Observations of the spectra of $\mathrm{Q} 0122-380$ and
Q1101-264

Malcolm G. Smith ${ }^{\star}$ Anglo-Australian Observatory, PO Box 296, Epping, NSW 2121, Australia
 A. Boksenberg and David Tytler Department of Physics and
 Astronomy, University College London, Gower Street, London WC1E 6BT

 Summary. The spectra of the QSOs Q0122-380 ($z_{\mathrm{em}}=2.181$) and Q1101-
264 ($z_{\mathrm{e} \mathrm{e}}=2.143$) are described and discussed. Wavelengths and equivalent
widths for the absorption lines in the range $3200-5200 \AA$ are given for each
object, and a number of absorption systems are suggested. Evidence is
presented for velocity structure in some of these systems. We draw attention
to the biasses and errors in continuum fitting, and their effect on the
measured equivalent widths of the absorption lines. The Ly α absorption line
densities in these and other QSOs are compared. It is found that in a single
QSO the absorption line density appears to increase with decreasing observed
wavelength (or absorption redshift). In contrast, from QSO to QSO there is a
small increase in mean line density with QSO emission (or mean absorption)
redshift. Some systematic effects may account for this difference, and for the
small data sample available the density function is consistent with that
expected from a uniform space distribution of comoving absorbers.
In order to understand the nature and origin of narrow absorption lines in QSO spectra and to discover how the number of these lines varies with emission redshift and other parameters it is necessary to obtain high signal-to-noise data with the same absorption line detection

 кq рәəәəәр sOSO 7 !!

 * Present address: Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ

the presence of narrow absorption features will not significantly affect the discovery of the QSOs at the very low spectral resolution used.
We have undertaken a spectroscopic survey at intermediate resolution and relatively high

 (Boksenberg et al. 1978) and here we describe two further objects of similar redshift
 Smith 1977a). Related work on PKS 2126-158, Q0453-423 and Q0002-422 has been described by Young et al. (1979) and Sargent et al. (1979).

2 Observations

Spectroscopic observations of Q0122-380 and Q1101-264 were obtained with the Image used. Anglo-Austan Telescope. A grating giving a reciprocal dispersion of $34 \AA$;
 1.5-2 \AA. The exposure times and wavelength regions covered are given in Table 1 where 1D and 2 D refer to the mode of data recording. In the one-dimensional (1D) mode the data were recorded in 2048 channels along the dispersion through two (star and sky) spectrograph apertures. The positions of star and sky were swapped at intervals of typically 1000 s to allow for differences in system response when subtracting the sky component. In the twodimensional mode (2D) the data were recorded in 1750 channels along the dispersion by
 recorded in two or three of the increments, the rest containing the sky signal. The object spectrum was recorded in two different sets of increments so that system response differences could be removed.
Exposures of an argon comparison lamp spectrum were obtained usually every 1000 s to monitor small system wavelength drifts and to allow these to be removed in the final data analysis. In some circumstances drifts up to $20 \mu \mathrm{~m}(\sim 0.7 \AA)$ were found during an integration. We determined the wavelength scale from an average of the arcs taken just before and
 final spectrum, the spectrum wavelength error is $\leq 0.2 \AA$.
The system response function was determined by using Oke's (1974) spectrophotometry of standard stars which were observed at each wavelength setting through neutral density filters. The QSO spectra were corrected to an approximate relative scale of photon $\mathrm{s}^{-1} \AA^{-1}$ $\left(\propto \nu f_{\nu}\right)$ and rebinned to a constant channel size of $0.5 \AA$. Since conditions during observa-

Table 1. Observations.

Figure 1. The spectrum of Q0122-380 obtained from the summation of the IPCS data. The lower curve
shows the 1σ error level.
tions were generally not photometric we have made no attempt to correct to an absolute flux scale.
The individual runs were summed using weighting factors appropriate to the noise levels determined individually for each channel, so as to minimize the resultant variance in the final reduced spectrum.
The resultant spectra of Q0122 - 380 and Q1101-264 are shown in Figs 1 and 2. The lower curve is the 1σ error in each rebinned channel.
The presence of strong absorption lines over most of the range of our spectra makes a detailed emission line study difficult. The profiles of Ly α and any lines at shorter wave-

R.F. Carswell et al.

resolution make it possible to detect weak emission lines, even in those parts of the spectrum strongly affected by absorption lines. The emission lines found, and estimates of their equivalent widths, are given in Table 2.
found by Osmer \& Smith (1977a), though the lines are in reasonable agreement with those since we have allowed for the absorption lines we have found width is somewhat higher attempted to deconvolve the Ly $\alpha+\mathrm{N} v \lambda 1240$ profile into its components, assuming that also

 Q0122-380 and which we have not been able to identify.
and close components (such as Lion line spectrum, even though the lines are rather broader no longer separable. The Crv $\lambda 1549$ line-profile (at $4915 \AA$) looks extent that they are limited wavelength range observed we have detected lines we identify with Ly α ($+N v \lambda 1240$)

10
0

appears to be stronger than in the objects studied by Baldwin \& Netzer (1978), though it is possible that it might not have been detected at their lower resolution.
 -вэџ! tions are $\mathrm{Si}_{\mathrm{II}} \lambda \lambda 1122,1128$ or multiplet 1 of $\mathrm{Fe}_{\mathrm{III}}$, though the wavelength agreement is not
 (1977b) are consistent with our much better data reported here, their claim that Ly α emission is weak relative to $\mathrm{N} v \lambda 1240$ is not correct.

4 Absorption line spectra

 demand that all the lines involved in the comparison are subject to the same detectability limit. This can be ensured by comparing only observations obtained at the same spectral

 the continuum. There are a number of possible methods for continuum fitting. The most direct method is
to form a local average over a number of data points, then to see if any of the data points

tell, free of emission and absorption features. The mean count level across the whole of the region is then used to give a single value for the continuum level at the central wavelength for this region. If, however, the fluctuations from the mean are deemed significant, the

The continuum for the whole spectrum is then obtained by interpolating over the whole pectrum, and smoothing if necessary.
Typically we found that $15-25$ data points (of $0.5 \AA$ each) served well for the averaging process, and an acceptable continuum level was determined (after rejecting the highest and lowest points to allow for the very occasional 'fly' point) if all residuals were less than 1.5$2 \sigma$ from the local mean. Given this, it is possible to determine a formal error for the continuum level, and this is usually $\leqslant 2$ per cent for the two QSOs described in this paper except in the part of the spectrum below $3400 \AA$ where the signal-to-noise ratio is relatively

 the continuum is determined by rather few values - the direct method works best where it is least needed, in those regions with few features. This will affect results for higher line ensities but did not significantly affect the analysis of the spectra of the two QSOs described here.
In strong emission lines where the direct method failed a 'one sided' distribution tech-

 agreement to 5 per cent or better where tests were made, though since continuum estimation

 those from using the two-sided technique described by Young et al. (1979).
Having obtained the continuum level, the absorption line lists of Tables 3 and 4 were
 equivalent width (W) was over four times the error due to counting statistics determined over the line width, $\sigma(W)$. From trials on flat field data it appears that a line could be regarded as certain at this level. This apparently very conservative value is required because

 approximately from fairly simple considerations. Suppose, for the moment, that near the continuum level the absorption line has vertical sides. Then, if the continuum estimate is in
error by a factor $1+\epsilon$ (i.e. $N^{\prime}=N(1+\epsilon)$, the measur error by a factor $1+\epsilon$ (i.e. $N^{\prime}=N(1+\epsilon)$), the measured equivalent width W^{\prime} will be related
to the true equivalent width W by

[^0]

$L 6$

					Observations of QSO spectra		
Table 3. Absorption lines in Q0122-380.							
n	$\lambda_{\text {obs }}^{+}$	$\lambda_{\text {vac }}^{+}$	σ	EW	σ		Comments
1	3254.01	3254.95	0.28	1.88	0.40		Noisy region of spectrum
2	3269.61	3270.55	0.23	2.25	0.40		
3	3306.52	3307.47	0.18	2.07	0.28		
4	3388.24	3389.21	0.09	1.11	0.15		
5	3393.55	3394.52	0.14	1.75	0.19		
6	3404.01	3404.98	0.07	1.73	0.13		
7	3411.63	3412.60	0.30	1.81	0.21	*	
8	3420.24	3421.22	0.11	2.84	0.16	*	
9	3472.17	3473.16	0.10	1.13	0.13		
10	3478.81	3479.81	0.25	1.47	0.17		
11	3506.74	3507.74	0.47	1.72	0.23		Broad ($\sim 12 \mathrm{~A}$) noisy feature
12	3519.94	3520.95	0.12	1.72	0.15		
13	3536.52	3537.53	0.10	6.30	0.17		
14	3547.08	3548.10	0.15	0.91	0.13		
15	3574.19	3575.20	0.10	1.25	0.11		
16	3585.60	3586.62	0.18	2.22	0.14		
17	3597.23	3598.26	0.09	0.51	0.09		
18	3608.79	3609.82	0.08	3.69	0.11	*	
19	3614.53	3615.56	0.07	4.41	0.11	*	
20	3621.07	3622.10	0.21	0.90	0.12	*	
21	3633.72	3634.75	0.07	0.72	0.09		
22	3642.72	3643.75	0.10	0.77	0.08	*	
23	3645.44	3646.48	0.11	0.99	0.09	*	
24	3649.24	3650.28	0.10	1.04	0.09	*	
25	3682.80	3683.85	0.17	1.16	0.12	*	
26	3687.85	3688.90	0.07	2.69	0.09	*	
27	3694.04	3695.09	0.23	0.59	0.12		
28	3703.13	3704.18	0.19	0.45	0.08		
29	3709.47	3710.53	0.14	2.39	0.13		Resolved
30	3730.78	3731.84	0.24	0.66	0.10	*	
31	3736.06	3737.13	0.15	1.43	0.11	*	
32	3741.76	3742.83	0.21	0.36	0.08	*	
33	3745.96	3747.02	0.11	2.02	0.10	*	
34	3773.78	3774.85	0.09	2.06	0.09	*	
35	3777.21	3778.28	0.09	0.41	0.05	*	
36	3781.36	3782.43	0.10	2.26	0.09	*	
37	3785.57	3786.64	0.11	0.41	0.06	*	

${ }_{\circ}^{\infty}$
where M_{L} is the total zero intensity line width. Thus

$\frac{W}{W} \simeq 1+\left(M_{\mathrm{L}} / W-1\right) e$

for small ϵ.
66
If allowance is made for the fact that line profiles are not vertical sided, then for $\epsilon>0$ the correction derived here is an underestimate, and for $\epsilon<0$ the magnitude of the change is

 bounded where, say, two channels together are higher than the assumed continuum level (as was done here).
The widths of the weaker lines at the continuum ($\lesssim 2.5 \AA$ equivalent width) are usually found to be of order 5-6 \AA, though there is considerable scatter in this quantity. Thus, for a 2 per cent continuum error, we estimate there will be an uncertainty in equivalent width $\sim 0.1 \AA$ for these lines. This agrees well with an error estimate obtained by artificially changing the continuum level by 2 per cent and redetermining the line equivalent widths using the original QSO spectral data.
Since the direct continuum fitting procedure is not 'one-sided', it should be free from
 tion lines may systematically bias the continuum estimate below the real value, and, if the equivalent width distribution function is constant (to within a normalization factor), this

 роцұәш рәр!̣я-әио әчұ ұечъ Кч!!!
 by systematically low.
 procedure of Young et al. (1979). The total error in the wavelength, $\sigma(\lambda)$ is given by

$\sigma(\lambda)=\sqrt{\sigma_{\mathrm{c}}^{2}+\sigma_{\mathrm{F}}^{2}}$,

where σ_{F} is the uncertainty determined from the arc fitting procedure and σ_{c} is the error due to counting statistics given approximately by
$\sigma(W) M_{\mathrm{L}}$
W $\sqrt{12}$
where M_{L} is the total zero intensity line width.
Some candidate lines show more than one minimum suggesting that they may be just

 broad and resolved. The method is suspect for strong broader lines with essentially zero

 R.F. Carswell et al.

R.F. Carswell et al.
$\stackrel{\square}{-}$

residual intensity (usually subsequently identified as Ly α in a strong system) and may give more resolved components than are present. Under these circumstances the entire range with
Other uncertainties include blended lines, and the shape of the intrinsic emission-line profiles (from which absorption occurs); in such regions the equivalent widths of Tables 3
The line lists of Tables 3 and 4 depend on the local signal-to-noise ratio and are not ones which contain all lines complete to some uniform equivalent width, for example. The completeness limit for an isolated feature may be estimated conservatively as about So(W). QSO spectra if the data obtained is of nearly uniform signal-to-noise ratio, the redshifts are similar, and emission line regions of the spectra are avoided. Because of this we believe that
 absorption-line QSOs. For disparate redshifts this relatively simple approach may be inadequate, with uncertainty in the continuum level providing the main source of error.
These points are being investigated further by one of us (DRT).

5 Absorption redshift systems

We have determined possible absorption redshift systems for the two QSOs, and give details of these in Tables 5 and 6.f values are from Morton (1978). Automatic methods for finding

3575.20	0.10	1.25	0.11	SiIII	1206.510	1.66	1.9633	Too strong?	
4588.50	0.18	0.38	0.08	CIV	1548.188	0.194	1.9638		
4596.74	0.24	1.14	0.10	CIV	1550.762	0.097	1.9642	B1end CIV 1548.19	$z=1.9694$
$z=1.9694$									
3609.82	0.08	3.69	0.11	Ly ${ }_{\text {d }}$		0.416	1.9694		
4596.74	0.24	1.14	0.10	CIV	1548.188	0.194	1.9691	B1end CIV 1550.76	$z=1.9638$
4604.65	0.09	3.69	0.09	CIV	1550.762	0.097	1.9693	Blend CIV 1548.19	$z=1.9734$
$z=1.9734$									
3586.62	0.18	2.22	0.14	SiIII	1206.510	1.66	1.9727		
3615.56	0.07	4.41	0.11	Ly ${ }_{\text {a }}$		0.416	1.9741		
3683.85	0.17	1.16	0.12	NV	1238.808	0.152	1.9737		
3695.09	0.23	0.59	0.12	NV	1242.796	0.076	1.9732		
3968.78	0.21	0.90	0.13	CII	1334.532	0.118	1.9739		
4143.34	0.16	1.59	0.13	SiIV	1393.755	0.528	1.9728		
4171.32	0.21	1.00	0.12	SiIV	1402.770	0.262	1.9736		
4604.65	0.09	3.69	0.09	CIV	1548.188	0.194	1.9742	Blend CIV 1550.76	$z=1.9694$
4612.38	0.09	2.97	0.10	CIV	1550.762	0.097	1.9743	Blend CIV 1548.19	$z=1.9790$
$z=1.9790$									
3622.10	0.21	0.90	0.12	Ly α		0.416	1.9795		
4612.38	0.09	2.97	0.10	CIV	1548.188	0.194	1.9792	Blend CIV 1550.76	$z=1.9734$
4618.72	0.19	0.27	0.06	CIV	1550.762	0.097	1.9784		
$\underline{z}=1.91$	Systems								
$z=1.9101$									
3537.53	0.10	6.30	0.17	Iy ${ }^{\text {a }}$		0.416	1.9099		
3884.53	0.15	0.61	0.07	CII	1334.532	0.118	1.9108		
4056.00	0.22	0.62	0.12	SiIV	1393.755	0.528	1.9101		
4504.47	0.09	1.14	0.06	CIV	1548.188	0.194	1.9095		
4514.55	0.17	1.03	0.08	CIV	1550.762	0.097	1.9112	Blend CIV 1550.76	$z=1.9122$
$z=1.9122$									
4508.56	0.09	1.47	0.07	CIV	1548.188	0.194	1.9122		
4514.55	0.17	1.03	0.08	CIV	1550.762	0.097	1.9112	Blend CIV 1550.76	$z=1.9101$
$z=1.8143$									
3421.22	0.11	2.84	0.16	Ly ${ }^{\text {a }}$		0.416	1.8143		
4357.14	0.23	1.19	0.10	CIV	1548.188	0.194	1.8143		
4364.21	0.23	0.73	0.10	CIV	1550.762	0.097	1.8142		

absorption systems and assessing their significance have been described by Bahcall (1968), Coleman et al. (1976) and Young et al. (1979). In fact, the reality of most systems hinges
 and on the detection of expected lines longward of the Ly α emission line. There are often

 used this latter technique here.
Q0122-380 $z_{\mathrm{em}}=2.181$ (Table 5)

 SEM ио!̣eว!j!
 tion marginally more believable.

The strongest component at $z_{\text {abs }}=1.9734$ shows an interesting mixture of ionization

 suggesting that at higher resolution we should see further velocity structure.
$z_{\mathrm{abs}}=1.91$ systems. A pair of systems is present with velocity separation $215 \mathrm{~km} \mathrm{~s}^{-1}$. Here
 line at $4514.55 \AA$ appears to be resolved, but is too noisy to be certain of two components. The Ly α line at $3537.53 \AA$ is also resolved, and could well arise from more than one component.
$z_{\text {abs }}=1.8143$. This system identifies a weak C Iv doublet and a strong ultraviolet line as Ly α. No further plausible identifications were found.
These proposed systems identify only about one-third of the absorption lines we have found in the spectrum. It is usual to suppose that most of these are due to Ly α in weak
systems with $z_{\text {abs }}<z_{\mathrm{em}}$, following a suggestion first made by Lynds (1971). However, in Q0122-380 there are seven lines for which we have not found plausible systems at wavelengths greater than the Ly α emission line, an unusually large number. All of these are relatively weak, with observed equivalent widths less than $0.7 \AA$, but because of our strict criteria for inclusion in the line list few, it any, are likely to be spurious. The absorption analysis compares with that of PKS $0528-250$, where Morton et al. (1980) have also found several unidentified absorption lines longward of the Ly α emission-line wavelength. Again
these lines are relatively weak.

Q1 101-264 $z_{\mathrm{em}}=2.143($ Table 6)

$z_{\text {abs }}=1.8387$. This is the only well-established redshift system in this object, with the usual lines characteristic of a medium-ionization system all present. The strongest absorption line in the observed spectrum is identified by Ly α at this redshift, and, while there appears to be some other component blended with some of the Si II lines, most of the lines appear unexceptional in strength. Most of the lines appear to be unresolved at the $2 \AA$ resolution used, but Ly α is broad and shows probable velocity structure. $z_{\mathrm{abs}}=1.4769$. This system provides the only reasonable identifications for the pair of lines in the long wavelength wing of the Ly α emission line, as the C iv doublet. No other plausible identifications were found. The suggested identification with Oid1302 is much stronger than would be expected in the absence of $\mathrm{C}_{\text {II }} \lambda 1334$ unless the system is very unusual, so it is rejected here.
$z_{\text {abs }}=1.6532$. The strong line at $3225.53 \AA$ is identified at Ly α and a weak line at $4107.50 \AA$ as Civ $\lambda 1548$ in this possible system. Weak confirming evidence comes from the possible presence of a feature at $\lambda_{\mathrm{vac}}=4114.6$ ($\mathrm{EW}=0.25 \AA$) which would be identified with the weaker of the Civ pair, but this line did not satisfy our strict criteria for inclusion in the line list

[^1][^2]$$
\text { Observations of QSO spectra }
$$
crowded region in the Ly α emission line so it could well have been missed if it is fairly weak.
No Nv or Siry absorption lines were found, so if this is a high-ionization system it is a
weak-lined one.
We note that the only definite line longward of emission Ly α which remains unidentified

7 Redshift distribution of absorption lines

If the absorbing material is cosmologically distant from and not closely associated with QSOs, then the number of absorption clouds seen in each QSO spectrum should in the absence of clustering have Poisson distribution. To test the distribution of absorption clouds it is important to make a distinction between the metal line systems which on this hypo-
 1980). Typically only a few metal-lined systems are found in each QSO, so a large sample is
 Weymann et al. (1979).
The distribution of the far more numerous Ly α only systems has been discussed in detail spectra of individual QSOs is minimal over a large range of scale lengths, and hence the cloud

LOI bułoads OSÔ fo suolıpruasqo

 per unit absorption redshift. With each $\bar{N}\left(\right.$ QSO) we associate a value $\bar{z}_{\text {abs }}$, which is the mean

 the two reported in this paper are shown against $\bar{z}_{\text {abs }}$ in Fig. 3. Table 8 gives \bar{N}, \bar{z} and N_{0} values for these objects. We ask if the \bar{N} values vary systematically with the mean absorption
 $(1+\bar{z})^{\gamma}$ gives $\gamma=1.4 \pm 0.7(1 \sigma)$.
(Note that the mean value of N_{0} for the two new objects is 16.1 ± 3.3 for $q_{0}=0$, and

A third possible method is to determine values for γ, as defined by the functional form above, separately for each QSO using the line wavelengths. This is similar to the first method, now applied individually to each QSO. The range of absorption redshifts and the

 velocity relative to the QSO (Sargent et al. 1980, V and fig. 3).

Figure 3. The redshift dependence of the absorption line density per unit redshift \bar{N}, for lines with rest equivalent width $\geqslant 0.32 \AA$. The vertical error bars shown correspond to 1σ, and the horizontal lines of the strong Ly α in the $z_{\mathrm{abs}}=2.3085$ system is indicated by a dotted line. A best fit to the data for

 discussed in the text.
R.F. Carswell et al.

Table 9. Redshift dependence of absorption line density in individual QSO spectra. object Redshift range $1.84-2.13$ $1.92-2.13$ 1.70-2.20 .21-2.6 $\stackrel{0}{\sim}$
N
1
N
N
N 2.50-3.28

108
-
 so disparate after we have gone to considerable trouble to ensure that the sample is free from redshift-dependent selection effects? One possibility is that the absorption line density does әи!

 effect hidden in the line selection procedures.

 regions where this is possible have been included in the analysis，and any correction term appears to be small．

A further possibility is that line blending and uncertain continuum estimation affect the absorption line sample．It is possible，for example，that as the signal－to－noise ratio varies along a spectrum，or from spectrum to spectrum，blended lines may not be resolved and so weaker pairs or groups of lines be erroneously included．This is being investigated further． Finally we point out that the number of objects is small．Confirmation（or otherwise）
from an independent sample is highly desirable． from an independent sample is highly desirable．

8 Conclusions

From the absorption and emission－line spectra of two QSOs，Q0122－380（ $z_{\mathrm{em}}=2.181$ ）and Q1101－264（ $z_{\mathrm{em}}=2.143$ ）we find：
（i）Weak but definite unidentified emission lines are present in both spectra，at $\lambda 1427$（in Q1101－264）and $\lambda 1120$（in Q0122－380）．
（ii）Complex absorption redshift systems are present in the spectrum of Q0122－380， with one，at $z_{\text {abs }}=1.97$ ，having components with a total spread in velocity perhaps as high as
$1500 \mathrm{~km} \mathrm{~s}^{-1}$ ．One of the systems in this complex shows possible Nv absorption lines． $\mathrm{N} v$ lines have been reported in sharp－lined systems with redshifts very different from the QSO
 јо әб⿱亠䒑⿱口儿， one of these in which condensations have formed，but it is also consistent with an inter－ vening cluster of galaxies with velocity dispersion $\sim 650 \mathrm{~km} \mathrm{~s}^{-1}$ ．
（iii）Uncertain continuum determination can affect our measures of absorption line
 redshift），these could be masked by such uncertainties．

 ccount for the difference．
None the less，the very

None the less，the very good agreement between the extrapolated values for the local
space density of absorbers obtained for the two QSOs reported here and from the Sargent $e t$ space density of absorbers obtained for the two QSOs reported here and from the Sargent et
al．（1980）sample of five is a further institute indication that there are no systematic differences between QSOs．

Acknowledgments

We are grateful to Bruce Peterson and Wal Sargent for a number of illuminating discussions on the interpretation of QSO absorption line counts，and the AAO staff for their usual
efficient help in acquiring the observational data．RFC and DRI are grateful to the SRC for support．

References

Arons，J．，1972．Astrophys．J．，172， 553.

R.F. Carswell et al.

Boksenberg, A., Carswell, R. F. \& Sargent, W. L. W., 1979. Astrophys. J., 227, 370.
Boksenberg, A., Carswell, R. F., Smith, M. G. \& Whelan, J. A. J., 1978. Mon. Not. R. astr. Soc., 184, 773.
Boksenberg, A, and Sargent, W. L. W., 1975. Astrophys. J., 198, 31.
Carswell, R. F., Smith, M. G. \& Whelan, J. A. J., 1977. Astrophys. J., 216, 351.
Chan, Y. W. T. \& Burbidge, E. M., 1971. Astrophys. J., 167, 213.
Coleman, G., 1978. PhD Thesis, University of Arizona.
Coleman, G., Carswell, R. F., Strittmatter, P. A., Williams, R. E., Baldwin, J., Robinson, L. B. \& Wampler,
E. J., 1976. Astrophys. J., 207, 1.
Lynds, C. R., 1971. Astrophys. J., 164, L73.
Morton, D. C., 1978. Astrophys. J., 222, 863.
Morton, D. C. \& Richstone, D. O., 1973. Astrophys. J., 184, 65 .
Morton, D. C., Chen, Jiang.Shen, Wright, A. E., Peterson, B. A. \& Jauncey, D. L., 1980. Mon. Not. R.
astr. Soc., 193, 399.
Morton, W. A. \& Morton, D. C., 1972. Astrophys. J., 178, 607.
Oke, J. B., 1974. Astrophys. J. Suppl., 27, 21.
Osmer, P. S. \& Smith, M. G., 1977a. Astrophys. J., 213, 607.
Osmer, P. S. \& Smith, M. G., 1977b. Astrophys. J., 215. L47.
Peterson, B. A., 1978. In The Large Scale Structure of the Universe: IAU Symp. No. 79, p. 389, ed.
Longair, M. S. \& Einasto, J., D. Reidel, Dordrecht.
Sargent, W. L. W., Young, P. J., Boksenberg, A., Carswell, R. F. \& Whelan, J. A. J., 1979. Astrophys. J.,
230, 49.
Sargent, W. L. W., Young, P. J., Boksenberg, A. \& Tytler, D., 1980. Astrophys. J. Suppl., 42, 41.
Smith, M. G., 1975. Astrophys. J., 202, 591.
Smith, M. G., 1976. Astrophys. J., 206, L125.
Smith, M. G., 1978. Vistas Astr., 22, 321.
Smith, M. G., Carswell, R. F., Whelan, J. A. J., Wilkes, B. J., Boksenberg, A., Clowes, R. G., Savage, S.,
Cannon, R. D. \& Wall, J. V., 1981.Mon. Not. R. astr. Soc., 195, 437.
Strömgren, B., 1948. Astrophys. J., 108, 242.
Weymann, R. J., 1980. Phil. Trans. R. Soc. Lond., A 296, 399.
Weymann, R. J., Williams, R. E., Peterson, B. M. \& Turnshek, D. A., 1979. Astrophys. J., 234, 33.
Whelan, J. A. J., Smith, M. G. \& Carswell, R. F., 1979. Mon. Not. R. astr. Soc., 189, 363.
Williams, R. E., Strittmatter, P. A., Carswell, R. F. \& Craine, E. R., 1975. Astrophys. J., 202, 296.
Wills, D. \& Netzer, H., 1979. Astrophys. J., 233, 1.
Young, P. J., Sargent, W. L. W., Boksenberg, A., Carswell, R. F. \& Whelan, J. A. J., 1979. Astrophys. J.,
229, 891.

[^0]: $\frac{1}{1+\epsilon}\left\{W+M_{L} \epsilon\right\}$ $W^{\prime}=$

[^1]: $z_{\text {abs }}=2.1250$. Again the tentative system is based only on the C IV doublet identifying

[^2]:

