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Observations of supersonic free shear layers 
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Abstract. Visual spreading rates of turbulent shear layers with at least 

one stream supersonic were measured using Schlieren photography. 

The experiments were done at a variety of Mach number-gas combina­

tions. The spreading rates are correlated with a compressibility-effect 

parameter called the convective Mach number. It is found that for. 

supersonic values of the convective Mach number, the spreading rate is 

about one quarter that of an incompressible layer at the same velocity 

and density ratio. The results are compared with other experimental and 

theoretical results. 
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1. Introduction 

The supersonic turbulent free shear layer is fashionable again. The interest which 
developed in the 1960s was related mainly to the near wake problem; the present, 

renewed interest comes largely from problems in supersonic combustion. In the 

earlier period it had been noted that turbulent shear layers with supersonic velocity 

on one side and zero velocity on the other (e.g. at the edges of jets) spread more 

slowly than incompressible turbulent shear layers, and it was thought that the 

difference was attributable to the density differences that were present in the 

supersonic cases. Thus models incorporating Howarth-Darodnitsyn transforma­

tions, density-dependent eddy viscosities etc., were invented. 

Whether density effects alone could account for the differences in spreading rate 

was the question that motivated the experiments of Roshko & Brown (1971, 1974), 

who built an apparatus in which incompressible (M = 0) shear-layer flows with 

large density differences could be studied by simply using different gas combina­

tions like nitrogen and helium, at low speeds. It was found that, while there is some 

effect of the density on spreading r~...e. it is very much smaller than is observed in 

the supersonic case. The relative magnitudes are summarized in figure 15 of 

A list of symbols is given at the end of the paper. 1 
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Roshko & Brown (1974). For example, the shear layer spreading rate at the edge of 

a Mach 4 jet (with uniform total temperature) is about 0·4 that of an incompressible 
shear layer with the same ratio of densities. It must be concluded that compressibil­

ity, per se, plays an important role in the supersonic case. In fact, with the 

observation that subsonic turbulent shear layers contain large, so-called "coherent" 

structures reminiscent of those in the early stages of instability, and the realization 

that the turbulent shear layer growth is governed largely by its instability at the 

corresponding large scales, it became clear that these processes must be quite 

different in ~upersonic flow. In fact, there is visual evidence that large structures 

also exist in supersonic turbulent mixing layers (Ortwerth & Shine 1977; Oertel 

1979). 

It has been found that some insights into turbulent growth rates can be obtained, 

at least qualitatively, from the amplification rates of instability waves in laminar 

shear layers (more precisely from stability calculations for typical shear-layer 

profiles of velocity and density). Even the simpler calculations which can be made 

on the instability of vortex sheets are useful. Some further discussion of the possible 

connection between shear-layer instability and turbulent growth rate is given 

below. 

The discovery of organized large structure also led to the idea that the natural 

coordinate system in which to view the flow is one moving with those structures. In 

the instability analysis this coordinate system moves with the wave velocity; in 

turbulent flows the term "celerity" has been used by Favre et al (1967) to define the 

velocity of the moving frame in which the large structure is most nearly stationary 

(see Coles 1981). In this convecting frame then, the Mach number Mc, which is 

called the "convective" Mach number, will be different from that in the laboratory 

system. It may possibly be less than unity even when there is supersonic flow in the 

laboratory system. It would also be appropriate to call it the "intrinsic" Mach 

number, since it is the one that is relevant for Mach number effects. 

In practically all the available data on supersonic shear layers so far the low speed 

side was at rest (M2 = 0). Exceptions, to our knowledge, are experiments done by 

Demetriades & Bower (1982), Sanderson & Steel (1970) and Ortwerth & Shine 

' (1977). Demetriades & Bower's results apply for the laminar-transitional regime 

and therefore cannot be used for predicting turbulent shear layer behaviour. 

Sanderson & Steel's results are hard to interpret and their shear layers are mostly 

wake-dominated. In Ortwerth & Shine's experiment a stream of helium at M == 3 

mixes with a stream of nitrogen also at M = 3. A spark Schlieren photograph 

shows a slowly growing mixing layer with large scale structure. 

One of the main purposes of the experiment described here was to examine the 

effects of varying M2 from subsonic to supersonic values while keeping M1 > 1. 
This would provide a useful test of the intrinsic Mach number concept. In addition, 

we wanted to study the effects of a larger variation of the parameter p1 / p1 than that 

afforded by the typical jet experiment of a single gas and with all total temperatures 

at room values. Accordingly, we designed and built an apparatus, essentially a 

variation of the Roshko & Brown (1974) apparatus, in which two streams of gases 

are allowed to mix downstream of a splitter plate. 

In this work we present the mixing layer spreading rates, obtained experimental­

ly with instantaneous Schlieren photographs, at a variety of Mach number-gas 

combinations. We assume that the Reynolds numbers are high enough to assure 
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that the mixing layers are fully developed turbulent everywhere except m a very 

small region near the splitter plate. Our goal is to examine the effect of 

compressibility on the spreading rates and to determine what are the fundamental 

parameters that describe this effect. 

The following table lists typical experimental conditions in which the mixing 

layers were observed: 

Mach number range 

Density ratio range 

Typical unit Reynolds number 

Typical test section pressure 

Gases used 

2. Experimental facility 

2.1 Supersonic mixing apparatus 

0 to 4 

0·2 to IO 
105 cm- 1 

l psia (7000 Pa) 

nitrogen, helium, argon 

A schematic of the apparatus is shown in figure l. It is essentially a two-stream 

blow-down supersonic wind tunnel with two independent supply sides. Each supply 

side 1s connected to pressure regulated gas cylinders. The downstream side is 

connected to a low pressure tank which is evacuated by a vacuum pump. 

After passing through flow management devices, each gas is expanded to a 

design Mach number by means of an appropriately contoured centrebody, 

downstream of which the two gases mix. The centrebody contours, calculated by 

the method of characteristics, are designed to produce uniform, wavefree flows on 

each side. The centrebody is replaceable, allowing the use of a number of 

centrebodies for various Mach number combinations. 

throat adjustment mechanism , 
honeycomb \ test section (0 s'x 2.2s''x9.Q") 

perforated plates 
screens 

low pressure tank 

pressure regu later 

gos cylinders 

vacuum pump 

Figure 1. Experimental facility. 

.,. 
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The test section is 2·3 cm (0·9 in.) high, 5·7 cm (2·25 in.) wide and 23 cm (9 in.) 

long. Optical quality glass windows extend from upstr~am of t~e ce~trebody t!p ~o 
the end of the test section. The angle of each test section wall 1s adjustable w1thm 

± 3° to compensate for possible displacement thickness effects. The nozzle throat 
heicrhts are also adjustable to ensure proper use of each centrebody. 

The operation of the facility is intermittent, each run lasting typically l ·5 to 2 s. 

The maximum limit on total pressures is 100 psig. The total temperatures at the 

beginning of each run are 300 K with a drop of 5 to 10 K occurring during each run 
due to expansion in the gas cylinders. 

2.2 Schlieren system 

The Schlieren system used is a conventional one with instantaneous or continuous 

illumination. The knife edge is horizontal and the slit in front of the light source has 

an adjustable opening for varying the sensitivity of the system. 

The instantaneous illumination is provided by a spark source of 20 nanosecond 

duration (Xenon Corporation Nanolamp Model N-787B). A continuous source 

with a 100 Watt tungsten halogen lamp (Oriel Model 6322) is used for adjustment. 

The parallel beam entering the test section has a diameter of 10· 1 cm ( 4 in.). The 
Schlieren system is stationary but the flow channel can be traversed on rails, to 
allow photography of all parts of. the test section. 

2.3 Pressure and temperature measurement 

Static pressute ports along the test section and total pressure ports 3re connected to 
pressure transducers (Setra Systems Model·204) through a Scanivalve system. The 

output of the transducers is recorded on a Nicolet digital oscilloscope and stored on 
discs. Two total temperature thermocouples are connected to an electronic 

thermometer (Omega Model 115 TC) whose output is recorded on a plotter. 

2.4 Control of the experiment 

The starting and stopping of the flow, photography and recording are done 

automatically with an Intel 8085 microprocessor connected to a system of relays. 

Each Schlieren picture is accompanied by a record of all relevant pressures and 
temperatures. 

3. Concept of convective Mach number 

3.1 Definition of convective Mach number 

In invest!gating the effects. of Mach number on the stability and mixing of 
compressible she.ar layers (figure 2) one would like to find parameters which will 

correlate and. umfy. the results for various flow conditions. In shear layers where 

M1 = 0, M1 it~elf is such a parameter (for given total conditions). However, in 
shear layers with M2 ¥- 0 and a2 ¥- a1 the choice of the right parameters is not 
clear. 

Some insight into the proble~ can be gained by first treating simple flows, like 
the unstable tempora~ly.developrng vortex sheet in compressible flow. In the case 
of the vortex sheet it 1s known that the important parameters are 
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and 

Mc 1 = (c, - U2)fa2. 

where c, is the real phase speed corresponding to neutral ( c = 0) disturbances. The 

requirement of continuity of pressure at the interface of the two gases is the 

boundary condition which determines c,.; using Ackeret's (1927) linearized theory 

for the pressure perturbations this results in 

'}'1MU(\ M~, - l I )112 = Y2MU( IM~, - 11 )112 • (1) 

With the definitions of M,., and M,1 , this equation implies the solution for 

c,:::: c,(U1, U2 , a1, a2 , y1, y2) and thus the values of Mc, and M,,. Since we are only 

dealing with monatomic and diatomic gases, M,, and M,., are equal or very close. 

The importance of Mc, as a stability determining parameter arises from the fact 

that when Mc, exceeds a critical value only neutral disturbances exist and the vortex 

sheet is stable (Miles 1958). 

For turbulent free shear layers a similar approach can be taken by defining 

Mc, = (U1 - Uc)la, and Mc 1 =(Uc - U2)fa2 

where U,. is now the convective velocity of dominant waves or structures. The 

convective velocity might again be calculated from (1), i.e. by requiring static 

pressure equality and calculating it in a coordinate system moving with the 

structures. There are two objections to this: first, we are no longer dealing with a 

vortex-sheet interface so there is really no way to specify static pressure equality; 

second, one might prefer not to use linearization as was done for (1). An 

alternative, related approach has been proposed by several investigators. It was 

first suggested to us by Dimotakis {private communication, and 1984) and is 

implicit in Coles (1981) sketches of streamlines in the moving coordinates of the 

large structures (figure 3). In this coordinate system there is a saddle point between 

the structures; it is a common stagnation point for both streams, thus implying 

equality of total pressures in the two streams in that system. For equal static 

pressures this results in 

{1 + [(r1 -1)/2]M;,P11<Yi-I) = {1 + [(r2 -1)/2]M;)'y.?/('}';?-I)_ (2) 

u,-uc -
..,.__ Figure 3. Shear layer structure in convecting 

Uc -u 2 reference (after Coles 1981). 
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This result has been obtained by Bogdanoff (1982) using a slightly different 

argument. It should also be noted that Oertel (1979, 1982) has obtained excellent 

experimental evidence supporting the concept of large coherent structures and 

associated convective velocities in supersonic mixing layers. 
For Mc, and Mc, which are not very large, (2) can be approximated by its 

subsonic version: 

!P1(U1 - U,:)2 = tP2(Uc- U2)2, 

which gives 

(3) 

(4) 

Equation ( 4) together with the definition of convective Mach numbers gives the 

following relation: 

Mc,= (ril"'/2)1 Mc,, (S) 

which can also be obtained directly from (1) for small Mc, and Mc,- As for the 

vortex sheet, Mc, = Mc, when y1 = y2• Fro~ the definition of convective Mach 

numbers we then get the following expr.ess1on for Uc: 

Uc= (a2u1 + a1u2)!(a1 + az), for '/2 = '/1' (6) 

which has the form of a speed-of-sound weighted average. 
Mc and Mc, are slightly different when y1 = 7/S and y2 = S/3 or the reverse. 

Figur~ 4 shows the dependence of Mc, on M1 and M2 for various gas combinations. 

Mc has been calculated using its definition and (3) for uniform total temperature. 

Th~ error that results from using (3) instead of (2) is very small for the range of Mc, 

plotted on the figure. 

3.2 Effect of Mc on stability of vortex sheet 

To illustrate the effect of convective Mach number on the stability of a vortex sheet 

the following simplified argument is presented. In a frame of reference moving with 

the phase speed Cr (figure 5a) we replace the interface of the two gases with a thin 

flexible membrane (figures Sb,c). Then the problem reduces to that of flow past a 

wave-shaped boundary, first treated by Ackeret (1927). For M,, and M, 2 greater 

than 1, the pressures on both sides of the membrane balance everywhere and thus 

the membrane is neutrally stable (figure Sb). When at least one of the convective 

Mach numbers is less than 1, the pressure on both sides of the membrane cannot be 

balanced and thus the membrane is unstable (figure Sc). 

The above argument can be used only descriptively to explain the vortex sheet 

stability, the analysis being quite different (Miles 1958). The basic result, however, 

is similar in the sense that there is a convective Mach number beyond which the 
vortex sheet is neutrally stable. For equal specific heat ratios and speeds of sound, 

the vortex sheet is stable for Mc > 2112 . 
l 
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Figure 5. Vortex sheet stability argument. 



8 D Papamoschou and A Roshko 

1.0-----------, 

o.e 

0.2 

0 o.s 

-r,•t2 

u21u1:0 

fiP1 =1 

1.s 2.0 
Figure 6. Vortex sheet amplification rate. 

The reduction in amplification rate with Mc, = Mc, is shown in figure 6 for 

y1 = y2, r = 0 ands = 1. This is the result of the temporal analysis that has been 

transformed to the spatial growth rate c;lc,, the wavenumber being chosen to be 

unity. The growth rate is normalized to be l at Mc, = 0. 

3.3 Effect of Mc on shear layers of finite thickness 

In the case of the vortex sheet we can always find a set of conditions for which the 

freestream velocity is supersonic relative to the disturbance velocity. This is not 

true in shear layers of finite thickness where, no matter how large Mc is, there exists 

always a flow region where the local velocity is subsonic relative to the disturbance 

velocity. Disturbances in this region might amplify and lead to turbulent growth of 

the shear layer. This is reflected in the calculations ofBlumen et al (1975), where it 

is shown that there is instability of two-dimensional disturbances at all values of Mc. 

Gropengiesser (1970) has computed maximum amplification rates (-a;) for 

spatially developing compressible shear layers with a Lock velocity profile. One of 

his results is shown in figure 7 where - a; is plotted here against M,., ( = M,.) for 

1'2 = 1'1. r = 0 and s = 1 and is normalized to be 1 at Mc, = 0. Notable are the 

drastic decrease of - a; with increasing Mc, and the flattening of the -·a; versus Mc, 
curve for Mc, > 1. 

0·8 

0.6 

-oq 
0-4 

0.2 

'!"1 =t2 

U2/U1 •O 

P21P1 11 

o'--~--lL--~-L~--=~~---l 

o.s 1-0 1.S 2· O Figure 7. Shear layer amplification rate 

Mc 1 as computed by Gropengiesser (1970). 
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4. Results and discussion 

4.1 Schlieren photography 

Instantaneous Schlieren photographs for a variety of flow conditions are shown in 

figure 8. Each picture covers a 4-inch length of the test section. Two pictures are 

shown for each condition, the second one downstream of the first, with a 1/2 inch 

overlap unless otherwise indicated. The quality of the pictures depends on the 

refractive index gradients. These gradients decrease as the mixing region thickens, 

therefore it was usually necessary to increase the Schlieren sensitivity in order to 

visualize the downstream pictures. Visualization was most difficult for the case with 

large growth rates and small refractive index differences. It should be noted that 

due to the low test section pressures the refractive indices are very small and 

visualization was possible only with the knife edge horizontal. 

4.2 Measurement of growth rates 

Visual growth rate is measured by drawing straight-line mean tangents to the edges 

of the shear layer, as done by Roshko & Brown (1974). Considering the smallness 

of the growth rates and in some cases the uncertainty in defining the edges of the 

layer, such procedure is subjective and the error may be up to ± 20%. For each 

flow condition, the growth rate presented here is the average of those in several 

pictures at the same condition. In each case the Reynolds number is the highest 

possible to assure that the flow is fully developed. 

4.3 Comparison with incompressible growth rates 

In trying to uncouple the effects of Mc from the other flow parameters, we must 

compare the compressible growth rate to the incompressible one at the same 

velocity and density ratio. It is important then to establish a relation by which we 

can accurately estimate the effects of velocity and density ratio on the growth of 

incompressible shear layers. 

In establishing such a relation, we assume that the main effect of density ratio is 

to determine the convective velocity Uc as given by ( 4). In a frame of reference 

moving with Uc the density ratio then drops out of the picture and we arrive at the 

following relation by dimensional analysis, 

olx - Ii UI Uc. (7) 

For visual thitkness this becomes, 
I I 

Ovislx = 0·17 !iUIUc = (1-r)(I +s')l(I+rs'). (8) 

This relation has been proposed by Bogdanoff (1984) and other similar ones have 

been proposed by Brown (1974) and Dimotakis (1984). Figure 9 shows that (8) 

agrees quite well with experimental data. 

The effect of Mc can now be shown by forming the ratio o 'Io;', where 8' = do/ dx 

is the actual growth rate and o;' is the incompressible growth rate at the same values 

of r ands, and plotting it against M. This is done in figure 10 for the growth rates 

measured in the present experiments. In figure 11, the results of other experiments, 

in all of which M2 = 0 and both gases are air, are plotted in the same manner. 
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4.4 Discussion 

The drastic growth rate reduction with increasing Mc is evident in the experimental 

results presented here. It is clear that this reduction is not due to density effects, as 

previously believed, but to the stabilizing effect of Mc. It is worth noting that this 

t 

Upper stream: 

Lower stream: 

Upper stream: 

Lower stream: 

I I lll.'lll:Wt nrv 

- 1 

N2 @ M = 1.9 Mc= 0.30 Unit Re= 54,000 cm 
-l 

N2 @ M = 3.3 Mc = 0.30 Unit Re= 184,000 cm 

He @ M = 2. 0 Mc 

N 2 @ M = 3.3 Mc 

l&U ~ 

0.77 

0.84 

Unit Re = 32,000 
- l 

cm 

Unit Re= 145,000 cm- 1 

Upper stream: Ar@ M = 0.4 Mc= 0.80 Unit Re= 5,000 cm- 1 

Lower stream: Ar@ M = 4.0 M_ 0.80 Unit Re = 305,000 cm- 1 

Upper stream: 

Lower stream·; 

He @ M = 2.3 Mc= 0.90. Unit Re = 33,0.00 cm- 1 

N, 0 M = 3.5 Mc= 0.99 Unit Re= 135,000 cm- 1 

Figure 8 (For caption see facing page.) 
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-C. I bl 1 IUFll """~ 

@ M = 4.0 Mc= 1.57 Unit Re = 92. 000 
-I 

Upper stream: He cm 
- l 

Lower stream: N, 12 M = 1.9 Mc = 1. 72 Unit Re = 54,000 cm 

(Overlap = 2 in) 

Figure 8. Schlieren photographs for a variety of flow conditions. 

reduction levels off as Mc exceeds 1, something that appears in the present results 
and in those of other experiments. The amplification rates computed by 

Gropengiesser (1970) have the same trends as the experimental results for growth 
rates. 

In the present experiments, the growth rate reduction for M,. > 1 (:::::: 75%) is 
considerably larger than that in the other experiments (:::::: 50% ). One explanation 
for this difference may be the fact that in the other experiments with M2 = 0 

upstream propagation of disturbances is possible. Such upstream coupling might 
enhance the growth rate; it would also tend to be facility dependent. More likely, 
the difference may also arise from the fact that in the present experiment the 

)( --~ 
> 

'O 

0-50-----------...... 

0-40 

0°30 

0-20 

0.10 

0 2 

6.U/Uc 

Figure 9. Visual thickness of incompressible 

shear layer. and • data points from Roshko 

& Brown (1974) for s = 7 and s = ln, res-

3 pectively; £ from Dimotakis & Brown (1976) 

(s = 1). 
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Figure 10. Present experimental 
Mc 1 values of visual thickness. 

comparison is based on visual thickness measured from photographs, while in the 

other experiments it is the vorticity thickness, ow, based on mean velocity profiles, 

which is compared. The ratio Dvis/ ow may be a function of Mc; the above results 

would then suggest that this ratio decreases for Mc > 1. 

In forming the ratio 8 118 we hope to have uncoupled the effects of Mc from 

those of r and s. While this may be true to first order, the effectiveness of Mc in 

reducing the growth rate may still depend on rand s. Furthermore, all the above 

discussion of shear layer instability has been limited to two-dimensional disturb­

ances. It has been pointed out by several investigators (Lessen et al 1965, for 

example) that three-dimensional (oblique) disturbances can exist in supersonic 

shear layers. The effect of oblique waves on the vortex sheet stability can be 

accounted for by replacing Mc by an effective convective Mach number Mc cos 8 

where 0 is the angle between wave propagation and flow direction. Bogdanoff 

(1982) suggests that the above transformation can be used to determine an effective 

Mc in shear layers of finite thickness. We therefore expect the shear layer to 

become more unstable with increased obliquity of the disturbances. The current 

experimental set-up was not suitable for observing the possible presence of oblique 

waves in the flow, so nothing definite can be said about their effect on the present 

results. The consistent inhibition of growth rate for Mc > 1 may indicate that if 

there exist three-dimensional waves, their obliquity is small. 

With our present limited measurements the results are suggestive rather than 

definitive. To improve this, we are planning to measure Pitot-pressure and 

total-temperature profiles across the shear layer. 

, .Q .. j+",__-... ~----------

a.er 

- 3 0-6 
I() 

- Q.4 
- 3 
l.O 

·0.21-

0 
.l 
o.s 

• 
I 

8 I 

.l 

• • 

i.s 

Figure 11. Experimental values of vorti­

city thickness obtained by other investi-

2 .Q gators as compiled in figure 1 of 

Bogdanoff (1982). 
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S. Concluding remarks · 

The good correlation of experimentally obtained growth rates with Mc at a variety 
of Mach numbers, density ratios and velocity ratios supports the idea that the 
convective Mach number is useful as a compressibility-effect parameter. It is found 

that the compressibility effect becomes significant at about Mc = 0·5, increasing 
rapidly, then tending to level off for Mc> 1. The compressibility effect on 
turbulent growth rate is mainly an effect on the stability of the flow, rather than a 

density effect, as indicated by the corresponding effect on amplification rates of 
waves in vortex sheets or laminar free shear layers. The overall reduction in growth 

rate for Mc > 1 is by a factor of about 2 for vorticity thickness and about 4 for visual 
thickness. Thus the ratio of visual thickness/vorticity thickness appears to decrease 
by about a factor of 2. More work is needed to refine these results and, especially, 
to establish quantitatively how mixing rates (molecular, chemical) decrease with 

increasing Mc. 

This work is being supported by a research grant from the Rockwell International 
Corporation Trust. 
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