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tric and magnetic Fayet-Iliopoulos terms are fully originated from the dyonic components

of the embedding tensor. The supergravity origin of several features of the resulting rigid

supersymmetric theory are then elucidated, such as the presence of a traceless SU(2)- Lie
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analysis we take the opportunity in this paper to provide and prove the relevant identities

of the most general dyonic gauging of Special-Kaehler and Quaternionic-Kaehler isome-

tries in a generic N = 2 model, which include the supersymmetry Ward identity, in a fully

symplectic-covariant formalism.
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1 Introduction

Much attention has been recently devoted to the Born-Infeld (BI) theory and its multi-

vector generalization, in relation to supersymmetric theories. These non-linear theories

emerge from a low-energy limit of partially-broken U(1)n rigid N = 2 supersymmetric

theory [1], in which the supersymmetry breaking scale is sent to infinity [2–4]. This mecha-

nism, as it was originally shown by [5] (APT model), requires the introduction of magnetic

Fayet-Iliopoulos (FI) terms besides the electric ones, with the condition that the dual FI

terms be not mutually local. On the other hand the rigid, partially-broken N = 2 the-

ory with one vector multiplet of [5] was obtained as a rigid limit of a suitable N = 2

supergravity in [6]. This defines a N = 2 supergravity origin of the one-vector BI theory.

The aim of our investigation is to embed the partially-broken, rigid N = 2 theory of

n (abelian) vector multiplets in supergravity. This would elucidate the supergravity origin

of the multifield BI theory of [4] and, in particular, to understand the origin of the dyonic

FI as deriving from electric and magnetic charges in the supergravity gauged model.

In the original rigid limit devised in [6], the gauging was electric and partial super-

symmetry breaking required the use of a specific choice of symplectic frame in which the

prepotential of the special geometry does not exist. More general, partially-broken N = 2

supergravities were constructed in [7] using an analogous choice of symplectic frame. This

restriction, which is forced within the framework of standard (i.e. electric) gaugings by
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some no-go theorems [8, 9], can be avoided in the context of dyonic gaugings [10–14]. It

was indeed shown in [15] that partial supersymmetry breaking can be achieved in any

symplectic frame (and in particular in one in which the prepotential does exist) using an

embedding tensor [16–18] with both electric and magnetic components. Consistency of such

gaugings requires the introduction of antisymmetric tensor fields dual to scalars [10–14].

General electric-magnetic gaugings of N = 2 supergravity have been constructed in

the framework of superconformal calculus in [19]. A generic gauged N = 2 Poincaré

supergravity can then be obtained from this analysis by suitably fixing the superconformal

symmetry. However a direct construction of the most general electric-magnetic gaugings

in N = 2 Poincaré supergravity, using a coordinate independent, manifestly symplectic-

covariant description of the special-Kähler manifold, along the lines of [20], is still missing.

The general form of the gauge-invariant bosonic lagrangian, using the embedding tensor

formulation, was given in [12] while specific abelian gaugings were constructed in [10, 11].1

In this paper, to set the stage for the construction of the gauged model generalizing that

of [6], we make a step forward in this direction and give, in a self-contained form, all the

relevant identities related to the most general gauging of special Kähler and quaternionic

Kähler isometries in a generic N = 2 model. Some of these identities are known, other

were proven only for electric gaugings [20, 21] or within superconformal calculus [19].

Here we collect them and give for them a compact proof, for generic dyonic gaugings,

based on the coordinate-independent, symplectic-covariant description of the local special-

geometry and on the general constraints on the embedding tensor. Among these identities,

a prominent role in our analysis will be played by the potential Ward-identity [22–25],

which is required by the supersymmetry invariance of the gauged action. It follows from

the quadratic constraints on the embedding tensor and a proof of it within N = 2 Poincaré

supergravity, for a generic dyonic gauging, has been missing so far. Besides the definition of

the rigid limit yielding a partially-broken N = 2 rigid supersymmetric theory of n abelian

vector multiplets, the general proof of the Ward-identity for generic dyonic gaugings is a

further result of our work. In order to present it in a self-contained fashion, we review in

the appendices the basic definitions and properties related to (local) special Kähler and

quaternionic Kähler manifolds.

The starting point of our analysis is then the construction of a suitable dyonic gauging

of an N = 2 supergravity coupled to n vector multiplets and to hypermultiplets which

allows for the definition of a rigid limit to a multi-vector APT model, thus generalizing [6].

The definition of a rigid limit in a N = 2 supergravity is not unique and is in general a

subtle issue [20, 26]: Rescalings of the fields and of the embedding tensor by powers of the

ratio µ = MP l/Λ of the Planck mass MP l to the supersymmetry breaking scale Λ have to

be devised in order for the original supersymmetries to survive the limit µ → ∞. Defining

such a limit is an important part of our analysis.

The supergravity origin of the rigid theory is made manifest through some characteris-

tic results of the limiting procedure: First of all, although they decouple for MP l → ∞, the

gravitini and the hyperini (the fermion fields in the hypermultiplets) have a role in defining

1in reference [11] also non-abelian gaugings were considered, however only of electric type.
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the general features of the resulting partially-broken rigid supersymmetry: Their super-

symmetry transformation laws survive the rigid limit and contribute a non-trivial traceless

constant matrix CA
B to the scalar potential Ward identity of the final supersymmetric

theory:

VδBA + CA
B =

n
∑

i=1

δλiBδλiA , (1.1)

where V is the scalar potential and λiA and λiA ≡ gī λ
̄
A are the chiral and anti-chiral

components of the gaugini. The constant matrix CA
B, which in [6] was put in relation to a

central extension of the supersymmetry current algebra, is an essential ingredient in order

for the partial supersymmetry breaking to occur in the rigid theory. In [6] it was shown, for

a one-vector-multiplet model, that (1.1) originate from the supergravity Ward identity and

that partial supersymmetry breaking in the rigid theory can occur even if supersymmetry is

completely broken in the hidden sector, consisting of the decoupled gravitational multiplet

and hypermultiplets. We show the same feature in our generalized dyonic setting.

Moreover, a direct generalization of the construction in [6] to n vector multiplets leads

us to relate the FI terms of the rigid theory partly to (dyonic) components of the embedding

tensor, and partly to constants entering the metric of the scalar manifold. As we shall

show, by an appropriate (electric) symplectic rotation we can reformulate the theory in a

symplectic frame where the supergravity interpretation of the FI terms is more transparent:

In this new frame, as opposed to the original one, in performing the rigid limit manifest

symplectic invariance (which reduces from Sp(2n+2) to Sp(2n)) is preserved and the electric

and magnetic FI terms of the resulting theory fully originate from the components of the

embedding tensor and not from constants entering the geometry of the scalar manifold.

More specifically, if we denote by AΛ
µ = (A0

µ, A
I
µ), the n + 1 supergravity vector fields, in

the new symplectic frame, A0
µ is consistently identified with the graviphoton while AI

µ with

the vector fields of the resulting rigid theory. Moreover, denoting by ΘΛ
m the components

of the embedding tensor which define the gauge generators XΛ in terms of the isometry

generators tm of the scalar manifold and by ΘΛm their magnetic counterparts, consistency

of the supergravity gauging requires the following locality condition to be satisfied [10–12]:

ΘΛ[mΘΛ
n] = 0 , Λ = (0, I) = 0, 1, · · ·n . (1.2)

In the rigid limit the electric and magnetic FI terms can be directly identified with ΘI
m

and ΘI m, respectively, and the gauging is such that

ΘI[mΘI
n] = −Θ0[mΘ0

n] 6= 0 . (1.3)

The fact that in the supergravity framework ΘI[mΘI
n] fails to vanish, however, does not

imply a failure of locality in the rigid theory on space-time. Indeed it turns out that on

space-time the theory is perfectly local, the aforementioned “non-locality” being confined

to superspace, thereby posing no obstruction to a correct definition of the vector fields AI
µ

in the rigid theory which we shall discuss in section 4. There we will explicitly show an

interesting mechanism which is at work in the rigid limit. It is related to the well known

property of magnetic gaugings in supergravity that the vector fields AΛ
µ corresponding to
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non-vanishing magnetic components ΘΛm of the embedding tensor, are not well defined

since the corresponding field strengths FΛ
µν are not covariantly closed [10–14]

DFΛ ∝ ΘΛm dBm + · · · 6= 0 , (1.4)

Bm|µν being antisymmetric tensor fields. This poses no problem because such vector fields,

in a vacuum, are “eaten” by the tensor ones Bm by virtue of the “anti-Higgs” mecha-

nism [27]. This is the case of the vectors AI
µ which are thus not well defined in the chosen

supergravity gauging. In the rigid limit however, as we shall show, the antisymmetric ten-

sor fields decouple, thus preventing the anti-Higgs mechanism from taking place, so that

the vectors AI
µ survive and, at the same time, become well defined.

As we shall illustrate in the same section, the magnetic character of the FI parame-

ters ΘI m in the rigid theory can be also related, besides to their position within the

Sp(2n,R)-covariant parameter vector (ΘI
m, ΘI m), to the following feature of the vector

field-strengths: While dF I vanish in space-time, they do not vanish in superspace since:

dF I =
i

2
ΘImPx

m (σx)A
B ψ̄B ∧ γaψ

A ∧ V a 6= 0 . (1.5)

This equation is the superspace counterpart of the fact that on space-time the commutator

of two supersymmetries acts on the gauge field AI
µ as a harmless gauge transformation, as

stressed in reference [28].

The paper is organized as follows:

In section 2 we give the general proof of the Ward identity for a generic electric-magnetic

gauging of N = 2 supergravity. We also comment on its rigid limit for the specific gauging

to be dealt with in the subsequent sections;

In section 3 we give a generalization of the analysis in [6] in order to derive a partially-

broken N = 2 rigid supersymmetric theory of n abelian vector multiplets from a gauged

N = 2 supergravity with electric and magnetic charges. We also derive the rigid Ward

identity from the supergravity one;

In section 4 we start from a different symplectic frame in which the supergravity origin of

the electric and magnetic FI terms resulting from the rigid limit is more transparent. The

issue of non-locality associated with the magnetic FI terms is also discussed;

In section 5 the rigid limit is discussed in detail and performed on the supergravity La-

grangian, thus obtaining the multi-vector generalization of the APT model.

In appendix A we review the definition and properties of (local) special Kähler and quater-

nionic Kähler manifolds, giving for the latter a simple geometric characterization of the

momentum maps associated with their isometries in the homogeneous symmetric case.

In appendix B we prove some symplectic-covariant identities related to the general gauging

of isometries of local special Kähler manifolds. We also give the computational details of

the proof of the Ward identity;

In appendix C we summarize our rescaling prescription for the definition of the rigid limit.
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2 General N = 2 gauging identities

The aim of the present section is to give and prove identities which hold for the most

general gauging of N = 2 supergravity involving both electric and magnetic charges. These

include the Ward identity [22–24] which is required by the supersymmetry invariance of

the gauged Lagrangian. We shall derive these identities, as it was done in N > 2 models

(see, for instance, [13, 29]) from linear and quadratic constraints on the embedding tensor

defining the gauge group.

The most general electric-magnetic gauging was considered in N = 2 conformal super-

gravity in [19]. Here we shall work in Poincaré supergravity using the symplectic covariant

description of the special Kähler manifold and generalize the identities given in [20] to

electric-magnetic gaugings and the analysis in [10] to non-abelian gauge groups. We be-

lieve it is useful to give, in this context, a comprehensive discussion of the identities which

are relevant to the most general gauging, some of which are not present in the literature.

These results will then be applied, in the later sections, to the very specific electric-magnetic

abelian gaugings in which the rigid limit of spontaneously broken N = 2 supergravity is

discussed. Some of the new relations presented here require rather technical proofs; the

proofs will be explicitly given in appendix B, leaving in the text only the corresponding

results.

We start from an N = 2 supergravity coupled to n vector multiplets and nH hy-

permultiplets. The scalar sector consists of n complex scalars zi and 4nH hyperscalars

qu parametrizing a special Kähler manifold MSK [21, 30, 31] and a quaternionic Kähler

manifold MQK [32–34], respectively, so that the scalar manifold has the form:

Mscal = MSK ×MQK . (2.1)

We refer the reader to [20] for a self-contained review of the properties of special Kähler

and quaternionic Kähler manifolds. We recall the main concepts in appendix A.

Some relevant relations of the sigma-model geometry. A special Kähler manifold is

locally described by a choice of complex coordinates zi and a section of the flat holomorphic

bundle defined on it:

ΩM (z) =

(

XΛ(z)

FΛ(z)

)

, Λ = 0, . . . , n , M = 1, · · · , 2n+ 2 , (2.2)

in terms of which the Kähler potential reads:

K(z, z̄) = − log[iΩ(z̄)TCΩ(z)] , where C
MN =

(

0 1

−1 0

)

. (2.3)

In terms of Ω and K one defines the covariantly holomorphic section V M ≡ e
K

2 ΩM , see

appendix A, which transforms under a Kähler transformation (A.8), (A.9) through a U(1)

transformation (A.11).
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A holomorphic function fg(z) and a constant symplectic matrix M[g] = (M[g]M
N ) are

associated with each element g of the identity-connected component GSK of the isometry

group of MSK such that, if g : zi → z′i = z′i(z):

Ω(z′) = efg(z)M[g]−T Ω(z) ⇔ K(z′, z̄′) = K(z, z̄)− fg(z)− f̄g(z̄) , (2.4)

where M
−T ≡ (M−1)T . If {ta} are the infinitesimal generators of GSK and ka = kia(z)∂i +

kı̄a(z̄)∂ı̄ the corresponding Killing vectors satisfying the closure conditions:

[ta, tb] = fab
c tc , [ka, kb] = −fab

c kc , (2.5)

equations (2.4) imply:

ℓaK = kia∂iK + kı̄a∂ı̄K = −(fa + f̄a) (2.6)

ℓaΩ
M = kia∂iΩ

M = −taN
M ΩN + fa(z)Ω

M , (2.7)

ℓaV
M = (kia∂i + kı̄a∂ı̄)V

M = −taN
M V N +

fa − f̄a
2

V M , , (2.8)

where fa = ∂if kia and taN
M is the symplectic matrix representation of the generator ta on

covariant vectors: ta[N
P
CM ]P = 0 , (taΩ)

M = −taN
M ΩN .

Let us denote by Pa(z, z̄) the momentum map corresponding to ka, defined as fol-

lows [21]:

kia = i gī ∂̄Pa , kı̄a = −i gı̄i ∂iPa , (2.9)

and satisfying, under general assumptions on GSK [21],

igī k
i
[a k

̄
b] = −1

2
fab

c (Pc − Cc) , (2.10)

where Cc is constant vector in the adjoint of GSK which can be reabsorbed by a redefinition

of Pc. In what follows we shall make this redefinition: Pc − Cc → Pc.

Equations (2.9) are solved by (see appendix A):

Pa = − i

2

(

kia∂iK − kı̄a∂ı̄K
)

+ Im(fa) =

= i kı̄a∂ı̄K + i f̄a = −i kia∂iK − i fa , (2.11)

On the other hand, using (2.8) and (2.11) we find:

kia U
M
i = −taN

M V N + iPa V
M . (2.12)

Contracting the above equation with CV and using the special geometry relations V T
CV =

i, V T
CUi = 0, see appendix A, we find:

Pa = −V N taNMV
M

= −V
N
taNM V M , (2.13)

where we have defined taNM ≡ taN
P
CPM = taMN .

Let us now prove the general property [19, 40]:

taMNΩMΩN = 0 , ∀ta . (2.14)

– 6 –



J
H
E
P
1
1
(
2
0
1
5
)
0
6
1

This property immediately follows by contracting (2.12) with CΩ and using the third

of (A.13), i.e. V T
CUi = 0, which implies

ΩT
C∂iΩ = 0 . (2.15)

The geometry of the quaternionic Kähler manifold is briefly reviewed in appendix A where

the general properties of the quaternionic isometries tm and their description in terms of

Killing vectors km and tri-holomorphic momentum maps Px
m are recalled.

Symplectically-covariant gaugings of N = 2 supergravity. Let us now consider the

gauging of a subgroup G of the isometry group of the scalar manifold. The gauge generators

are conveniently written as components of an electric-magnetic vector XM = (XΛ, X
Λ),

according to the notation of [12] and expanded in the generators {ta, tm} of the isometry

groups of MSK and MQK through the embedding tensor:

XM = ΘM
a ta +ΘM

m tm . (2.16)

The symplectic electric-magnetic duality action of XM is described by the symplectic ma-

trices: XMN
P = ΘM

a taN
P . Consistency of the gauging is guaranteed by the following set

of linear and quadratic constraints on the embedding tensor:

X(MNP ) ≡ X(MN
Q
CQ|P ) = 0 , (2.17)

ΘM
aΘN

bfab
c +XMN

P ΘP
c = 0 , (2.18)

ΘM
mΘN

nfmn
p +XMN

P ΘP
p = 0 , (2.19)

ΘM
a
C
MNΘN

b = ΘM
a
C
MNΘN

n = ΘM
m
C
MNΘN

n = 0 . (2.20)

Conditions (2.18), (2.19) are closure constraints, i.e. are equivalent to

[XM , XN ] = −XMN
P XP . (2.21)

The first two equalities in (2.20) follow from (2.17) and (2.18), (2.19) while the last one

has to be imposed independently [12]. We can define gauge Killing vectors and momentum

maps as follows:

kiM ≡ ΘM
a kia , kuM ≡ ΘM

m kum , PM ≡ ΘM
a Pa , Px

M ≡ ΘM
m Px

m . (2.22)

From the quadratic constraints and eqs. (2.10) and (A.47) we find the equivariance condi-

tions:2

igī k
i
[M k̄N ] =

1

2
XMN

P PP , (2.23)

2Kx
uv k

u
M kvN + ǫxyz Py

M Pz
N = XMN

P Px
P , (2.24)

Using the linear constraint (2.17) on the embedding tensor we can prove the following

identities:

PMΩM = 0 , kiM ΩM = 0 . (2.25)

2By setting the parameter λ of the quaternionic geometry to λ = −1.
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The proof is presented in appendix B.

From (2.25) it also follows, as shown in appendix B, that the generalized structure

constants XMN
P are antisymmetric in the first two indices only if contracted to the right

by ΘP : XMN
PΘP = −XNM

PΘP . By virtue of this feature we find:

V
M
kiM UP

i ΘP = −XMN
P V

M
V NΘP = XNM

P V
M
V NΘP = −V Mkı̄M U

P
ı̄ ΘP . (2.26)

The identities (2.25) and (2.26) were proven in the electric case in [21]. Here, for the first

time, we give a general, compact proof in local special geometry of their generalization to

a generic dyonic gauging, showing that they directly follow from the linear constraint on

the embedding tensor.

The general Ward identity. Consistency of N = 2 supergravity is based on the su-

persymmetry Ward identity [22–24], which is required in order to cancel the terms in the

supersymmetry variation of the gauged Lagrangian, which are quadratic in the embedding

tensor. It expresses a relation between the fermion shift matrices and the scalar potential

V(z, z̄, q) and has the following form:

gīW
i ACW

̄
BC + 2Nα

ANα
B − 12S

AC
SBC = δBA V(z, z̄, q) , (2.27)

where W i AC , Nα
B, SAB are the supersymmetry shift-matrices of the chiral gaugini λi, hy-

perini ζα and gravitini ψA respectively, W
̄
BC =

(

W j BC
)∗
, Nα

A = (Nα
A)

∗, S
AC

= (SAC)
∗

being their complex conjugates:3

δ(Θ)
ǫ λi A = W i ABǫB, (2.28)

δ(Θ)
ǫ ψA µ = iSABγµǫ

B, (2.29)

δ(Θ)
ǫ ζα = Nα

Aǫ
A, (2.30)

where δ
(Θ)
ǫ denotes the term in the supersymmetry transformation rule of the field which

is proportional to the embedding tensor. For their definition in the electric case we refer

to [20, 21]. In particular SAB also enters the Lagrangian as the gravitino mass matrix

whose eigenvalues on a bosonic background are the gravitino masses. Let us now prove the

Ward identity [22–24] for the generic dyonic gauging of N = 2 supergravity. In this case the

fermion shifts have to be generalized to the following symplectically-invariant expressions:4

SAB =
i

2
(σx)A

CǫBC Px
M V M , (2.31)

W i AB = ǫAB kiM V
M − i (σx)C

BǫCAPx
M gīU

M
̄ , (2.32)

Nα
A = 2UA

u α k
u
M V

M
, Nα

A ≡ (Nα
A)∗ = −2 UuA

α kuM V M , (2.33)

3We use the following convention for rising and lowering symplectic indices:

vA = ǫAB vB , vA = ǫBA vB , vα = Cαβ vβ , vα = C
βα vβ .

4Note the relative sign between the two terms in W i AB , which corrects a typo in [20].
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where (σx)A
C are the standard Pauli matrices. We shall evaluate each term in the left

hand side of (2.27) separately in appendix B. Explicit calculation gives, for the left hand

side of the Ward identity, the following decomposition in a singlet and a triplet of SU(2):

gīW
i ACW

̄
BC + 2Nα

ANα
B − 12S

AC
SBC = δAB V(z, z̄, q) + i Zx (σx)B

A , (2.34)

where

V(z, z̄, q) = (kiMk̄Ngī + 4huvk
u
MkvN )V

M
V N + (UMN − 3V MV

N
)Px

NPx
M , (2.35)

is the general symplectic invariant expression of the scalar potential given in [12] as a

generalization to dyonic gaugings of the one given in [20], and

Zx = (−2XMN
P Px

P + 2 ǫxyz Py
MPz

N + 4Kx
uvk

u
M kvN )V

M
V N . (2.36)

From the equivariance condition (2.24) it follow that Zx = 0, so that the Ward identity is

proven.

Abelian gauging of quaternionic isometries. Let us now make contact with the

gauging considered in this paper which involves an abelian group of quaternionic isometries.

Being only quaternionic isometries gauged, the generalized structure constants vanish:

XMN
P = 0, so that (2.24) implies:

Kx
uvk

u
M kvN = −1

2
ǫxyz Py

MPz
N . (2.37)

Using this identity, it is easy to explicitly show that, in this case, the three fermion-shifts

all contribute to Zx and that they cancel against one another:

gīW
i ACW

̄
BC → −ǫxyz Py

MPz
NV

M
V N , (2.38)

2Nα
ANα

B → −2 ǫxyz Py
MPz

NV
M
V N , (2.39)

−12S
AC

SBC → 3 ǫxyz Py
MPz

NV
M
V N . (2.40)

We shall be interested, in what follows, in the limit of a gauged N = 2 supergravity of

this kind to a rigid supersymmetric theory of n vector multiplets [1] (rigid limit), along the

lines of [6]. We wish here to make few general comments on the rigid limit of the Ward

identity (2.27) [5, 6, 39, 46]. This will be in fact a crucial point in our analysis.

The Ward identity of an N = 2 (abelian) rigid supersymmetric theory of n vector

multiplets is given by the general expression [5, 6, 39]:

g̊ī W̊
i ACW̊

̄

BC = δAB V
(APT )
N=2 (z, z̄) + CB

A , (2.41)

where V
(APT )
N=2 (z, z̄) is the N = 2 scalar potential in the spontaneously broken rigid theory,

which reproduces the APT one in the one-vector case, CB
A is a su(2)-traceless matrix, g̊ī

is the metric of the rigid special Kähler manifold describing the scalar fields zi in the vector

multiplets and W̊ i AC are the gaugini shift-matrices of the rigid theory.
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As shown in [5, 6], partial breaking of rigid supersymmetry is possible only if CB
A 6= 0.

This happens in the presence of mutually non-local electric and magnetic Fayet-Iliopoulos

terms [5].

The symplectically-covariant relations (2.38), (2.39), (2.40) allow to clarify the meaning

of the matrix CB
A by relating the rigid Ward identity (2.41) to the supergravity one (2.27).

To this end let us rewrite the supergravity Ward identity in the form:

gīW
i ACW

̄
BC = δBA V(z, z̄, q)− 2Nα

ANα
B + 12S

AC
SBC , (2.42)

As we shall illustrate in detail in the next section, all squared fermion-shift matrices

in (2.42) survive in the rigid limit in which the Planck mass MP l is sent to infinity. In

particular the left-hand-side of (2.42) reproduces that of (2.41), while the constant matrix

CB
A receives contribution from the terms in Nα

ANα
B, S

ACSBC proportional to σx, which

are given in (2.39), (2.40). More specifically we will find that:

CB
A = lim

MPl→∞

M4
P l

Λ4

(

−i ǫxyz Py
MPz

NV
M
V N (σx)B

A
)

, (2.43)

where Λ is the supersymmetry-breaking scale. The same hyperini and gravitini shift-

matrices also contribute terms proportional to δAB which affect the form of the scalar

potential in the resulting rigid theory. These terms are explicitly computed in (B.14)

and (B.15) so that we can identify:

V(APT )
N=2 = lim

MPl→∞

M4
P l

Λ4

[

V(z, z̄, q)− (4huv k
u
MkvN − 3Px

MPx
N )V

M
V N

]

. (2.44)

As we shall prove in the next section, in the rigid limit the leading order terms in ΘN
nV N

are independent of zi, z̄i, so that:

V(APT )
N=2 = lim

MPl→∞

M4
P l

Λ4
[V(z, z̄, q)] +A(q) . (2.45)

Since the fluctuations of qu are suppressed by a factorM−1
P l , see section 5, in the rigid theory

the hyperscalars are non-dynamical, i.e. constants. As a consequence of this, the N = 2

scalar potential of the rigid theory V(APT )
N=2 is given by the rigid limit of the supergravity

potential V modulo an unphysical additive constant. This was already observed in [6] for

the particular model considered there.

3 Generalization of the APT model to n vector multiplets

In this section we present an N = 2 supergravity model which, in the low energy limit,

gives rise to a rigid supersymmetric theory corresponding to the generalization of the APT

model [5] to a generic number n of vector multiplets. In particular, this procedure admits

a well defined limit to many-vector supersymmetric Born-Infeld theory.

The minimal underlying supergravity model, considered here, consists of N = 2

supergravity coupled to n vector multiplets and a single hypermultiplet, whose scalars

parametrize the quaternionic manifold

MQK =
SO (4, 1)

SO (4)
. (3.1)
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Following the procedure adopted in [6], let us consider a special geometry symplectic

section

ΩM
(

zi
)

=

(

XΛ
(

zi
)

FΛ (zi)

)

Λ = 0, I, I, i = 1, . . . , n, (3.2)

(where i are holomorphic-coordinate indices) in a symplectic frame where a holomorphic

prepotential exists. Using special coordinates zi = δiIX
I/X0, it takes the form:

F
(

XΛ
)

= −i
(

X0
)2

f
(

Xi/X0
)

, (3.3)

so that, choosing X0 = 1:

ΩM =











1

zi

−i
(

2f − zi∂if
)

−i∂if











. (3.4)

In particular the Kähler potential becomes

K = − ln
[

i
(

X̄ΛFΛ −XΛF̄Λ

)]

= − ln
[

2
(

f + f̄
)

− (z − z̄)i
(

∂if − ∂if
)

]

.

In order to generalize the procedure in [6] to the case of n vector multiplets, we should

consider a rigid limit (µ = MP l/Λ → ∞, where MP l denotes the Planck scale and Λ the

supersymmetry breaking scale), leading to partial breaking N = 2 → N = 1 in a rigid

supersymmetric theory. A crucial point, in the derivation of [6], was the presence of a

linear term (in the holomorphic special coordinate z) in the expansion of the prepotential

f(z) in powers of 1
µ :

f (z) =
1

4
+

z

2µ
+

φ(z)

2µ2
+O

(

1

µ3

)

. (3.5)

In the case of many vector multiplets, we shall adopt for the holomorphic prepotential a

simple generalization of the above expression which involves a set of n constant parameters

ηi and has the form

f
(

zi
)

=
1

4
+

ηiz
i

2µ
+

φ(zi)

2µ2
+O

(

1

µ3

)

. (3.6)

Using the standard formula for the Kähler potential one derives, up to order µ−3

K = −ηi (z + z̄)i

µ
− 1

µ2






φ+ φ̄− (z − z̄)i

(

∂iφ− ∂iφ

2

)

−

(

ηi (z + z̄)i
)2

2






. (3.7)

so that

gī = ∂i∂̄K =
1

µ2
g̊ī =

1

µ2

{

ηiηj −
1

2

(

∂ijφ+ ∂ijφ
)

}

, (3.8)

where g̊ī corresponds to the rigid special Kähler metric. Let us note that the rigid special

Kähler metric can be derived, in terms of the (rigid) Sp(2n)-symplectic section

Ω̂M =

(

zi

∂iF

)

=

(

zi

i
2(ηiηjz

j − ∂iφ)

)

, M = 1, · · · , 2n , (3.9)
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from the (rigid) prepotential

F =
i

4

[

(

ηiz
i
)2 − 2φ

]

. (3.10)

Indeed, defining

∂i∂F ≡ τ1i(z, z̄) + iτ2i(z, z̄) (3.11)

we find

g̊ī = 2τ2ī(z, z̄)

where g̊ī is defined in equation (3.8).

The covariantly holomorphic symplectic section V M ≡ eK/2ΩM has the following ex-

pansion

V M =













1− 1
2µηi (z + z̄)i +O

(

1/µ2
)

zj − 1
2µηi (z + z̄)i zj +O

(

1/µ2
)

−i
[

1
2 + 1

2µ

{

ηiz
i − 1

2ηi (z + z̄)i
}]

+O
(

1/µ2
)

− i
2µηj +O

(

1/µ2
)













. (3.12)

In this framework, the physical meaning of the constant parameters ηi appearing in the

symplectic section Ω̂M and in the metric g̊ī of the rigid theory needs to be clarified. We will

see in section 4 that a natural interpretation of ηi can be given in supergravity, as charges

associated with the gauging procedure, by performing a different choice of symplectic frame.

Postponing this issue to next section, let us consider, for the time being, a gauging

of two translational isometries in the hypermultiplet sector involving both electric and

magnetic charges [10, 11]. This gauging can be described in terms of a (redundant) sym-

plectic vector of gauge generators XM ≡ (XΛ, X
Λ), expressed as linear combinations of the

isometry generators tm, m = 1, . . . , dimG, of the quaternionic Kähler manifold through an

embedding tensor [12, 18]:

XM = ΘM
m tm . (3.13)

We choose the gauging only to involve two translational isometries tm (m = 1, 2) and the

embedding tensor to depend on constant charges e, σ,mi as follows

Θ m
M =

(

Θ 1
M ,Θ 2

M

)

=











Θ 1
0 Θ 2

0

Θ 1
i Θ 2

i

Θ0 1 Θ0 2

Θi 1 Θi 2











=











e/µ2 σ/µ2

0 0

0 0

mi/µ 0











, (3.14)

satisfying the locality condition

C
MNΘ m

M Θ n
N = 0 . (3.15)

The embedded Killing vectors k u
M =

(

k u
Λ , kΛ u

)

are related to the geometrical ones

k u
m (m = 1, . . . , dimG) generating the isometry group G of MQK by:

k u
M = Θ m

M k u
m . (3.16)

The fermion shifts δ
(Θ)
ǫ , entering the supersymmetry transformation laws (2.28)–(2.30)

of the fermion fields, are written in terms of the embedding tensor in a symplectic covariant
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way in (2.31)–(2.33). To obtain their explicit form for theN = 2 gauged supergravity under

consideration, we should set kiM = 0, since our gauging does not involve special Kähler

isometries.

Denoting by ϕ and ~q ≡ {q1, q2, q3} the four hyper-scalars in the solvable parametriza-

tion, the metric of the quaternionic Kähler manifold has the form:

ds2 =
1

2

(

dϕ2 + e2ϕ d~q · d~q
)

, (3.17)

and the corresponding vielbein Uα
A|u reads [6]:

Uα
A = Uα

A|udq
u = −1

2
ǫαβ

[

dϕ δβA + i eϕd~q · ~σβA
]

. (3.18)

The metric (3.17) is invariant under constant translation of the three axions: ~q → ~q + ~c.

We choose to gauge the two translations tn acting on q2, q3. The quaternionic momentum

maps Px
m associated with translational isometries have the general form:5

Px
m = −k u

m ωx
u , (3.19)

where ωx
u denotes the SU(2)-connection on MQK . For the gauging under considera-

tion (3.14) which involves the two traslational isometries tn, the momentum maps can

be explicitly computed to be

Px
m = (Px

1 ,Px
2 ) = δxmeϕ,

with

Px
1 = (0, 1, 0) eϕ, (3.20)

Px
2 = (0, 0, 1) eϕ. (3.21)

Later, in section 4, the two hyperscalars q2, q3 will be dualized into antisymmetric tensor

fields Bn|µν .

3.1 The rigid limit and partial supersymmetry breaking

The partial supersymmetry breaking is recovered considering the limit µ = MPl

Λ → ∞. We

will follow here the prescription in [6]. Later, in section 5, we will consider the low energy

limit of the Lagrangian starting from a different, µ-dependent, symplectic frame of the

supergravity theory where the rigid limit of the symplectic structure is more transparent,

and which will require a different rescaling of the physical fields. To explicitly perform

the limit on the fermionic shifts (which are written in natural units c = ~ = MP l = 1)

we will first reintroduce the appropriate dependence on the Planck scale MP l and on the

supersymmetry breaking scale Λ, due to the gauging, in the supergravity expressions.

Taking into account that the scale Λ is related to the gravitino mass via Λ2 = MP l m 3
2
,

5For homogeneous quaternionic Kähler manifolds this relation holds only for those isometries whose

action on the coset representative does not imply a compensating transformation in the isotropy group, see

appendix A for a general proof. These include translational isometries.
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and that the Special-Kähler sigma-model metric rescales according to (3.8), the canonically

normalized kinetic terms are recovered by the rescaling [6]:

xµ → MP lx
µ, ǫ → M

1/2
P l ǫ,

ψµ → M
−3/2
P l ψµ, λ →

(

MP lΛ
2
)−1/2

λ, ζα → M
−3/2
P l ζα.

(3.22)

Using the rescaling of eq. (3.22) we find that in the rigid limit the shifts of the fermions read

δλi A = iΛ2ǫCA

[

g̊ī
(

ex̄ − τ1̄km
k x

)

+
i

2
mi x

]

(σx) B
C eϕǫB,

δψA µ = −Λ2

2
ǫBC

[

ex − i
ηj
2
mj x

]

(σx) C
A eϕγµǫ

B,

δζα = iΛ2ǫαβ
[

ex − i
ηj
2
mj x

]

(σx)α Ae
ϕǫA, (3.23)

where we have used the following definitions

ex = (0, e, σ) = (0, em) ,

mi x =
(

0,mi, 0
)

= (0,mim) , (3.24)

exi = ηie
x.

As we will see in detail by the analysis of the lagrangian in the rigid limit in section 5, the

hypermultiplets decouple in the rigid theory so that ϕ becomes a constant and δλiA get

the characteristic form of the gaugino shifts in a rigid theory in the presence of electric-

magnetic Fayet-Iliopoulos parameters PxM =
(

mix, exi
)

. The precise relation between the

momentum maps PxM and the FI terms can be directly read from the gaugino shift:

g̊iŪM
̄ Px

M =
eϕ

µ

[

g̊ī
(

ex̄ − τ1̄km
k x

)

+
i

2
mi x

]

=
eϕ

µ
g̊īŪM

̄ P
x
M , (3.25)

where UM
i are related to the rigid symplectic sections introduced in (3.9) by UM

i = ∂iΩ̂
M.

We emphasize here that in this formulation of the rigid limit, the FI terms are expressed

not only in terms of the parameters e, σ, mi defining the embedding tensor (the gauging

parameters), but also in terms of the parameters ηi characterizing the special geometry

through the choice of the prepotential (3.6). We shall discuss in the next section a different

formulation in which the FI terms fully descend from the supergravity gauging parameters

codified in the embedding tensor.

For the case of one vector multiplet, n = 1, eq. (3.23) reproduces the results of [6]

leading to the APT model.

Partial supersymmetry breaking. Applying the general discussion at the end of sec-

tion 2, we find that the gaugino shifts in the rigid theory satisfy the rigid Ward identi-
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ties (2.41) where [39]:6

V
(APT )
N=2 =

e2ϕ

2
M(z, z̄)MN

P
x
MP

x
N ,

CB
A = e2ϕ ξx (σx)B

A , ξx =
1

2
ǫxyz Py

MP
z
NC

MN = ǫxyzmyie z
i . (3.26)

In the rigid theory, as explained earlier, the hyperscalars are non-dynamical constants. In

particular the factor e2ϕ can be absorbed in a redefinition of the FI terms. For this reason

we shall neglect it in the discussion below.

Partial supersymmetry breaking [1, 5–7, 23, 28, 35, 37, 38] in the rigid theory requires

δǫλ
iA to vanish along a suitable direction in the supersymmetry parameter space. This

in turn implies that the 2 × 2 matrix on the left hand side of (2.41) should have, on the

vacuum defined by zi0, z̄
ı̄
0, one zero eigenvalue. As explained in [39], this condition can be

cast in the following symplectic invariant form for the scalar potential:

V
(APT )
N=2 (z0, z̄0) =

√

I4 , (3.27)

where I4 ≡ ∑3
x=1 ξ

xξx is a quartic symplectic invariant defined in terms of the FI param-

eters. Being V
(APT )
N=2 positive definite, we can have partial supersymmetry breaking only if

I4 6= 0, that is if ξx = ǫxyzmyie z
i 6= 0, in which case eq. (3.27) would fix zi0, z̄

ı̄
0 in terms of

the FI parameters. In this case the effective N = 1 potential is

V
(APT )
N=1 (z, z̄) ≡ V

(APT )
N=2 (z, z̄)−

√

I4 ,

and the infra-red dynamics is captured by a multi-field Born-Infeld action, as shown in [4].

If ξx = 0, condition (3.27) could only be satisfied if Px
M = 0 or at the boundary of the

moduli space, in which case the vacuum would preserve the full N = 2 supersymmetry. A

non-vanishing matrix CA
B, or equivalently ξx, is therefore a crucial ingredient in order to

have partial supersymmetry breaking in the rigid theory, thus evading previously stated

no-go theorems [8, 9].

Notice that partial supersymmetry breaking in the parent supergravity theory is a

more stringent condition: On a bosonic Minkowski vacuum it can occur only if the super-

symmetry transformations of all the fermionic fields vanish along a same spinorial direction

ǫA. Since the eigenvalues of SACS
BC

(which is proportional to Nα
A NB

α ) are:

λ± =
e2ϕ

4

[

e2 +

(

σ ± ηim
i

2

)2
]

, (3.28)

partial supersymmetry breaking in the hidden sector (defined by the gravitational multiplet

and the hypermultiplet) can occur only if mi x, exi in (3.24) are not generic but satisfy the

condition:

e = 0 ; ηim
i = ±2σ . (3.29)

6Recall that in the rigid special Kähler geormetry the matrix M is defined by the relation

UMN = ∂iΩ̂
M∂̄

ˆ̄ΩN g̊ī =
1

2

(

M
MN

− iCMN
)

,

and is positive definite.
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Therefore for generic mi x, exi , provided ξx 6= 0, we can have partial supersymmetry break-

ing in the visible sector albeit all sypersymmetry is broken in the hidden one. An analogous

phenomenon was observed in [6] in one vector multiplet case.

As a final remark, the same multi-vector, U(1)n-rigid supersymmetric theory could be

obtained from an N = 2 supergravity with a more general quaternionic Kähler manifold,

including the vast class of manifolds in the image of the c-map [48]. In the latter case, the

gauging should involve abelian generators in the universal Heisenberg algebra of isometries

of these manifolds [15, 49–51].

4 Interpretation of the constant parameters ηi as charges

As we have recalled in the previous section, partial supersymmetry breaking in rigid su-

persymmetry crucially requires the quantity ξx in (3.26) to be different from zero

ξx ≡ 1

2
ǫxyzPyM

P
zN

CMN = ǫxyzmyie z
i 6= 0 , (4.1)

where eyi ,m
zi are given by (3.24). This relation looks like a non-locality condition. However,

the choice of embedding tensor (3.14) implies that the locality condition

Θm
MΘn

NC
MN = 2ΘI[mΘ

n]
I = 0 , (4.2)

is satisfied in the rigid theory so that, recalling the definition of the momentum maps

Px
M = Px

mΘm
M, the condition ǫxyzPyMPzN

CMN = 0 is satisfied in the chosen frame.

This is not in contradiction with (4.1) since the Fayet-Iliopoulos parameters P
x
M of the

rigid theory are not the simple restriction of the supergravity momentum maps to the

Sp(2n,R)-index M, but Px
M and P

x
M are rather related through (3.25), which non-trivially

involves the contribution from the index 0 of the symplectic section, keeping memory of the

graviphoton. Moreover, as emphasized earlier, eqs. (3.8) and (3.9) show that the geometry

of the rigid theory in the chosen coordinate frame depends in a non-trivial way on the

constant parameters ηi, also appearing in (4.1) through the charges eyi = eyηi.

As we are going to see, the embedding of the theory in supergravity allows to clarify

the topological role of all the constant parameters involved in the gauging, showing that

the ηi required in the special geometry of the rigid theory in order to implement partial

supersymmetry breaking (with its BI low-energy limit) can be traded with charges via a

symplectic rotation involving a redefinition of the special coordinates in the underlying

supergravity theory.

Indeed, let us consider the (electric) symplectic transformation in supergravity:

S(η, µ) =











1 ηi/µ 0 0

0 1

µ1n 0 0

0 0 1 0

0 0 −ηi µ1n











(4.3)
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inducing the following rotation in the symplectic section (3.12):

Ω̃ = S · Ω =











X0 + 1
µηiX

i

1
µX

i

F0

µFi − ηiF0











=











X̃0

X̃i

F̃0

F̃i











. (4.4)

The new holomorphic prepotential is F̃ (X̃) = F (X). Since the new special coordinates z̃i

are related to the old ones by

z̃i =
zi

µ+ ηjzj
=

1

µ
ωi , (4.5)

then the reduced prepotential f̃(z̃) is related to f(z) by (see (3.3)):

f̃(z̃) =

(

1 +
1

µ
ηjz

j

)−2

f(z) (4.6)

that is

f̃(z̃) =

(

1

4
+

1

2µ2
φ̃(z̃) +O

(

1

µ3

))

(4.7)

where φ̃(z̃) is related to φ(z) by φ̃(z̃) = φ(z)− 1
2(ηiz

i)2 ≡ Φ(ω). We note that in the new

frame the contribution linear in z̃ has disappeared from (4.7) (to be compared with (3.6).).

Moreover, after the symplectic rotation, the covariantly holomorphic symplectic sections

Ṽ M = e
K

2 Ω̃M and ŨM
i = DiṼ

M can be written in a generic coordinate frame with holo-

morphic coordinates ωi and behave, in the rigid limit µ → ∞, as:

Ṽ M (ω) =











X0

0

F0

0











+
1

µ











0

X̊I(ω)

0

F̊I(ω)











+O
(

1/µ2
)

; (4.8)

ŨM
i (ω) =

1

µ











0

∂iX̊
I

0

∂iF̊I











+O
(

1/µ2
)

, (4.9)

where Ω̊M ≡ (X̊I , F̊I) (I = 1, · · ·n) denotes the symplectic section or the rigid theory (in

special coordinates X̊I(ω) = ωi, F̊I(ω) = ∂Φ
∂ωi ). We observe that in the new frame the

symplectic structure Sp(2n + 2) of the supergravity theory flows in the rigid limit to a

manifest Sp(2n) structure. In particular, the 0-directions have a different µ-rescaling with

respect to the M-directions. They are then directly associated with the Hodge-bundle of

the local special geometry (that is to the graviphoton direction) which is projected-out

in the low energy limit. Still, the special-geometry sigma-model metric in supergravity is

related to its counterpart g̊ī in the rigid limit by:

gī =
1

µ2
g̊ī , (4.10)
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while the relations of special geometry imply a low-energy rescaling of the vector-kinetic-

matrix NΛΣ corresponding to the following identification of the matrix N̊ΛΣ of the

rigid theory:

N00 = N̊00 , NIJ = N̊IJ , N0I =
1

µ
N̊0I . (4.11)

The symplectic transformation (4.3) also acts on the embedding tensor (3.14) as

Θ̃m
M = Θm

N · (S−1)NM =
1

µ2

(

em,−ηie
m, ηim

im,mim
)

=
1

µ2
Θ̊m

M , (4.12)

where we have introduced the tensor Θ̊m
M , whose components in the M directions will

define the FI parameters of the rigid theory.

In the new frame the parameters ηi play the role of charges, since Θ̃m
i = ηie

m are the

electric charges associated with the vector multiplets and Θ̃0m = ηim
im are the magnetic

charges associated with the graviphoton. Note that in the old frame both of them were zero.

As a consequence, the new embedding tensor (4.12) of the supergravity theory obeys

the same locality condition (3.15) as the old one, but now

Θ̃Λ[mΘ̃
n]
Λ = 0 ⇒ Θ̃0[mΘ̃

n]
0 = −Θ̃i[mΘ̃

n]
i =

1

µ4
ηim

i[men] 6= 0 . (4.13)

Furthermore, as already observed, in the new frame the graviphoton is identified with

the 0 direction of the vector field strengths, which is not true in the old frame; we will

explicitly show this in the next section, see in particular eq. (5.9). Since in the rigid

limit the graviphoton decouples from the spectrum, we find that the rigid supersymmetric

theory found as low-energy limit of supergravity in the new frame exhibits a non-locality in

superspace, which means that, as we are going to discuss in the following, the non-locality

only affects the fermionic directions of superspace, while it does not emerge as a non-locality

on space-time. This clarifies the meaning of (4.1), as expressing indeed the non locality

of the rigid theory, when all the constant parameters needed for the partial breaking of

supersymmetry are expressed as electric and magnetic charges in the embedding tensor.

In what follows, for the sake of notational simplicity, we shall denote the embedding tensor

Θ̃ in the new frame simply by Θ.

Let us analyze the effects of the non-locality (4.13), which is intimately related to the

supersymmetric structure of the theory:

• Since the superspace non-locality of the rigid theory is related to the non-triviality of

the fiber bundle associated with the graviphoton in the rigid limit, the supergravity

modes associated with the underlying N = 2 supergravity theory (the gravitini and

hyperini, together with their bosonic partners) still freely propagate in the rigid

theory (see (3.23)) even if decoupled from the visible sector, as already observed

in [6]. This justifies the presence of the SU(2)-Lie algebra valued term CA
B in the

supersymmetry Ward-identity of the spontaneously broken rigid theory, which is

understood as the contribution to the rigid Ward identity from gravitini and hyperini,

as explicitly shown in section 2.
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• It is known [10, 12, 14, 44] that, in the presence of magnetic charges mΛn in super-

symmetric theories, the natural symplectic frame to deal with them is rotated with

respect to the purely electric one, allowing for the presence of antisymmetric tensors

Bn|µν , coupled to the gauge fields AΛ in the combinations F̂Λ
µν = FΛ

µν + 2mΛnBnµν

and realizing the so-called anti-Higgs mechanism for the gauge fields.7 The N = 2

supersymmetric Free Differential Algebra in four dimensions contains in particular, in

the case where the antisymmetric tensors dualize scalars in the quaternionic sector8

F̂ (2)Λ ≡ dAΛ + 2mΛnBn + (LΛ(z)ψ̄A ∧ ψB ǫAB + h.c.) (4.14)

H(3)
n ≡ dBn +

i

2
Px
n (σx)A

Bψ̄A ∧ γaψB ∧ V a (4.15)

where LΛ are the upper-part of the special geometry symplectic sections V M and Px
n

are functions of the hyperscalars [11]. From (4.14) and (4.15) we get that the closure

of the free differential algebra requires

dF̂Λ = ΘΛn
(

2Hn − iPx
n (σx)A

Bψ̄A ∧ γaψB ∧ V a
)

, (4.16)

where we have identified mΛn with ΘΛn. As discussed above, in the low energy

limit the hyperscalars are not suppressed but tend to constants, in such a way that

ΘM
nPx

n(q) become constants ΘM
n
P
x
n 6= 0 whose restriction to the non-zero indices

ΘM
n
P
x
n yield the FI parameters. Then, from eq. (4.16), taking into account the

decoupling of the tensor fields, the closure of the supersymmetric free differential

algebra gives

dF̂ I ∝ iΘIm
P
x
m (σx)A

Bψ̄A ∧ γaψB ∧ V a + · · · 6= 0 . (4.17)

As previously discussed this equation is the superspace counterpart of the fact that

on space-time the commutator of two supersymmetries acts on the gauge field AI
µ as

a gauge transformation proportional to the magnetic FI parameters, as stressed in

reference [28].9

7The fermionic shifts, found in [6] and generalized to n vector multiplets in section 3.1 of the present

paper, are in fact naturally recovered in the symplectic frame where some of the hyper-scalars are dualized

to tensor fields, as one can explicitly check by comparison with section 3 of [10], and in particular eqs.

(3.13) - (3.15) there.
8In [25] the index I was used for our index n, to label the quaternionic scalars to be dualized into

antisymmetric tensors. Moreover the corresponding field strengths were defined as:

H(3)
n = dBn − ωnA

B ψ̄A
∧ γaψB ∧ V a ,

where ωnA
B ≡ i

2
ωx
u ku

n (σx)A
B .

Taking into account that Px
n = −ωx

u ku
n, and that here ku

n = δun, the definition (4.15) follows.
9Recall that, according to (4.12), ΘIm = Θ̊Im/µ2, so that one would expect that the right hand side

of (4.17) vanish in the rigid limit. However, in the same limit, the leading component of ψA along the

fermionic directions is MPl dθA, so that

ΘIm
P
x
m (σx)A

Bψ̄A
∧ γaψB ∧ V a

→ Θ̊Im
P
x
m (σx)A

B d̄θ
A
∧ γadθB ∧ V a

6= 0 .
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5 The rigid limit of the N=2 Lagrangian

In this section we want to recover the rigid limit of the N = 2 supergravity lagrangian

corresponding to partial breaking of supersymmetry, and whose gauge structure has been

discussed in the previous section.

We will work in the symplectic frame defined in section 4, where the gauging structure

of the theory is unveiled and shown to involve the presence of magnetic charges (and where

it is not necessary to rely on a particular choice of coordinates in the special-geometry

sigma-model). According to this, the natural framework to perform the limit is the version

of the lagrangian where some of the scalars of the hypermultiplets are Hodge-dualized to

antisymmetric tensors Bm|µν [10–12, 14, 44]. We will then refer to the lagrangian in [11].

In order to perform the rigid limit, it is convenient to reintroduce in the lagrangian,

which is usually written in natural units c = ~ = 1, but with also MP l = 1, the appropriate

scale dimensions, as anticipated in section 3.1. This will be performed in two steps: We

will first explicitly write the correct Planck-mass dependence of the physical fields in the

supergravity lagrangian and then, after considering the low energy (µ → ∞) behavior of

the special-geometry sigma-model sector, we will get the appropriate redefinitions of the

physical fields appearing in the rigid supersymmetric theory.

• The canonical scale dimensions of the fields of the theory in natural units c = ~ = 1

are:

[dxµ] = M−1 , [∂µ] = M , [dθA] = [ǫA] = M− 1
2 ,

[AΛ
µ ] = [Bx

µν ] = M , [zi(can.)] = [qu(can.)] = M , [ψA
µ ] = [λA] = [ζα] = M3/2 ,

while the embedding tensor is dimensionless. Since the scalars zi, qu appear in the

theory through non-linear sigma-models, we will keep them dimensionless (that is we

will consider zi ≡ zi(can.)/MP l, q
u ≡ qu(can.)/MP l).

According with this prescription, the supergravity lagrangian can be organized in

terms of Planck-scale powers and reads, up to four fermions terms:

L = L(4) + L(2) + L(1) + L(0) + L(−1) (5.1)

where

L(4) = M4
P lV(z, q) (5.2)

L(2) = M2
P l

(

−R

2
+ gī∂

µzi∂µz̄
̄ + huv∂µq

u∂µqv
)

(5.3)

L(1) = MP l

{

ǫµνρσ√−g

[

2Hm|νρσA
m
u ∂µq

u − 2Bm|µνΘ
m
Λ

(

F̂Λ
ρσ −MP lΘ

ΛnBn|ρσ

)]

+

+
(

2SABψ̄
A
µ γ

µνψB
ν + igīW

iABλ̄̄
Aγµψ

µ
B + 2iNA

α ζ̄αγµψ
µ
A

+Mαβ ζ̄αζβ +Mα
iB ζ̄αλ

iB +MiAjBλ̄
iAλjB + h.c.

)}

(5.4)
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L(0) = i
(

N̄ΛΣF̂−Λ
µν F̂−Σµν −NΛΣF̂+Λ

µν F̂+Σµν
)

+ 6MmnHmµνρH µνρ
n +

+
ǫµνλσ√−g

(

ψ̄A
µ γνρA|λσ − ψ̄A|µγνρ

A
λσ

)

− i

2
gī

(

λ̄iAγµ∇µλ
̄
A + λ̄̄

Aγ
µ∇µλ

iA
)

+

−i
(

ζ̄αγµ∇µζα + ζ̄αγ
µ∇µζ

α
)

+

−gī∂µz̄
̄
(

ψ̄µ
Aλ

iA−λ̄iAγµνψAν+h.c.
)

−2UαA
u ∂µq

u
(

ψ̄µ
Aζα−ζ̄αγ

µνψAν+h.c.
)

(5.5)

L(−1) = M−1
P l

{

F̂−Λ
µν IΛΣ

[

LΣψ̄AµψBνǫAB−4if̄Σ
ı̄ λ̄

ı̄
Aγ

νψµ
Bǫ

AB+
1

2
∇if

Σ
j λ̄

iAγµνλjBǫAB+

−LΣζ̄αγ
µνζβC

αβ
]

+ h.c.+

+ 2MmnH µνρ
m

[

U Aα
n

(

3iψ̄Aµγνρζα + ψ̄Aµζα
)

+ i∆ β
nα ζβγµνρζ

α
]}

, (5.6)

where huv, A
m
u , Mmn are the components of the quaternionic metric after dualizition

of the scalars qm to antisymmetric tensors Bm|µν , F̂Λ
µν := FΛ

µν + 2MP l Θ
ΛmBµνm are

the gauge field-strengths undergoing the anti-Higgs mechanism introduced in (4.14)

(in our case ΘΛm = mΛm = 1
µ2 ηim

im), F±Λ
µν = 1

2

(

FΛ
µν ± i

2ǫµνρσFΛρσ
)

denotes

projection on (anti)self-dual part. For the definition of the mass-matrices we re-

fer to [20] and [11]. We will present their symplectic-covariant generalization, to-

gether with their relation with the quantities appearing in the rigid theory, in

eqs. (5.14), (5.15), (5.16) below.

• To perform the rigid limit MPl

Λ ≡ µ → ∞ of the lagrangian, where Λ denotes the scale

of supersymmetry breaking defining the gauging, we should first consider the limit of

the kinetic terms for the various fields which should appear in the rigid lagrangian.

This will define the relation between supergravity fields and their rigid counterparts.

We will generally identify the fields of the rigid supersymmetric theory with an upper

ring, to distinguish them from the supergravity fields.

According to the discussion in section 4, the special-Kähler metric rescales, for µ →
∞, as (4.10), so that the kinetic terms of scalars and spinors in the vector multiplets

in the rigid limit read (from (5.3) and (5.5):

1

µ2
g̊ī

[

M2
P l∂

µzi∂µz̄
̄ − i

2

(

λ̄iAγµ∇µλ
̄
A + λ̄̄

Aγ
µ∇µλ

iA
)

]

This implies that the gaugini and of the rigid theory should be related to their

supegravity relatives as:

λ̊iA =
1

µ
λiA (5.7)

while the holomorphic scalars should not be rescaled (̊zi = zi), so that

Lrig = · · · g̊ī
[

Λ2∂µz̊i∂µ ¯̊z
̄ − i

2

(

¯̊
λiAγµ∇µλ̊

̄
A +

¯̊
λ̄
Aγ

µ∇µλ̊
iA
)

]

+ · · ·

Furthermore, the components of the gauge kinetic matrix NΛΣ rescale as (4.11) so

that the gauge kinetic term reads, at low energies:

IΛΣF
Λ
µνF

Σ|µν = I̊00F
0
µνF

0|µν + I̊IJF
I
µνF

J |µν +
2

µ
I̊0IF

0
µνF

I|µν +O(1/µ2)
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where we defined IΛΣ ≡ Im(NΛΣ). This implies that no redefinition of the gauge

vectors should should be applied:

ÅΛ
µ = AΛ

µ , (5.8)

and that the interaction term between F 0 and F I goes to zero in the limit.

Given (4.8), (4.9), (4.12) and (5.8), we can then identify the low energy limit of the

self-dual components of the graviphoton T−
µν and of the matter vectors G−i

µν . We find:

T−
µν ≡ IΛΣL

ΛF−Σ
µν → I̊00X̊

0F̊−0
µν +O

(

1

µ

)

(5.9)

gīG
−i
µν ≡ i

2
IΛΣf

Λ
̄ F

−Σ
µν → i

2µ
I̊IJ f̊

I
i F̊

−J
µν +O

(

1

µ2

)

, (5.10)

showing that, in the rigid limit, the gauge-index 0 corresponds to the graviphoton

direction, while the gauge-index I to the matter-vectors directions.

The rescalings of the fermion shifts and spinor mass matrices follow from the low

energy limit of the symplectic sections and embedding tensor discussed in section 4.

They are:10

W i AB =
1

µ
W̊ i AB , (5.11)

SAB =
1

µ2
S̊AB , (5.12)

Nα
A =

1

µ2
N̊α

A , (5.13)

Mαβ = −UαA
u UβB

v ǫABΘ
m
M ∇[ukv]mV M =

1

µ2
M̊αβ , (5.14)

Mα
iB = −4Uα

BuΘ
m

M kumU M
i =

1

µ3
M̊α

iB , (5.15)

MiAjB =
(

σxǫ
−1

)

AB
Θ m

M Px
m∇jU

M
i =

1

µ3
M̊iAjB . (5.16)

Consequently, the scalar potential rescales, for µ → ∞, as V = 1
µ4 V̊ .

The various contributions to the lagrangian (5.1), when written in terms of the

10The matrices (5.11)–(5.16) are related to one another by differential “gradient-flow” equations [25].
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rescaled fields, read:

L(4) =Λ4V̊(z, q) (5.17)

L(2) =M2
P l

(

−R

2
+ huv∂µq

u∂µqv
)

+ Λ2g̊ī∂
µz̊i∂µ˚̄z

̄ (5.18)

L(1) =MP l

{

ǫµνρσ√−g

[

2Hm|νρσA
m
u ∂µq

u − 2

µ2
Bm|µνΘ̊

m
Λ

(

F̂Λ
ρσ − MP l

µ2
Θ̊ ΛnBn|ρσ

)]

+

+
1

µ2

(

2S̊ABψ̄
A
µ γ

µνψB
ν + i̊gīW̊

iAB˚̄λ̄
Aγµψ

µ
B + 2iN̊A

α ζ̄αγµψ
µ
A + h.c.

)

+

+
1

µ2

(

M̊αβ ζ̄αζβ + M̊α
iB ζ̄αλ̊

iB + h.c.
)

}

+ Λ
(

M̊iAjB
˚̄λiAλ̊jB + h.c.

)

.

(5.19)

L(0) = i
(

N̄ΛΣF̂−Λ
µν F̂−Σµν −NΛΣF̂+Λ

µν F̂+Σµν
)

+ 6MmnHm|µνρH µνρ
n +

+
ǫµνλσ√−g

(

ψ̄A
µ γνρA|λσ − ψ̄A|µγνρ

A
λσ

)

− i

2
g̊ī

(

˚̄λiAγµ∇µλ̊
̄
A +˚̄λ̄

Aγ
µ∇µλ̊

iA
)

+

−i
(

ζ̄αγµ∇µζα + ζ̄αγ
µ∇µζ

α
)

+

− 1

µ
g̊ī[∂µz̄

̄
(

ψ̄µ
Aλ̊

iA−˚̄λiAγµνψAν

)

+h.c.]−2UαA
u ∂µq

u
(

ψ̄µ
Aζα−ζ̄αγ

µνψAν+h.c.
)

(5.20)

L(−1) =Λ−1F−I
µν I̊IJ

[1

2
∇if̊

J
j
˚̄λiAγµν λ̊jBǫAB + h.c.

]

+

+M−1
P l

{

F−0
µν I̊00L̊

0
[

ψ̄AµψBνǫAB − ζ̄αγ
µνζβC

αβ + h.c.
]

+

−F−I
µν I̊IJ

[

4i˚̄fJ
ı̄
˚̄λı̄
Aγ

νψµ
Bǫ

AB + h.c.
]

+2MmnH µνρ
m

[

U Aα
n

(

3iψ̄Aµγνρζα + ψ̄Aµζα
)

+ i∆ β
nα ζβγµνρζ

α
]}

, (5.21)

and it reduces, in the limit µ → ∞, to:

L(4) = Λ4V̊(z, q) (5.22)

L(2) = M2
P l

(

−R

2
+ huv∂µq

u∂µqv
)

+ Λ2g̊ī∂
µzi∂µz̄

̄ (5.23)

L(1) = 2
ǫµνρσ√−g

MP lHm|νρσA
m
u ∂µq

u + Λ
(

M̊iAjB
˚̄λiAλ̊jB + h.c.

)

. (5.24)

L(0) = i
(

˚̄NΛΣF−Λ
µν F−Σµν − N̊ΛΣF+Λ

µν F+Σµν
)

+ 6MmnHmµνρH µνρ
n +

+
ǫµνλσ√−g

(

ψ̄A
µ γνρA|λσ − ψ̄A|µγνρ

A
λσ

)

− i

2
g̊ī

(

˚̄λiAγµ∇µλ̊
̄
A +˚̄λ̄

Aγ
µ∇µλ̊

iA
)

+

−i
(

ζ̄αγµ∇µζα + ζ̄αγ
µ∇µζ

α
)

− 2UαA
u ∂µq

u
(

ψ̄µ
Aζα − ζ̄αγ

µνψAν + h.c.
)

(5.25)

L(−1) = Λ−1F−I
µν I̊IJ

[1

2
∇if̊

J
j
˚̄λiAγµν λ̊jBǫAB + h.c.

]

. (5.26)

Note that the supergravity lagrangian reduces to an observable sector corresponding

to the rigid lagrangian of [5], undergoing spontaneous breaking to N = 1 supersym-
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metry, plus an hidden sector, fully decoupled from the observable sector:

Lsugra → LAPT + Lhidden (5.27)

where11

LAPT = Λ2g̊ī∂
µzi∂µz̄

̄ − i

2
g̊ī

(

˚̄λiAγµ∇µλ̊
̄
A +˚̄λ̄

Aγ
µ∇µλ̊

iA
)

+

+i
(

˚̄NIJF−I
µν F−Jµν − N̊IJF+I

µν F+Jµν
)

+

+Λ4V̊ + Λ
(

M̊iAjB
˚̄λiAλ̊jB + h.c.

)

+

+Λ−1F−I
µν I̊IJ

[1

2
∇if̊

J
j
˚̄λiAγµν λ̊jBǫAB + h.c.

]

(5.28)

Lhidden = M2
P l

(

−R

2
+ huv∂µq

u∂µqv
)

+ i
(

˚̄N00F−0
µν F−0µν − N̊00F+0

µν F+0µν
)

+

+6MmnHm|µνρH µνρ
n + 2

ǫµνρσ√−g
MP lHm|νρσA

m
u ∂µq

u +

+
ǫµνλσ√−g

(

ψ̄A
µ γνρA|λσ − ψ̄A|µγνρ

A
λσ

)

− i
(

ζ̄αγµ∇µζα + ζ̄αγ
µ∇µζ

α
)

+

−2UαA
u ∂µq

u
(

ψ̄µ
Aζα − ζ̄αγ

µνψAν + h.c.
)

(5.29)

Note that in the low energy limit the space-time metric, the graviphoton, the anti-

symmetric tensors and the scalars of the hypermultiplet sector, together with their

fermionic super partners obey the field equations of free waves not interacting with

the rest. In particular, the metric should be chosen as a constant background and

the hyperscalars set to constant values.

6 Conclusions and outlook

In this paper we have investigated the supergravity origin of a U(1)n, rigid, partially-broken

N = 2 supersymmetric theory whose infra-red limit is described by the multi-field BI ac-

tion of [4]. The high-energy supergravity is characterized by a visible sector described by

the n vector multiplets surviving the rigid limit, and by a hidden one consisting of the

gravitational multiplet and by a hypermultiplet, which decouple as the Planck mass is sent

to infinity. This model also features a dyonic gauging of two translational quaternionic

isometries which, for suitable choices of the embedding tensor, allows for a spontaneous

partial supersymmetry breaking. In this parent gauged supergravity we have devised a

symplectic frame in which the electric and magnetic FI terms of the resulting rigid theory

directly descend from the embedding tensor defining the dyonic gauging. The mutual non-

locality of the electric and magnetic FI terms, which is essential for the partial breaking

of rigid N = 2 supersymmetry, is shown to be related, by the locality condition on the su-

pergravity embedding tensor, to a the simultaneous presence of both electric and magnetic

charges for the graviphoton.

11As observed in section 2, the scalar potential of the APT-model differs from V̊ for an additive term,

function of the hyperscalars only.
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It would be interesting to extend this analysis to allow for the presence of hypermulti-

plets in the rigid model. An other direction of further investigation would be the extension

of the rigid limit studied in the present work to spontanously broken N > 2 supergravities

which could allow to derive from them, in a suitable limit, the multi-field BI theory of [4].
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A Special Kähler and quaternionic Kähler manifolds

Special Kähler manifolds. A special Kähler manifold [20, 21, 30, 31] MSK is a Hodge-

Kähler manifold endowed with a flat, symplectic, holomorphic bundle satisfying certain

defining properties. If Ω(z) = (ΩM (z)) denotes a section of the holomorphic bundle,

M = 1, . . . , 2n+ 2, in some local trivialization:

Ω(z) =

(

XΛ(z)

FΛ(z)

)

, Λ = 0, . . . , n , (A.1)

then in the same patch the Kähler potential reads:

K(z, z̄) = − log[iΩ(z̄)TCΩ(z)] , (A.2)

where C = (CMN ) is the Sp(2(n+ 1),R)-invariant matrix;

C ≡
(

0 1

−1 0

)

. (A.3)

As in all Kähler manifolds the metric has the form:

gī = ∂i∂̄K , (A.4)

so that the Kähler 2-form

K ≡ i gī dz
i ∧ dz̄ ̄ , (A.5)

is closed: dK = 0 so that, in the given patch,

K = dQ (A.6)

where Q is the U(1) Kähler connection 1-form

Q = − i

2

[

∂iK dzi − c.c.
]

(A.7)
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The transition functions connecting overlapping coordinate patches U(m), U(n) onMSK ,

act on Ω(z) as follows:

Ω(m) = ef(m,n) M−T
(m,n)Ω(n) , (A.8)

where f(m,n) = f(m,n)(z) is a holomorphic function and M(m,n) is a constant Sp(2(n + 1),R)

matrix. The corresponding action on K amounts to a Kähler transformation:

K(m) = K(n) − f(m,n) − f̄(m,n) . (A.9)

We can define a covariantly holomorphic section V (z, z̄) as follows:

V (z, z̄) = (V M (z, z̄)) =

(

LΛ

MΛ

)

≡ e
K

2 Ω(z) . (A.10)

The action of the transition functions on V amount to a constant symplectic transformation

combined with a U(1)-phase related to the Kähler transformation:

V(m) = ei Im(f(m,n))M
−T
(m,n) V(n) , (A.11)

We define the following U(1)-covariant derivatives on V :

Ui = DiV ≡
(

∂i +
∂iK
2

)

V , D̄ı̄V ≡
(

∂ı̄ −
∂ı̄K
2

)

V = 0 , (A.12)

the last equality follows from the definition (A.10) of V and implies that V is covariantly

holomorphic. From the definition of V and (A.2) it follows that V T
CV = i.

In a special Kähler manifold the section V and its covariant derivative Ui need to

satisfy the following properties:

DiUj ≡ ∂iUj+
∂iK
2

Uj−Γk
ij Uk = i Cijk g

kk̄ U k̄ , DiU ̄ = gī V , V T
CUi = 0 , V T

CU k̄ = 0 ,

(A.13)

the last equality being a consequence of V T
CV = i.

Using V and its covariant derivatives, we can construct the following matrix:

L(z, z̄)MN ≡ (V M , ēĪ
ı̄U

M
ı̄ , V

M
, eI

iUM
i ) , (A.14)

where eI
i are the inverse vielbein matrices gī =

∑n
I=Ī=1 ei

I ē̄
Ī , and N is a holonomy group

index. Eqs. (A.13) imply the following property of L [52]:

L
†
CL = ̟ , (A.15)

where

̟ ≡ −i

(

1 0

0 −1

)

. (A.16)

If we change the complex index N into a real one by means of the Cayley matrix A, thus

defining:

LSp ≡ LA , A ≡ 1√
2

(

1 i1

1 −i1

)

, (A.17)
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eq. (A.15) expresses the condition that the real matrix LSp be symplectic since ̟ = ACA†.

As a consequence of this also L
T
Sp is symplectic and this implies an other set of identities

which can be cast in the following compact form:

L̟L
† = C . (A.18)

In terms of L we define the following symmetric, negative-definite, symplectic matrix which

encodes all information about the coupling of the vector fields to the scalars:

M(z, z̄) = (MMN ) ≡ CLL
†
C = M(z, z̄)T ,

MCM = C . (A.19)

Under an isometry transformation g : z → z′ in GSK , using (2.4), we find that M trans-

forms linearly:

M(z, z̄) → M(z′, z̄′) = M[g]TM(z, z̄)M[g] . (A.20)

From the above properties of V and Ui we find the following general symplectic covariant

relation:

UMN ≡ gī UM
i UN

̄ = −1

2
MMN − i

2
C
MN − V

M
V N , (A.21)

where MMN are the components of M−1 = −LL
†.

If ka is the Killing vector defining an infinitesimal isometry, invariance of the Kähler

form K, ℓaK = 0, implies:

ℓaK = d(ιaK) = 0 ⇒ ιaK = −dPa , (A.22)

where ιa denotes the contraction of K with ka. The last equation defines the momentum

maps and is equivalent to eqs. (2.9).

The Killing vectors satisfy the Poisson-bracket relation:

K (ka, kb) = igī k
i
[a k

̄
b] = igk̄∂̄P[a∂kPb] ≡

1

2
{Pa,Pb} = −1

2
f c
abPc (A.23)

where the last equality was proven in [21].

Finally let us prove equation (2.11). To this aim, let us invert the metric in one of

eq.s (2.9):

gī k
i
a = i ∂̄Pa , (A.24)

and use (A.4). Recalling the general condition on Kähler-manifold isometries ∂̄ k
i
a(z) = 0,

we find:

∂̄(k
i
a ∂iK) = i ∂̄Pa , (A.25)

which implies

kia ∂iK = iPa + C(z) . (A.26)

This would reproduce (2.11) if C(z) = f(z). To fix the holomorphic function C(z), it is

sufficient to consider the holomorphic derivative of (2.6), which implies:

gj̄k
̄
a + ∂j(k

i
a∂iK) = −∂jfa , (A.27)
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that is, using (2.9):

− i ∂jPa + ∂j(k
i
a∂iK) = −∂jfa . (A.28)

By inserting now (A.26) in (A.28), one finally finds the identification C(z) = f(z), modulo

an additive constant that, as discussed in section 2, can be absorbed in the definition of Pa.

Quaternionic Kähler manifolds. Here we briefly recall the definition of a quaternionic

Kähler manifold12 MQK [25, 32–34] and fix the notations. MQK is a 4nH -dimensional real,

Riemannian manifold with holonomy group:

H = SU(2)×H ′ , H ′ ⊂ Sp(2nH ,R) , (A.29)

where SU(2), together with the group U(1) of Kähler transformations in the holonomy

group of MSK , define the U(2) R-symmetry group of the supersymmetry algebra.

The positive definite metric is denoted by huv(q), where qu are the coordinates de-

scribing the scalar fields of the hypermultiplets. The action of the SU(2) generators on the

tangent space defines three complex structures Jxu
v, x = 1, 2, 3, satisfying the quaternionic

algebra:

JxJy = −δxy + ǫxyz Jz . (A.30)

In terms of this quaternionic structure, a triplet of hyper-Kähler 2-forms are defined:

Kx = Kx
uv dq

u ∧ dqv , Kx
uv = huw Jxw

v . (A.31)

The above definition and eq. (A.30) imply the following relation:

Kx
uwh

wsKy
sv = −δxy huv + ǫxyz Kz

uv , (A.32)

where, as usual, huv are the components of the inverse metric. One of the defining properties

of quaternionic Kähler manifolds is that Kx be covariantly constant with respect to the

SU(2)-connection ωx:

∇Kx = dKx + ǫxyz ωy ∧Kz = 0 . (A.33)

In terms of the connection 1-forms ωx we define the SU(2)-curvature Ωx:

Ωx ≡ dωx +
1

2
ǫxyz ωy ∧ ωz , (A.34)

The other defining property of a quaternionic Kähler manifold is that the hyper-Kähler

2-forms be proportional to the SU(2)-curvature:

Ωx = λKx , (A.35)

where λ is a real coefficient depending on the normalization of the metric. Choosing

the standard normalization of the kinetic term for the hyperscalars qu amounts to fixing

12We shall be interested in non-compact quaternionic Kähler manifolds with negative curvature as only

these are relevant to supergravity.
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λ = −1. The above equation is consistent with (A.33) by virtue of the covariant constancy

of Ωx:

∇Ωx = dΩx + ǫxyz ωy ∧ Ωz = 0 . (A.36)

Property (A.29) implies that we can define the vielbein 1-forms as follows:

UAα = UAα
u dqu , (A.37)

where A = 1, 2 is the SU(2)-doublet index labeling the supersymmetries and α = 1, . . . , 2nH

labels the fundamental representation of Sp(2nH ,R). In this basis the rigid tangent space

index u is a composite one u = (A,α) and the rigid metric is ηuv = ǫABCαβ , where Cαβ is

the Sp(2nH ,R)-invariant matrix, so that:

UAα
u UBβ

u ǫAB Cαβ = huv . (A.38)

These 1-forms satisfy the following relations which we shall need in our discussion:

UAα ≡ (UAα)∗ = ǫABCαβ UBβ ,

UAαu UBα
v =

1

2
huv δ

B
A − i

2
Kx

uv (σ
x)A

B , (A.39)

where the relative sign between the two terms on the right hand side of last equation is

fixed by (A.32). Moreover the vielbein 1-forms are covariantly constant, namely the satisfy

the condition:

∇UAα ≡ dUAα +
i

2
(σx)B

A ωx ∧ UBα +∆αγ ∧ UAβ
Cγβ = 0 , (A.40)

where ∆αβ = ∆βα denote the H ′ ⊂ Sp(2nH ,R)-connection 1-forms.

The Riemann tensor of a quaternionic manifold has the general form:

Ruv|ts =
i

2
(σx)A

B Ωx
ts UAα

u UBα|v + Rαβ|ts UAα
u Uβ

A|v . (A.41)

Rαβ denotes instead the H ′ ⊂ Sp(2nH ,R)-curvature, defined in terms of the connection

one-form ∆αβ as follows

Rαβ ≡ d∆αβ + Cγδ∆
αγ ∧∆δβ . (A.42)

Consider now infinitesimal isometries generated by tm, whose action on the scalar fields

is described by Killing vectors km = kum ∂u. They close the isometry algebra:

[tm, tn] = fmn
p tp , [km, kn] = −fmn

p kp , (A.43)

and leave the 4-form
∑3

x=1K
x ∧Kx invariant [21]. This condition amounts to requiring:

ℓnK
x = ǫxyz Ky W z

n , (A.44)

where W z
n is an SU(2)-compensator. Equation (A.44) is solved by writing the Killing

vectors kn in terms of tri-holomorphic momentum maps Px
n as follows [21]:

ιnK
x = −∇Px

n = −(dPx
n + ǫxyzωy Pz

n) , (A.45)
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provided

Px
n = λ−1(ιnω

x −W x
n ) = W x

n − ιnω
x , (A.46)

where we have used λ = −1. The above equation was derived in [34], see also [21]. For

those isometries with vanishing compensator, W x
n = 0, the momentum maps have the

simple expression: Px
n = −kun ω

x
u.

Just has for the special Kähler manifolds, (see equation (A.23)), the momentum maps

satisfy Poisson brackets described by the following equivariance condition:

2Kuv k
u
n k

v
m − λ ǫxyz Py

n Pz
m = −fmn

p Px
p . (A.47)

For homogeneous symmetric manifolds kn and Px
n can be given a simple geometric charac-

terization. Indeed if MQK has the general form:

MQK =
Gqk

H
, (A.48)

where Gqk is the isometry group, denoting by gqk and H the Lie algebras of Gqk and H,

respectively, we can write the Cartan decomposition of gqk into compact and non-compact

generators:

gqk = H⊕ K , (A.49)

where [H, H] ⊂ H, [H, K] ⊂ K and [K, K] ⊂ H (symmetry). The coset space K is generated

by a basis of non-compact generators Ku, u = 1, . . . , 4nH be the rigid tangent space index.

The generators of H split into the generators Jx of SU(2) and Jαβ = Jβα of H ′, according

to the decomposition (A.29). The symmetry property of the manifold implies [K, K] ⊂ H,

or, in components:

[Ku, Kv] = fuv
x Jx +

1

2
fuv

αβ Jαβ . (A.50)

We can normalize the generators so that the Cartan-Killing form ( , ) of gqk is

(Ku, Kv) = δuv , (Jx, Jy) = −δxy , (Jαβ , Jγδ) = −2Cα(γCδ)β . (A.51)

The vielbein and connections are, as usual, defined by decomposing the left invariant one-

form in components along K and H:

Γ = L−1dL = V uKu +
1

2
ωx Jx +

1

2
∆αβ Jαβ , (A.52)

where L is the coset representative in some representation of Gqk, so that

V u = (Ku, Γ) , ωx = −2 (Jx, Γ) , ∆αβ = (Jαβ , Γ) . (A.53)

From the Maurer-Cartan equations dΓ + Γ ∧ Γ = 0 we can read off the expression for the

curvature and the 2-forms Kx:

Ωx = dωx +
1

2
ǫxyz ωy ∧ ωz = −fuv

xV u ∧ V v = −Kx , (A.54)

where we have used (A.50) and (A.35) with λ = −1. From this we derive the holonomic

components of Kx:

Kx
uv = fuv

xVu
u Vv

v . (A.55)
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We can give the following useful characterization of the Killing vector kn and the momentum

map Px
n associated with the isometry generator tn ∈ gqk:

L−1tnL = kun Vu
uKu − 1

2
Px
n Jx +

1

2
Σαβ
n Jαβ . (A.56)

We prove below that kn and Px
n defined in (A.56) do satisfy (A.45). From (A.55) and (A.52)

we find:

2kun K
x
uv = 2 fuv

x kun Vu
u Vv

v = −2 ([L−1tnL, L
−1∂vL], J

x) + ǫxyz Py
nω

z
v . (A.57)

Now let us evaluate ∇Px
n :

∇vPx
n = ∂vPx

n + ǫxyzωy
v Pz

n = 2 (∂vL
−1tnL+ L−1tn∂vL, J

x) + ǫxyzωy
v Pz

n =

= 2 ([L−1tnL, L
−1∂vL], J

x) + ǫxyzωy
v Pz

n = −2kun K
x
uv , (A.58)

where in the last equality we have used (A.57).

Let us now prove (A.46). From basic coset geometry we know that the left action of an

isometry on the coset representative L yields L computed in the transformed point, mul-

tiplied to the right by a compensator in H. For an infinitesimal isometry this is expressed

by the property:

tn L = kun ∂uL+ LWn . (A.59)

where Wn ∈ H is the infinitesimal generator of the compensating transformation, which

can be expanded as follows

Wn = −1

2
W x

nJ
x +

1

2
Wαβ

n Jαβ . (A.60)

Multiplying (A.59) to the left by L−1 we find:

L−1tnL = kun Γu +Wn = kun Vu
uKu +

1

2
kun ω

x
u J

x +
1

2
kun ω

αβ
u Jαβ − 1

2
W x

nJ
x +

1

2
Wαβ

n Jαβ .

(A.61)

Comparing the above expansion with (A.56) we find:

Px
n = W x

n − kun ω
x
u , (A.62)

which is (A.46). Equations (A.46) and (A.45) then imply (A.44).

Consider now a solvable (or Iwasawa) parametrization of the coset for which we describe

the quaternionic Kähler manifold as globally isometric to a solvable Lie group generated

by a solvable Lie algebra Solv [41, 42]:

MQK ∼ exp (Solv) . (A.63)

The coset representative is then an element of exp (Solv):

L(q) = eq
u Tu ∈ exp (Solv) , (A.64)
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where Tu are the generators of Solv. Being L(q) an element of a group, the action on it of

any other element of the same group has no compensating transformation:

∀g ∈ exp (Solv) : gL(q) = L(q′) . (A.65)

Therefore for any tn ∈ Solv we have Wn = 0, i.e.

Px
n = −kun ω

x
u . (A.66)

Transformations in exp(Solv) comprise translational isometries.

B Proofs of some symplectically-covariant relations on the gauging

Let us prove here the identities (2.25):

PMΩM = 0 , kiM ΩM = 0 . (B.1)

To prove the first one we write (2.13) for the gauge-momentum maps:

PM = −eK XMNPΩ
N
ΩP . (B.2)

Contracting both sides with ΩM we find:

ΩMPM = −eK ΩMXMNPΩ
N
ΩP =

eK

2
Ω
N
XNMPΩ

MΩP = 0 , (B.3)

where we have used the linear constraint (2.17) and the symplectic property of the matrices

XMN
P :

2X(MP )N = −XNMP , (B.4)

being XMNP ≡ XMN
Q
CQP . Last equality in (B.3) then follows from (2.14).

Let us now prove the second of (B.1)

ΩM kiM = i gīΩM ∂̄PM = i gī ∂̄(Ω
M PM ) = 0 , (B.5)

where we have used the first of (B.1).

From (B.1) we can deduce the following relations:

Di(V
MPM ) = 0 ⇒ UM

i PM + V M∂iP = 0 ⇒ UM
i PM + i gī k

̄
MV M = 0 . (B.6)

Contracting (2.12) with the embedding tensor we find:

kiM UP
i = −XMN

P V N + iPM V P . (B.7)

Contracting both sides with V
M

and using the first of (B.1) we find:

V
M
kiM UP

i = −XMN
P V

M
V N . (B.8)

Next we contract both sides with ΘP , where ΘP can be either ΘP
a or ΘP

n and use the

quadratic constraints (2.21) which imply that the generalized structure constants XMN
P

are antisymmetric in the first two indices only if contracted to the right by ΘP : XMN
PΘP =

−XNM
PΘP . By virtue of this feature we find:

V
M
kiM UP

i ΘP = −XMN
P V

M
V NΘP = XNM

P V
M
V NΘP = −V Mkı̄M U

P
ı̄ ΘP . (B.9)
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The general Ward identity. Let us now prove the Ward identity [22–24] for the generic

dyonic gauging of N = 2 supergravity. We shall evaluate each term in the left hand side

of (2.27) separately. From the above definitions we find:

W i ACW
̄
BCgī = δAB kiMk̄NgīV

M
V N − i (σx)B

A
(

k̄M V M U
N
̄ − kiM V

M
UN
i

)

Px
N +

+(σxσy)B
A Px

MPy
NUMN , (B.10)

where UMN ≡ UN
i gī U

N
̄ , see (A.21). On the right hand side of the above expression we

split the terms proportional to δAB from those proportional to (σx)B
A and use eq. (2.26) to

find:

W i ACW
̄
BCgī = δAB

(

kiMk̄NgīV
M
V N + Px

NPx
MUMN

)

+ i(σx)B
A
(

−2XMN
PV

M
V NPx

P+

+ ǫxyzPy
MPz

NU [MN ]
)

. (B.11)

Now use eqs. (A.21) and the locality constraint (2.20) to write:

Py
MPz

NU [MN ] = − i

2
Py
MPz

NC
MN − Py

MPz
NV

[M
V N ] = −Py

MPz
NV

[M
V N ] , (B.12)

so that we finally find:

W i ACW
̄
BCgī = δAB

(

kiMk̄NgīV
M
V N + Px

NPx
MUMN

)

+ i(σx)B
A
(

−2XMN
PV

M
V NPx

P+

− ǫxyzPy
MPz

NV
M
V N

)

(B.13)

Let us now move to the evaluation of the square of the hyperini shifts:

2Nα
AN

α
A=8UAα

u UvBαk
u
MkvNV

M
V N =4

(

δABhuv + i(σx)B
AKx

uv

)

kuMkvNV
M
V N . (B.14)

where we have used eq. (A.39). Finally let us compute the square of the gravitini shifts:

−12S
AC

SBC=−3(σxσy)B
APx

MPy
NV MV

N
=−3Px

MPx
NV MV

N
+3iǫxyzPy

MPz
NV

M
V N (σx)B

A.

(B.15)

We can now compute the left hand side of the Ward identity:

gīW
i ACW

̄
BC + 2Nα

AN
α
B − 12S

AC
SBC = δAB V (z, z̄, q) + i Zx (σx)B

A , (B.16)

where

V (z, z̄, q) = (kiMk̄Ngī + 4huvk
u
MkvN )V

M
V N + (UMN − 3V MV

N
)Px

NPx
M , (B.17)

is the general symplectic invariant expression of the scalar potential given in [12] as a

generalization to dyonic gaugings of the one given in [20], and

Zx = (−2XMN
P Px

P + 2 ǫxyz Py
MPz

N + 4Kx
uvk

u
M kvN )V

M
V N . (B.18)

From the equivariance condition (2.24) it follow that Zx = 0, so that the Ward identity is

proven.
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C Rescalings

Let us summarize here the relation between the couplings and fields of the rigid-

supersymmetric thery, identified with an upper ring, and the corresponding supergravity

fields. We find that the resscaling only affects the vector-multiplet sector, and in particular

the gaugini:

λ̊iA =
1

µ
λiA (C.1)

the special geometry sector, in a generic coordinate frame:

V M =











X0

0

F0

0











+
1

µ











0

X̊I(z, z̄)

0

F̊I(z, z̄)











+O
(

1/µ2
)

; (C.2)

ŨM
i =

1

µ











0

∂iX̊
I ≡ f̊ I

i

0

∂iF̊I ≡ h̊Ii











+O
(

1/µ2
)

, (C.3)

from which we get, in the limit µ → ∞:

gī →
1

µ2
g̊ī Cijk → 1

µ2
C̊ijk

Rīkl̄ →
1

µ2
R̊īkl̄

Γi
jk → Γ̊i

jk Q → 1

µ2
Q̊ ,

together with the embedding tensor:

Θm
M =

1

µ2
Θ̊m

M . (C.4)
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