thus, we think of a… x† as describing the ®eld of GNDs.

If the types and densities of GNDs present are known, the dislocation tensor is
also known through equation (15). The converse of this expression is not true,
however. For example, if it is presumed that a is known from measurements of
the gradient of lattice orientation, according to equation (14), then it is not generally
possible to retrieve the dislocation densities; this is true even if information about the
set D is known. The reason is that there generally would exist many combinations of
Burgers vectors and line directions which can support an arbitrary dislocation ten-
sor; thus, an in®nite variety of network types can support the same lattice curvature.
The exception is when the set D contains only S ˆ 9 elements. In this case, assuming
that the elements of D form a complete basis for the linear space of second-order
tensors (to which a belongs), then a linear system of equations of the form

¬ ij ˆ
X

9

sˆ 1

»
… s†

b
… s†

i z
… s†

j
… 17†

obtains which can be solved for »
… s†

. Such is the case for the example ®rst considered
by Nye (1953) where nine dislocations having Burgers vectors of the type b

… s†

==h100i

and also ẑ
… s†

==h100i were considered. This example corresponds to a sc crystal lattice
dislocated by three pure screw and six pure edge dislocations. In this case, only one
dislocation from the set D contributes to each component of a. Thus a one-to-one



correspondence between the components of a and the dislocations in D is established.
We shall refer to this example as the sc deconstruction or the orthogonal deconstruc-
tion of the dislocation tensor.

For our purposes here we prefer to consider a set D which corresponds to the
{111}h110i slip systems in fcc crystals. Slip of this type can be represented by the
motions of a set of 12 pure screw dislocations whose Burgers vectors and line direc-
tions lie in the h110i directions, and by a set of 24 pure edge dislocations whose
Burgers vectors lie in h110i directions and whose line directions lie along h112i . In
this case, which we shall refer to as the fcc deconstruction of the dislocation tensor;
no unique solution for the dislocation densities exists. What can be considered,
however, is the particular set of nine dislocation types, taken from among the 36
which are available, for which a `lower bound’ on the total dislocation density can be
obtained.

A lower-bound fcc deconstruction is calculated from classical methods of linear
programming (here using the Simplex method (Dantzig 1963)) by coupling equation

(15) with the following constraint:

minimum »GND ˆ
X

s2 D
0

»
… s†

j D
0

» D ;a ˆ
X

s2 D
0

»
… s†

b
… s†

« z
… s†

( )

: … 18†

Stated in words, we seek to ®nd the subset D
0

of D for which the set of densities
satis®es the local lattice curvature, and which minimizes the total required disloca-
tion density »GND. (Here »GND has been used to emphasize the connection with
GNDs.) Linear programming solutions do not guarantee the uniqueness of D

0
,

but they do ensure the lower-bound quality of »GND. (Note that the upper bound
on »GND is in®nite.)

} 4. Experimental determination of the geometrically necessary

dislocationdensity indeformed bicrystals

The samples considered were 99.9999% pure aluminium bicrystals, prepared by
ultrahigh-vacuum di�usion bonding of lapped and polished interfaces (King 1991).
Samples of identical starting con®guration were strained by channel-die compression
to height reductions of 10% and 30%. The starting con®guration of the bicrystal, its
crystallographic orientations, and the direction of compression are shown in ®gure 1.
In crystal A the X, Y and Z axes correspond to the crystallographic directions [001],
‰1

-
10Š and [110] respectively. In crystal B the same sample axes coincide with direc-

tions ‰1
-
10Š , ‰33

-
2Š and [113] respectively. The calculated Taylor factors in this con®g-

uration are 3.88 for crystal A and 3.02 for crystal B.
Deformed samples were sectioned along planes containing the compression

direction and parallel to the free end of the sample. After polishing and electropol-
ishing, OIM was used to measure the lattice orientation (resolution limit approxi-
mately 18) at many points about (100 000) lying along numerous lines (about 300)
perpendicular to the bicrystalline interface (parallel to the compression axis). The
main results were obtained from scans taken only near the central region (§ 400 mm)
of the bicrystal in order to minimize the e�ects of external surfaces, friction e�ects,
etc. The separation between measurement points was selected to be 2.5 mm after
preliminary investigation revealed negligible levels of orientation di�erence at ®ner
scales of inquiry. Analysis of the experimental data con®rmed the hypothesis that
lattice curvatures (tilts and twists) about directions perpendicular to the compression



axis are smaller (by factors of about four) than those about the compression direc-
tion in these samples. Thus, the main contribution to the dislocation tensor comes
from nine of the 27 components of gjl ;k appearing in equation (14), that is those with
derivatives in the Z direction. This observation is in accordance with our expecta-
tions, given the geometry of the bicrystal and the imposed boundary conditions.
Since data were obtained from only a single section plane (the X-Z plane) the
orientation of the derivatives with respect to the direction Y were not available;
these derivatives have been set equal to zero in the analysis for the dislocation
density.

The curvature data was averaged in the following way. Directions X, Z lie in the
section plane, with X lying parallel to the bicrystalline boundary and Z lying parallel
to the compression axis. Orientation data were obtained on a square array aligned
with X, Z. At every point possible, the components of the orientation curvature were
obtained. Thus, gjl ;k … x ;z† was obtained for all possible x ;z points. The data were
then averaged over x according to the relation

~gjl ;k … z† ˆ
1

L

… x0‡L

x0

gjl ;k … x ;z† dx … 19†

and averaged over z according to the relation

~gjl ;k … x† ˆ
1

L

… z0‡ L

z0

gjl ;k … x ; z† dz: … 20†

These averaged orientation curvatures were then used in connection with equation
(14) to estimate the components of the dislocation tensor. The Simplex method in
standard tableau form was used to solve equation (18) for lower-bound estimates on
the GND density »GND.

} 5. Descriptionof the results

Figures 2 and 3 delineate the GND distributions at the two strain levels along the
direction Z, obtained from orientation curvatures averaged according to equation

(19). Figures 4 and 5 portray the GND con®gurations along direction X, as calcu-
lated from orientation curvatures averaged according to equation (20). It is clear that

Figure 1. Orientations of the two constituents crystals in relation to the channel die and the
compression direction Z.



the GND distributions vary substantially along the direction Z, while they are much
more uniform along the direction X. The main feature at a strain level of 0.1 (®gure
2) is a sharp peak at the grain boundary with a peak half-width of approximately
50 mm. The plateau levels adjacent the main peak are higher in crystal A, which also
has the higher Taylor factor. Also, a small broad secondary peak is situated in
crystal A centred approximately 150 mm from the interface.

At a strain level of 0.3 (®gure 3) there is no longer any evidence of the GND peak
at the interface, but a large broad peak is observed in crystal A centred at approxi-

Figure 2. GND distribution in the 10% strained aluminium bicrystal (along direction Z).

Figure 3. GND distribution in the 30% strained aluminium bicrystal (along direction Z).



mately 150 mm from the interface. This peak corresponds in location and breadth
with the secondary peak observed at the lower strain level. The plateau level in
crystal B is now at a level of approximately 10

13
m

¡ 2
. Distributions of the average

GND density along the X direction are nominally level and have values of approxi-
mately 5 £ 10

12
m

¡ 2
at a strain level of 0.1 (®gure 4) and 10

13
m

¡ 2
at a strain of 0.3

(®gure 5).
In previous work, the deformation ®eld far away from grain boundaries was

observed to be much more homogeneous (Barlow et al. 1985), presumably because

Figure 4. GND distribution in the 10% strained aluminium bicrystal (along direction X).

Figure 5. GND distribution in the 30% strained aluminium bicrystal (along direction X).



of weaker in¯uence from the interface. Figures 6 and 7 show the average GND
distributions along the Z direction inside the two constituent crystals measured at
a distance of 850 mm away from the bicrystalline boundary. In both crystal A and
crystal B the GND density levels are found to be less than 4 £ 10

12
m

¡ 2
at both strain

levels, with the observed levels being slightly higher in crystal A (which has the
higher Taylor factor).

Comparisons of the estimated GND density ®elds obtained from Nye’s sc decon-
struction are compared with the lower-bound fcc deconstruction in ®gures 8 and 9

Figure 6. GND distribution removed 850 mm from the interface in crystal B

Figure 7. GND distribution removed 850 mm from the interface in crystal A.



for the two strain levels. The spatial distributions of GND densities are clearly
similar in shape, but the densities obtained from the lower-bound fcc deconstruction
are always higher than those obtained by the sc deconstruction. This is consistent
with the observation that more dislocations should be required to support the
observed deformation gradients when dislocations are restricted to the available

(non-orthogonal) {111}h110i slip systems in fcc crystals. The di�erence between
the two deconstructions is observed to increase with increasing strain level.

In order to facilitate a deeper insight into the changes that occur in the GND
distribution as a function of strain it is instructive to construct the ratio C … z† of

Figure 8. GND distribution at 10% plastic strain estimated by the sc deconstruction (curve
B) and by the lower-bound fcc deconstruction (curve A).

Figure 9. GND distributions at 30% plastic strain estimated by the sc deconstruction (curve
B) and by the lower-bound fcc deconstruction (curve A).



components of the GND density with Burgers vectors lying in the bicrystalline plane,
relative to the total. (The reader should note that if the Burgers vectors were ran-
domly directed, then we should expect C … z† ˆ

2
3.) Figures 10 and 11 show the dis-

tribution of C … z† at the two di�erent strain levels. It is evident that a higher
proportion of Burgers vector lying in the interface plane is present in crystal B
relative to crystal A at both strain levels. At the higher strain level, this di�erence
has become even more exaggerated, suggesting that plastic deformation in excess of
0.1 has resulted in a reduction in C … z† near the interface in crystal A, but an increase
near the interface in crystal B. In particular, the peak levels of C … z† have shifted from
approximately 15 mm away from the boundary in crystal B at a strain of 0.1 to
approximately 50 mm at a strain of 0.3. In crystal A a similar shift in the minimum
level of C … z† is observed.

Figure 10. Distribution of C … z† at 10% plastic strain.

Figure 11. Distribution of C … z† at 30% plastic strain.



It is also instructive to examine the individual components of the dislocation
tensor as estimated from equation (14), and as expressed in the coordinate system of
the bicrystal (i.e. X, Y and Z). The reader should note from the de®nition of the
dislocation tensor (left-hand side of equation (4)) that the left index of a (index j in
¬ jk ) denotes the direction of the Burgers vector, and the right index (index k in ¬ jk)
speci®es the line direction. Here we shall let the index 3 denote directions parallel to
Z, index 2 is identi®ed with Y and index 1 with direction X in the bicrystal. Here we
concentrate on two representative components of the dislocation tensor. Figures 12
and 13 show the variations in ¬22 and ¬23 as a function of distance z in the Z
direction of the bicrystal. ¬22 denotes the component of the GND distribution

Figure 12. Distribution of ¬22 … z† at plastic strain levels of 0.1 (lower curve) and 0.3 (higher
curve).

Figure 13. Distribution of ¬23 … z† at plastic strain levels of 0.1 (lower curve) and 0.3 (higher
curve).



supported by dislocations of screw type with their line and Burgers directions along
Y . ¬23 is associated with the component of the GND distribution supported by edge
dislocations with their line directions along Z and their Burgers vectors along Y .
Although the details and magnitudes of the distributions of various components vary
somewhat, the qualitative behaviour of ¬22 is similar to what is observed for ¬11, ¬12,
¬21 , a31 and a32 . The behaviour of ¬23 is similar to what is observed for components
¬13 and ¬33 . The concave downward trend for ¬22 at a strain level of 0.3 and the
slight concave upward trend at a strain level of 0.1 is also a common feature among
similar components (®gure 12). Concavity is less noticeable with ¬23 and its similar
subset (®gure 13). The main di�erence to be noted is that components of the dis-
location tensor with their line directions perpendicular to the interface (right index at
3) increase more with increasing strain than do components with line directions lying
in the plane of the interface.

Further insight obtains by considering the distribution of misorientations asso-
ciated with pairs of points placed at equidistant positions perpendicular to the inter-
face. Two distances were chosen: `near-®eld’ misorientations for pairs of points lying
at 2±5 mm from the interface plane, and `far-®eld’ misorientations taken at distances
about 100 mm from the interface. Numerous pairs of points were considered in each
case. The results are expressed as a dispersion of lattice misorientation in the
Rodrigues±Frank representation of the fundamental zone of misorientation

(Sutton and Ballu� 1995). The results at 0.3 plastic strain are highlighted here.
Figures 14 and 15 show the far-®eld and near-®eld dispersions respectively. It is
evident that the dispersion is much broader near the interface. The near-®eld dis-
persion overlaps with the S ˆ 15 coincidence site lattice relationship (about 20% of

Figure 14. Far-®eld distribution of interface misorientation at a distance of 100 mm from the
interface at 0.3 plastic strain.



the point pairs), in accordance with Brandon’s (1996) criterion. The initially ¯at
interface has been roughened by the deformation ®eld and is observed to have
developed undulations at a wavelength of approximately 10 mm. It is presumed
that this change in local character and dispersion derives as a result of the absorption
or emission of dislocations into the interface during plastic deformation. That such
processes must occur as strain levels increase is strongly suggested by ®gures 2, 3 and
10±13.

} 6. Discussion

The main observation is that the dislocated state of the crystal lattice near the
interface of a deformed aluminium bicrystal is strongly dependent upon the magni-
tude of the strain. At a level of 0.1 plastic strain the GND distribution in the vicinity
of the interface is observed to peak at the boundary, much like one would expect
from the trapping of dislocation pile-ups. Notably, the breadth of the peak (about
200 mm) is much larger than the width of the deformed zone commonly observed by
TEM. As the strain is increased to a level of 0.3, the peak is dissolved in favour of a
distribution of entirely di�erent character, characterized by a broad peak situated at
some 150 mm o� the interface to one side.

This change in shape is accompanied by an evolution of the crystallographic
character of the interface, and changes in the Burgers vector and line direction
components of the GND ®eld. It is evident from ®gures 10 and 11 that there has
been a reduction in the fraction of dislocations with the Burgers vectors lying in the
plane of the interface on the high Taylor factor side (crystal A) as the strain
increases. The opposite is true on the low Taylor factor side (crystal B). Figures
12 and 13 (and the plots for other components of the dislocation tensor ®eld)
indicate a tendency for dislocations with line components perpendicular to the inter-

Figure 15. Near-®eld dispersion of interface misorientation at a distance of 2±5 mm from the
interface at 0.3 plastic strain (red points satisfy Brandon’s criterion for S ˆ 15† .



face to increase more in strength with increasing strain level than dislocations with
line components lying in the plane of the interface.

Based upon the experimental evidence presented here, the exact role of the inter-
face and its in¯uence on the surrounding GND ®eld is not clear. Given that the peak
in the distribution at 0.1 strain is higher than the plateau level in crystal B at 0.3
strain, it would seem that the interface has absorbed dislocations (i.e. exhibiting sink
behaviour at higher strain levels). However, many of the observed features can also
be explained by an interface which acts as a source for lattice dislocations, assisting
in the production of the surrounding GND distribution and simultaneously altering
its character. Emission of dislocations has been documented in both coincident site
lattice (CSL) boundaries (Lee et al. 1990) and at general boundaries (Murr 1981,
Kurzydlowski et al. 1984). Indirect evidence by slip propagation across grain bound-
aries has been documented by many investigators (Lim and Raj 1985). However, the
emission and absorption of dislocations are not considered within the framework of
classical continuum dislocation theory, nor can these processes be distinguished by
the mesoscale experimental methods described in this paper.

The observations highlighted in ®gures 14 and 15 suggest that the bicrystal inter-
face is an active site for orientation change. When viewed from a distance (far ®eld)
the boundary would appear to have consistent character, but locally (near ®eld) the
rather broad dispersion of misorientation suggests a complex structure and character
to the interface. The association of some components of the near-®eld boundary with
S ˆ 15 may suggest an energy in¯uence on the evolving GND distribution adjacent
to the interface. That the excess free energy of some low-S CSL boundaries is
reduced relative to the energy of large-angle random boundaries is well established
for high-purity aluminium (Otsuki and Mizuno 1986). If the evolving interface can
restructure itself with plastic deformation to incorporate higher fractions of low
energy boundaries, we might expect to see an increase in the area fraction of inter-
faces which have CSL character in conjunction with increasing intragranular struc-
ture (e.g. small-angle grain boundaries). Although such increases have been reported
for other alloy systems in connection with plastic deformation and subsequent
annealing (Palumbo et al. 1992), these changes have heretofore been attributed to
twinning processes. The mechanism of evolution contemplated here does not require
twinning to increase the CSL density, only alterations in the intragranular GND
distribution.

The observations of this work are consistent with the modelling and simulation
of microyielding in polycrystalline materials (Meyers and Ashworth 1982). It has
been proposed that elastic anisotropy of adjacent grains establishes localized stress
concentrations near grain boundaries. These concentrations result in a thin layer of
microyielding, and in the generation of GNDs in the vicinity of the boundaries.
Work hardening associated with this layer is presumed to account for the well
known Hall±Petch e�ect on yielding. The complex nature of the GND distribution
near the bicrystalline interface suggests that substantial di�erences may be expected
in the interaction of the interface with deformation as a function of interface char-
acter. Thus, one might expect the Hall±Petch relationship to have dependence upon
the grain-boundary character distribution.
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