
Observations on Balancing Discipline and Agility

Barry Boehm

University of Southern California

boehm@sunset.usc

Richard Turner

George Washington University

rich.turner.ctr@osd.mil

Abstract

Agile development methodologies promise higher

customer satisfaction, lower defect rates, faster

development times and a solution to rapidly changing
requirements. Plan-driven approaches promise

predictability, stability, and high assurance. However,

both approaches have shortcomings that, if left
unaddressed, can lead to project failure. The challenge

is to balance the two approaches to take advantage of

their strengths and compensate for their weaknesses. We
believe this can be accomplished using a risk-based

approach for structuring projects to incorporate both

agile and disciplined approaches in proportion to a
project’s needs.

This paper presents six observations drawn from our

efforts to develop such an approach. We follow those
observations with some practical advice to organizations

seeking to integrate agile and plan-driven methods in

their development process. The material presented here
is drawn from our book Balancing Agility and

Discipline: A Guide to the Perplexed (Addison Wesley,

2003).

1. Introduction

Our analysis of agile and disciplined methods have

led to the following six observations:

1. Neither agile nor plan-driven methods provide a

silver bullet.

2. Agile and plan-driven methods have home

grounds where one clearly dominates the other.

3. Future trends are toward application

developments that need both agility and

discipline.

4. Some balanced methods are emerging.

5. It is better to build your method up than to tailor

it down.

6. Methods are important, but potential silver

bullets are more likely to be found in areas

dealing with people, values, communications,

and expectations management.

We will discuss each of these in turn. Following that

elaboration we discuss how your organization can assess

your current agility-discipline balance and then improve

it to better fit your organization’s evolving goals. Be

forewarned that we will make some pretty heroic

generalizations across wide swaths of agile and plan-

driven methods. While we feel that each agile and plan-

driven method shares some aspect of our assessment

approach, we are aware that there is considerable

variability in degree of applicability.

2. Observation 1: No Agile or Plan-Driven

Method Silver Bullet

Neither agile nor plan-driven methods provide a

methodological silver bullet that slays Fred Brooks’

software engineering werewolf. [1] The nature of the

werewolf concerns what Brooks calls the essential

software engineering difficulties of coping with

software’s complexity, conformity, changeability, and

invisibility. Some techniques have achieved the level of

“lead bullets” in that they can slay normal wolves—that

is, they can adequately solve some part of the software

engineering problem. Elements of both agile and plan-

driven approaches may be characterized as lead bullets.

Agile methods handle changeability and invisibility

by building a shared vision of the project’s objectives

and strategies into each team member’s shared store of

tacit knowledge. But agile methods founder on handling

complexity and to some extent conformity. They do not

scale up to large complex projects, nor do they enforce

obedience to order.

Plan-driven methods handle conformity and

invisibility by investing in extensive documentation.

Unfortunately, they founder on changeability and the

increasing complexity represented by systems of systems

and enterprise integration.

We have found that over the years, the increasingly

rapid pace of change has identified a fallacy in the

following assumption: If a software technique lead bullet

can slay a software wolf this year, it will be able to slay

the wolf’s evolving offspring next year. Examples of

techniques where this fallacy is apparent include

The sequential, requirements-first waterfall

process model that could work quite well for

1960s or 1970s batch, sequential, non-

interactive applications.

Pre-WYSIWYG word processing systems

organized around separate edit, format, and

runoff modules.

Pre-Web book sales management systems that

could not keep up with amazon.com.

Proceedings of the Agile Development Conference (ADC’03)
0-7695-2013-8/03 $17.00 © 2003 IEEE

Other examples of lead-bullet techniques with

dwindling (but still important) niches are fixed-contract

software management models, heavyweight formal

methods, and static domain and enterprise architectures.

3. Observation 2: Agile and Plan-driven

Method Home Grounds

There are definite home grounds for pure agile and

pure plan-driven methods, although the actual extremes

are rarely populated. There is a relationship with a

method’s position between the home grounds and the

type of project and environment where it will most likely

succeed.

We have identified five critical decision factors

associated with agile and plan-driven home grounds

(Table 1) and have graphically summarized them in

Figure 1. Of the five axes in the polar graph, Size and

Criticality are similar to the factors used by Alistair

Cockburn to distinguish between the lighter-weight

Crystal methods (toward the center of the graph) and

heavier-weight Crystal methods (toward the periphery)

[2]. The Culture axis reflects the reality that agile

methods will succeed better in a culture that “thrives on

chaos” than one that “thrives on order,” and vice versa.

The other two axes are asymmetrical in that both

agile and plan-driven methods are likely to succeed at

one end, and only one of them is likely to succeed at the

other. For Dynamism, agile methods are at home with

both high and low rates of change, but plan-driven

methods prefer low rates of change.

The Personnel scale refers to the extended Cockburn

method skill rating scale discussed in Table 2, and places

it in a framework relative to the complexity of the

application. This captures the situation where one might

be Level 2 in an organization developing simple

application but Level 1A in an organization developing

highly-complex applications. Here the asymmetry is that

while plan-driven methods can work well with both high

and low skill levels, agile methods require a richer mix

of higher-level skills.

Table 1. Agile and plan-driven
method home grounds

Characteristics Agile Plan-driven

Application

Primary Goals Rapid value;
responding to change

Predictability,
stability, high
assurance

Size Smaller teams and
projects

Larger teams and
projects

Environment Turbulent; high
change; project-
focused

Stable; low-
change;
project/organization
focused

Management

Customer
Relations

Dedicated on-site
customers; focused
on prioritized
increments

As-needed
customer
interactions;
focused on contract
provisions

Planning and
Control

Internalized plans;
qualitative control

Documented plans,
quantitative control

Communications Tacit interpersonal
knowledge

Explicit
documented
knowledge

Technical

Requirements Prioritized informal
stories and test
cases; undergoing
unforseeable change

Formalized project,
capability,
interface, quality,
forseeable
evolution
requirements

Development Simple design; short
increments;
refactoring assumed
inexpensive

Extensive design;
longer increments;
refactoring
assumed
expensive

Test Executable test cases
define requirements,
testing

Documented test
plans and
procedures

Personnel

Customers Dedicated, collocated
CRACK* performers

CRACK*
performers, not
always collocated

Developers At least 30 percent
full-time Cockburn
Level 2 and 3
experts; no Level 1B
or -1 personnel**

50 percent
Cockburn Level 3s
early; 10 percent
throughout; 30
percent Level 1Bs
workable; no Level
-1s**

Culture Comfort and
empowerment via
many degrees of
freedom (thriving on
chaos)

Comfort and
empowerment via
framework of
policies and
procedures
(thriving on order)

* Collaborative, Representative, Authorized, Committed,
Knowledgable
** See Table 2. These numbers will particularly vary with the
complexity of the application

Proceedings of the Agile Development Conference (ADC’03)
0-7695-2013-8/03 $17.00 © 2003 IEEE

Figure 1. Dimensions affecting method
selection

For example, a plan-driven project with 15 percent

Level 2 and 3 people and 40 percent Level 1B people

would initially use more than 15 percent Level 2 and 3

people to plan the project, but reduce the number

thereafter. An agile project would have everybody

working full-time, and the 15 percent Level 2 and 3s

would be swamped trying to mentor the 40 percent Level

1Bs and the remaining Level 1As while trying to get

their own work done as well.

By rating a project along each of the five axes, you

can visually evaluate its home-ground relationships. If all

the ratings are near the center, you are in agile method

territory. If they are at the periphery, you will best

succeed with a disciplined approach. If you are mostly in

one or the other, you need to treat the exceptions as

sources of risk and devise risk management approaches

to address them.

4. Observation 3: Future Applications Will

Need Both Agility and Discipline

In the past, there have been many small, noncritical,

well-skilled, agile-culture, rapidly evolving projects

occupying the agile home ground in the center of Figure

1. There have also been many people working on large,

critical, mixed-skill, ordered-culture, stable projects

occupying the plan-driven home ground at the periphery

of the chart. However, things are changing.

Large projects can no longer count on low rates of

change, and their extensive process and product plans

will become expensive sources of rework and delay. As

the use of agile methods progresses from individual

early-adopter projects to enterprise-coupled mainstream

applications, the Brooksian software development

werewolves of complexity and conformity will be

waiting for them. Thus, there will be a higher premium

on having methods available that combine agility and

discipline in situation-tailorable ways.

Table 2. Levels of software method
understanding and use (after Cockburn)

Level Characteristics

3 Able to revise a method (break its rules) to fit an unprecedented new
situation

2 Able to tailor a method to fit a precedented new situation

1A With training, able to perform discretionary method steps (e.g., sizing
stories to fit increments, composing patterns, compound refactoring,
complex COTS integration). With experience can become Level 2.

1B With training, able to perform procedural method steps (e.g. coding a
simple method, simple refactoring, following coding standards and
CM procedures, running tests). With experience can master some
Level 1A skills.

-1 May have technical skills, but unable or unwilling to collaborate or
follow shared methods.

 Drawing on the three levels of understanding in Aikido (Shu-Ha-Ri), Alistair
Cockburn has identified three levels of software method understanding that can
help sort out what various levels of people can be expected to do within a given

method framework [2]. We have taken the liberty of splitting his Level 1 to

address some distinctions between agile and disciplined methods, and adding
an additional level to address the problem of method-disrupters.
 Level -1 people should be rapidly identified and found work to do other than
performing on either agile or disciplined teams.
 Level 1B people roughly correspond to the “1975-average” developer profile.
They can function well in performing straightforward software development in a
stable situation. But they are likely to slow down an agile team trying to cope
with rapid change, particularly if they form a majority of the team. They can
form a well-performing majority of a stable, well-structured disciplined team.
 Level 1A people can function well on agile or disciplined teams if there are
enough Level 2 people to guide them. When agilists refer to being able to
succeed on agile teams with ratios of 5 Level 1 people per Level 2 person, they
are generally referring to Level 1A people.
 Level 2 people can function well in managing a small, precedented agile or
disciplined project but need the guidance of Level 3 people on a large or
unprecedented project. Some Level 2s have the capability to become Level 3s
with experience. Some do not.

5. Observation 4:Some Balanced Methods

Are Emerging

Some of the agile methods, such as Crystal Orange,

DSDM, FDD, and Lean Development, have emerging

approaches for achieving balance. The same is true of

new, lighter versions of the Rational Unified Process.

One interesting related approach called Code Science or

AgilePlus has been used successfully on over a dozen

projects up to 400 KSLOC in size. It uses most of the XP

practices plus a componentized architecture, risk-based

situation audits, business analyses, and on-demand

automatic document generation. [3, 4]

The tailorable method defined in our book provides

a risk-driven, spiral-type approach for balancing agile

and plan-driven methods. It is not fully developed, but

has worked well in situations where it has been applied.

It is definitely not a cookbook approach; each project

Personnel

Dynamism

(% Requirements-change/month)

Culture

(% thriving on chaos vs. order)

Size

(# of personnel)

Criticality

(Loss due to impact of defects)

50
30

10
5

1

90

70

50

30

10

3

10

30

100

300

35

30

25

20

15

Essential
Funds Discretionary

Funds Comfort

Single
Life

Many
Lives

(% Level 1B) (% Level 2&3)

0

10

20

30

40

Agile

Disciplined

Proceedings of the Agile Development Conference (ADC’03)
0-7695-2013-8/03 $17.00 © 2003 IEEE

will need some thought to apply it to the particular

situation.

6. Observation 5: Build Your Method Up –

Don’t Tailor It Down

Plan-driven methods have had a tradition of

developing all-inclusive approaches designed to be

tailored down to fit a particular situation. Experts can do

this, but non-experts tend to play it safe and use the

whole thing, often at considerable unnecessary expense.

Agilists offer a better approach of starting with relatively

minimal sets of practices and only adding extras where

they can be clearly justified by cost-benefit. In some

cases, as with Crystal, they will have multiple core sets

for different levels of size or criticality. Efforts are

underway to develop similar approaches for building up

plan-driven methods, as shown by the activities at

Rational to provide more user-friendly tools to tailor the

Rational Unified Process.

7. Observation 6: Focus Less On Methods –

More On People, Values,

Communications and Expectation

Management

The agilists have it right in valuing individuals and

interactions over process and tools. They are not the first

to emphasize this. There is a long list of wake-up calls—

Weinberg’s 1971 Psychology of Computer Programming
[5], the Scandinavian participatory design movement [6],

DeMarco and Lister’s 1987 Peopleware [7], and Curtis’

studies of people factors [8] and development of the

People Capability Maturity Model [9]. There is also a

wealth of corroborative evidence that people factors

dominate other software cost and quality drivers, such as

the 1966 Grant-Sackman experiments showing 26:1

variations in people’s performance [10] and the 1981 and

2000 COCOMO and COCOMO II cost model

calibrations showing 10:1 effects of personnel capability,

experience, and continuity [11]. But the agilists may

finally provide a critical mass of voices amplifying this

message.

7.1 People

Software engineering is done “of the people, by the

people and for the people.”

Of the People. People organize themselves into

teams to develop mutually satisfactory software

systems.

By the People. People identify what software

capabilities they need, and people develop it for

them.

For the People. People pay the bills for

software development and use the resulting

products.

Unfortunately, software engineering is still

struggling with a “separation of concerns” legacy that

contends translating requirements into code is so hard

that it must be accomplished in isolation from people

concerns. A few quotes will illustrate the situation:

 The notion of “user” cannot be precisely defined,
and therefore it has no place in computer science or

software engineering. [12]

 Analysis and allocation of the system requirements
is not the responsibility of the software engineering

group, but it is a prerequisite for their work. [13]

 Software engineering is not project
management.[14]

In today’s and tomorrow’s world, where software

decisions increasingly drive system outcomes, this

separation of concerns is increasingly harmful. Good

agilist treatments of people and their ecosystems are

provided in Jim Highsmith’s Agile Software
Development Ecosystems [15] and Alistair Cockburn’s

Agile Software Development [16]. Complementary plan-

driven approaches are provided in Watts Humphrey’s

Managing Technical People [17] and his Personal

Software Process [18] [19], as well as the People CMM

developed by Bill Curtis, Bill Hefley and Sally Miller

[20].

7.2 Values

Along with people come values - different values.

One of the most significant and underemphasized

challenges in software engineering is to reconcile

different users’, customers’, developers’, and other

success-critical stakeholders’ value propositions about a

proposed software system into a mutually satisfactory

win-win system definition and outcome. Unfortunately,

software engineering is caught in a value-neutral time

warp, where every requirement, use case, object, test

case, and defect is considered to be equally important.

Most process improvement initiatives and debates,

including the silver bullet debate, are inwardly focused

on improving software productivity rather than

outwardly focused on delivering higher value per unit

cost to stakeholders. Again, agile methods and their

attention to prioritizing requirements and responding to

changes in stakeholder value propositions are pushing us

in more high-payoff directions. Other aspects of value-

Proceedings of the Agile Development Conference (ADC’03)
0-7695-2013-8/03 $17.00 © 2003 IEEE

based software engineering practices and payoffs are

described in “Value-Based Software Engineering” [21].

7.3 Communications

Even with closely-knit, in-house development

organizations, the “I can’t express exactly what I need,

but I’ll know it when I see it” (IKIWISI) syndrome limits

people’s ability to communicate an advance set of

requirements for a software system. If software

definition and development occurs across organizational

boundaries, even more communications work is needed

to define and evolve a shared system vision and

development strategy. The increasingly rapid pace of

change exacerbates the problem and raises the stakes of

inadequate communication. Except for the landmark

people-oriented sources mentioned above and a few

others, there are frustratingly few sources of guidance

and insight on what kinds of communications work best

in what situations. Cockburn’s Agile Software

Development is a particularly valuable recent source. It

gets its priorities right by not discussing methods until

the fourth chapter, and spending the first hundred or so

pages discussing why we have problems communicating

and what can be done about it. It nicely characterizes

software development as a cooperative game of

invention and communication, and provides numerous

helpful communication concepts and techniques. Some

examples are the skill levels discussed in Table 2, human

success and failure modes, information radiators and

convection currents, and the effects of distance on

communication effectiveness. It’s well worth reading

whatever your location along the agility-discipline

spectrum.

7.4 Expectations Management

Our bottom-line conclusion agrees with one of the

major findings in a recent root-cause analysis of troubled

DoD software projects [22]. It is that the differences

between successful and troubled software projects is

most often the difference between good and bad

expectations management.

Most software people do not do well at expectations

management. They have a strong desire to please and to

avoid confrontation, and have little confidence in their

ability to predict software project schedules and budgets.

This makes them a pushover for aggressive customers

and managers trying to get more software for less time

and money.

The most significant common factor we’ve seen is

that both agile and highly-disciplined plan-driven people

demonstrate enough process mastery, preparation, and

courage to be able to get their customers to agree to

reducing functionality or increasing schedule in return

for accommodating a new high-priority change. They are

aware that setting up unrealistic expectations is not a win

for the customers either, and they are able to convince

the customers to scale back their expectations. Both agile

short iterations and plan-driven productivity calibration

are keys to successfully managing software expectations.

8. What Can You Do To About Balancing

Agility And Discipline In Your

Organization

In our era of increasingly rapid change, the most

risky thing you can do is to continue with business as

usual without doing a self-assessment of where your

organization is, where its success-critical stakeholders

want it to go, and how it will cope with future trends.

Key stakeholders to consult include your users,

customers, developers, suppliers, and strategic partners.

Key future trends to consider include:

The increased pace of change and need for

agility;

The increased concern with software

dependability and need for discipline;

Your ability to satisfy your stakeholders’

evolving value propositions and to keep up with

your toughest competitors;

The increasing gap between supply and demand

for Cockburn Level 2 and 3 people;

Your ability to cope with existing and emerging

technical challenges such as COTS integration,

evolving Internet and Web capabilities,

distributed and mobile operations, agent

coordination, and multimode virtual

collaboration.

A good context for performing such a self-

assessment is provided in Jim Collins’ recent book, Good

to Great [23]. Although its primary focus is at the

corporate level, its emphasis on balancing shared internal

self-discipline and entrepreneurial agility can be applied

at the software development organization level as well.

If you have already done such an assessment, then

you are in excellent position to address the issue of how

your organization should best balance agility and

discipline. If not, you should at least take a first cut at a

self-assessment so that you have some picture of where

you are and where you want to go.

The steps below provide a simple recipe for

balancing agility and discipline. Be sure, however, that

Proceedings of the Agile Development Conference (ADC’03)
0-7695-2013-8/03 $17.00 © 2003 IEEE

you perform them in consultation with your key

stakeholders.

8.1 Step 1

Use Figure 1 to assess where your projects currently

are with respect to the 5 key axes. If you have different

organizations with different profiles (e.g. device-

embedded software and business software), make

separate assessments. Also, assess the likely changes in

your organization’s profile over the next 5 years.

8.2 Step 2

If your assessments show you comfortably in the

agile or disciplined home ground now and in the future,

your best strategy is to embark on a continuous

improvement effort to become the best you can at agility

or discipline. To start such an effort, the best next steps

are:

a. Convene a representative working group of key

stakeholders to assess alternative agile or

disciplined improvement approaches and

recommend an approach that best fits your

situation.

b. Identify a reasonably tractable project, staffed

with capable and enthusiastic people, to be

trained in using the approach, to apply it, and to

develop a plan for both dealing with problems

encountered and for extending the approach

across the organization.

c. Execute the plan for extending the approach,

always including evaluation and feedback into

continuous improvement during and after each

project.

8.3 Step 3

If your Figure 1 assessments leave you mostly in the

agile or disciplined home grounds, but with some

anomalies, treat the anomalies as risk factors to be added

to the charters of the groups performing steps 2a-c.

Examples of potential anomalies are:

Operating mostly in a disciplined home ground,

but in an increasingly dynamic marketplace.

Operating with agile fix-it-later developers with

a growing, increasingly enterprise-integrated

and dependability-oriented user base.

Finding that your technical people are

successfully adapting to dynamism, but that

your contract management people are not.

The first two anomalies can be addressed via risk

assessment and managerial techniques. The third would

involve a more specialized approach to change

management in the contracting organization, but done

with their collaboration and the support of upper

management.

If you have several organizations and several

profiles, it is best to prioritize your approach to work on

those you believe are most important and likely to

achieve early successes. An exception is if there are

projects in crisis that need, and are receptive to,

significant help and redirection.

8.4 Step 4

If your Figure 1 assessments leave you with a highly

mixed agility-discipline profile, you need to develop an

incremental mixed strategy to take you from your current

situation to the one you have chosen as a goal. For

example, suppose that your organization primarily does

50-person, essential-funds critical projects with a mix of

20 percent Level 2 and 3 and 30 percent Level 1B

personnel, with dynamism rapidly increasing from 5

percent/month to 10 percent/month, a culture only 30

percent oriented toward thriving on chaos, and a

corporate steady-state goal to do all software internally.

This profile is shown in Figure 2.

The current staffing profile and culture are not

ideally suited to the anticipated future needs. One option

for you would be to start on a long-term internal effort to

upgrade your staff and change your culture. But a

quicker and less risky approach would be to enter a

strategic partnership with an agile methods company to

serve as near-term trainers, co-developers, and mentors

for your staff. This would expedite an initiative to bring

as many of your Level 1A people up to Level 2 as

possible, and to bring as many of your Level 1B people

up to Level 1A, at least in some niche area. The agile

methods company people could also serve as change

agents in making your organizational culture more

thrive-on-chaos oriented.

Proceedings of the Agile Development Conference (ADC’03)
0-7695-2013-8/03 $17.00 © 2003 IEEE

Figure 2. Sample highly-mixed profile

In other cases, you might be a growing pure-agile

company with a need to add more discipline to

accommodate larger and more critical products. You

could employ a similar strategy with a disciplined

services company to rapidly rebalance your operations,

staff profile, and culture.

8.5 Step 5

Your organization should complement whatever

agile/disciplined balancing options it pursues with

sustained effort to improve your staff capabilities, value-

oriented capabilities, and communication capabilities. It

is also important to track your progress with respect to

your plans and apply corrective action whenever new

opportunities come up. A good checklist for staff

capabilities is the People CMM. A good starting point

for value-oriented capabilities is Value-Based Software

Engineering. [24] A good mechanism for tracking multi-

criteria, multi-initiative programs is the Balanced

Scorecard technique. [25]

9. Conclusions

We are encouraged that the observations above

show that agile and disciplined methods are two means

toward the same end – satisfying customers with

software that meets their needs within appropriate cost

and schedule parameters. While each of the methods has

a definite home ground, strategies are emerging for

integrating them in such a way as to take advantage of

their strengths while avoiding their weaknesses. We

believe this is healthy for software development, and

look forward to the innovative techniques that will grow

and mature from these initial strategies.

[1] Brooks, F. “No Silver Bullet,” Information Processing

1986, Proceedings of the IFIP Tenth World Computing

Conference, ed. H.-J. Kugler (1986), pp. 1069-1076, Elsevier

Science B.V., Amsterdam, The Netherlands.

[2] Cockburn, A. , Agile Software Development, Addison

Wesley, Reading, MA, 2002.

[3] Manzo, J., “Odyssey and Other Code Science Success

Stories,” CrossTalk, October 2002, pp. 19-21, 30.

[4] Manzo, J., “Agile Development Methods, the Myths, and

the Reality: A User Perspective,” Proceedings, USC-CSE Agile

Methods Workshop, March 2003

(http://sunset.usc.edu/events/past).

[5] Weinberg, G., The Psychology of Computer Programming,

Van Nostrand-Reinhold, New York, 1971.

[6] Ehn, P. (Ed.), Work-Oriented Design of Computer

Artifacts, Lawrence Earlbaum Associates, March 1990.

[7] DeMarco, T., T. Lister, Peopleware: Productive Projects

and Teams, Dorset House, New York, 1999.

[8] Curtis, B., H. Krasner, and N. Iscoe, "A Field Study of the

Software Design Process for Large Systems," Comm. ACM,

31 (11), November 1988, pp. 1268-1287.

[9] Curtis, B. et al, People Capability Maturity Model, Addison

Wesley, Reading, MA, 2001.

[10] Grant, E. and H. Sackman, "An Exploratory Investigation

of Programmer Performance Under On-Line and Off-Line

Conditions," Report SP-2581, System Development Corp.,

September 1966.

[11] Boehm, Software Engineering Economics, Prentice Hall,

Upper Saddle River, NJ, 1981; Boehm et al, Software Cost

Estimation with COCOMO II, Prentice Hall, Upper Saddle

River, NJ, 2000.

[12] Dijkstra, E., Panel discussion, Fourth International

Conference on Software Engineering, 1979.

[13] Paulk, M. et al., The Capability Maturity Model for

Software: Guidelines for Improving the Software Process,

Addison Wesley, Reading, MA, 1994]

[14] Tucker, A., “On the Balance between Theory and

Practice,” IEEE Software, Sept-Oct 2002.

[15] Highsmith, J., Agile Software Development Ecosystems.

Boston, MA: Addison-Wesley, 2002.

[16] Cockburn, A., Agile Software Development, Addison

Wesley, Boston, 2002.

Personnel

Dynamism

(% Requirements-change/month)

Culture

(% thriving on chaos vs. order)

Size

(# of personnel)

Criticality

(Loss due to impact of defects)

50
30

10
5

1

90

70

50

30

10

3

10

30

100

300

35

30

25

20

15

Essential
Funds Discretionary

Funds Comfort

Single
Life

Many
Lives

(% Level 1B) (% Level 2&3)

0

10

20

30

40

Proceedings of the Agile Development Conference (ADC’03)
0-7695-2013-8/03 $17.00 © 2003 IEEE

[17] Humphrey, W., Managing Technical People, Addison

Wesley, Boston, 1997.

[18] Humphrey, W., A Discipline of Programming, Addison

Wesley, Boston, 1995.

[19] Humphrey, W., Introduction to the Personal Software

Process, Addison Wesley, Boston, 1997.

[20] Curtis, B., Hefley, B., and Miller, S., The People

Capability Maturity Model, Addison Wesley, 2001.

[21] B. Boehm, “Value-Based Software Engineering,” ACM

Software Engineering Notes, March, 2003.

[22] McGarry, J. and Charette, R., “Systemic Analysis of

Assessment Results from DoD Software-intensive System

Acquisitions,” Tri-Service Assessment Initiative Report, Office

of the Under Secretary of Defense (Acquisition, Technology,

Logistics), 2003.

[23] Collins, J., Good to Great, HarperCollins, 2001.

[24] Boehm, B., “Value-based Software Engineering,” ACM

Software Engineering Notes, March, 2003.

[25] Kaplan R., D. Norton, The Balanced Scorecard:

Translating Strategy into Action, Harvard Business School

Press, Boston, MA, 1996

Proceedings of the Agile Development Conference (ADC’03)
0-7695-2013-8/03 $17.00 © 2003 IEEE

