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ABSTRACT

Barents Sea Water (BSW) is formed from Atlantic Water that is cooled

through atmospheric heat loss and freshened through seasonal sea ice melt.

In the eastern Barents Sea, the BSW and fresher, colder Arctic Water meet

at the surface along the Polar Front (PF). Despite its importance in setting

the northern limit of BSW ventilation, the PF has been poorly-documented,

mostly eluding detection by observational surveys that avoid seasonal sea ice.

In this study, satellite sea surface temperature (SST) observations are used

in addition to a temperature and salinity climatology to examine the location

and structure of the PF, and characterise its variability over the period 1985 –

2016. It is shown that the PF is independent of the position of the sea ice

edge and is a shelf slope current constrained by potential vorticity. The main

driver of interannual variability in SST is the variability of the Atlantic Water

temperature, which has significantly increased since 2005. The SST gradient

associated with the PF has also increased after 2005, preventing sea ice from

extending south of the front during winter in recent years. The disappearance

of fresh, seasonal sea ice melt south of the PF has led to a significant increase

in BSW salinity and density. As BSW forms the majority of Arctic Interme-

diate Water, changes to BSW properties may have far-reaching impacts for

Arctic Ocean circulation and climate.
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1. Introduction31

The Arctic has been predicted to be sea-ice-free in summer by the middle of the twenty-first cen-32

tury (Wang and Overland 2012; Snape 2013; Notz and Stroeve 2016). This follows an Arctic-wide33

decline in sea ice extent over recent decades (Screen and Simmonds 2010). The Barents Sea alone34

has seen a 50% reduction in annual sea ice area between 1998 and 2008 (Årthun et al. 2012), asso-35

ciated with a strong sea ice decline in all seasons including winter (Onarheim and Årthun 2017).36

Seasonal sea ice extent variations are very predictable in the Barents Sea compared with other37

parts of the Arctic (Sigmond et al. 2016). For instance, Day et al. (2014) found significant correla-38

tions between Arctic sea ice extent in May, and Barents Sea sea surface temperature (SST) for the39

same month, as well as with SST in the preceding December. The variability of the Barents Sea40

ice edge location has also been associated with atmospheric circulation (Sorteberg and Kvingedal41

2006), and ice exported from the Arctic to the Barents Sea due to local winds (Koenigk et al. 2009;42

Kwok 2009). On longer time scales, the reduction in annual and winter Barents Sea sea ice area is43

thought to be driven by an increase in the heat transport into the Barents Sea due to the combined44

increase in advection and temperature of Atlantic Water (AW) (Årthun et al. 2012; Onarheim et al.45

2015). AW temperature and salinity in the Barents Sea are also varying on multidecadal timescales46

(Levitus et al. 2009; Smedsrud et al. 2013), making it challenging to distinguish between long term47

trend and natural variability.48

Along with Fram Strait, the Barents Sea Opening (BSO) is a gateway for the warm and salty AW49

(defined in Table 1) entering the Arctic Ocean and its marginal seas (Figure 1). The branch of AW50

entering through the BSO transits the Barents Sea, where it is modified en route, forming Barents51

Sea Water (BSW, Table 1) (Schauer et al. 2002; Harris et al. 1998). This transformation into BSW52

is driven mainly by surface interactions with the atmosphere resulting in winter convection and53
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entrainment of freshwater. Heat is lost from the ocean through turbulent heat flux and longwave54

radiation (Long and Perrie 2017), while freshwater input mostly comes from seasonal sea ice55

import and rivers (Ellingsen et al. 2009). Thus the length and location of the pathway along which56

AW flows determines to what extent its properties are modified by surface fluxes, sea ice and rivers57

before it enters the Arctic Basin. The Barents Sea bathymetry is known to strongly influence the58

path of AW inflow (Loeng 1991) (Figure 1). Part of the AW inflow crosses Murmansk Rise, south59

of Central Bank, into the Central Basin (Skagseth 2008; Ingvaldsen 2005). The Central Basin60

acts as a reservoir for AW until it loses enough buoyancy to propagate northwards below ArW as61

BSW. As a result, the water column is stratified in the northern Barents Sea, with the upper 100 m62

occupied by relatively fresh and cold Arctic Water (ArW, Table 1) and the lower layer occupied63

by BSW (Harris et al. 1998; Lind and Ingvaldsen 2012).64

In situ observations in the western Barents Sea have revealed that the surface expression of the65

front separating AW from ArW follows isobaths in the range 150 - 275 m (Gawarkiewicz and66

Plueddemann 1995; Harris et al. 1998; Våge et al. 2014; Fer and Drinkwater 2014). In the eastern67

Barents Sea, the northern front (referred to as the Polar Front - PF hereafter) is defined as the68

location where BSW meets ArW but its geographic position is poorly defined (Oziel et al. 2016).69

The PF is a water mass boundary and therefore should have an SST signature. This PF should be70

distinguished from another nearby SST front (hereafter thermal-surface front) that is also expected71

to be present in the surface layer of the northern Barents Sea following the sea ice edge, due to the72

transition from freezing-point water to ice-free water. In the range of temperatures and salinities73

of BSW and ArW, salinity and temperature tend to contribute equally to the determination of74

density (Parsons et al. 1996; Våge et al. 2014). Thus, both surface temperature and surface salinity75

contribute to the PF’s surface density gradient, suggesting that the variability of the PF position76

can be influenced by other processes than just the position of the sea ice edge.77
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BSW exits the Barents Sea, entering the Arctic Ocean mainly through St. Anna Trough (Rudels78

et al. 2000; Smedsrud et al. 2013). In the Arctic Ocean, BSW is entrained into Arctic Intermediate79

Water (AIW), accounting for 50 - 80% of the volume of AIW (Schauer et al. 1997; Maslowski et al.80

2004). AIW is ultimately exported to the North Atlantic through Fram Strait and in turn contributes81

to the deeper branch of the Atlantic Meridional Overturning Circulation (AMOC) (Aagaard et al.82

1985; Fahrbach et al. 2001). There is some debate in the literature about the extent to which83

BSW properties at the exit of the Barents Sea are preserved into the Arctic Ocean and beyond.84

Observations have revealed that some mixing of BSW occurs on continental slopes and within the85

Arctic Ocean (Shapiro 2003; Rudels et al. 2015) but model results of Lique et al. (2010) show86

modifications to BSW properties within the Arctic Ocean are small compared to the modification87

within the Barents Sea. In either case, the properties with which BSW exits the Barents Sea are88

important as they pre-condition it for the target depth at which it may settle and mix with ambient89

water masses within the Arctic Basin. Anomalies in BSW density have been traced to Denmark90

Strait suggesting far-reaching impacts from processes occuring in the Barents Sea (Karcher et al.91

2011).92

It has been hypothesised by Aagaard and Woodgate (2001) that a prolonged reduction in the93

fresh, melt water input from seasonal sea ice into BSW could cause a modification of the BSW94

properties, and in turn induce a warming and salinification of AIW. This hypothesis overlooks95

the role the PF could play in determining whether the meltwater is entrained into BSW or ArW96

and discounts the influence of changes in other water masses in the Barents Sea. Indeed, both97

the transport and the temperature of AW circulating in the Barents Sea have increased in recent98

decades (Årthun et al. 2012), resulting in a reduction in winter sea ice area through a decrease99

in wind-driven sea ice advection and delayed winter refreezing (Lien et al. 2017). Thus, winter100

sea ice extent trends are consistent with the emerging evidence of ongoing atlantification (i.e. the101
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increased influence of AW resulting in a warming and salinification) of the Barents Sea (Reigstad102

et al. 2002; Oziel et al. 2017) and Arctic Ocean (Polyakov et al. 2017). This makes it important to103

quantify the role that Barents Sea ice trends play on BSW properties.104

The goal of this study is to investigate the variability of SST in order to characterise the PFs105

location in the eastern Barents Sea, determine how this compares to the seasonal sea ice edge and106

what the implications for BSW formation are given the documented sea ice loss and atlantifica-107

tion of the Barents Sea? To that aim, we use a combination of the new high-resolution, 32-year108

OSTIA SST dataset, satellite observations of sea ice concentration and 3D optimally interpolated109

temperature and salinity products.110

The methods and tools are presented in Section 2. In order to identify forcings on the formation111

of BSW, in Section 3, the mechanisms that cause variability in SST on seasonal and to multidecadal112

time-scales in the Barents Sea are explored. In Section 4, SST is used to pinpoint the surface113

expression of the PF, and determine whether the winter sea ice edge has become bound by it. In114

Section 5, the results of Section 3 and Section 4 are brought together and the consequences of a115

regime shift for BSW properties are discussed. Conclusions are presented in Section 6.116

2. Data and Methods117

a. Datasets118

This study makes use of satellite SST and sea ice concentration data from the OSTIA119

project spanning January 1985 to December 2016 (Donlon et al. (2012); downloaded from ma-120

rine.copernicus.eu portal). This dataset is optimally interpolated from multiple satellite sensors121

together with in situ observations onto a 0.05◦ grid (1.5 x 5.6 km for Barents Sea) at a daily fre-122

quency. The feature resolution is 10 km and the accuracy of the daily data is ∼0.57 K (Donlon123
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et al. 2012). At the current spatial and temporal resolution, the satellite SST data used in this124

study can not yet resolve mesoscale variability (with a characteristic scale of only a few kilome-125

ters) in the Barents Sea. Sea ice extent in the Barents Sea is computed from the OSTIA sea ice126

concentration. The sea ice edge is defined as the 15% contour the sea ice concentration.127

Bathymetry is taken from the GEBCO 2014 30 arcsecond resolution dataset (Weatherall et al.128

(2015); GEBCO 2014 Grid, version 20150318, www.gebco.net). In the Barents Sea, it corre-129

sponds to a resolution of 0.2 km in longitude and 0.9 km in latitude. We also use fields of surface130

air temperature (SAT; corresponding to temperature at 2 m above surface) and sea level pressure131

(SLP) from the ECMWF ERA-Interim reanalysis (Berrisford et al. (2011); www.ecmwf.int). This132

dataset is provided on a 0.75◦ grid (84 x 16 km for Barents Sea) with 3-hourly temporal resolution,133

averaged into monthly means.134

Observations from the Fugløya–Bear Island section along 20.0◦ E in the BSO (red line, Fig-135

ure 1) are used to characterize the variations of the AW inflow temperature and salinity (Larsen136

et al. 2016). This dataset is available through the ICES portal (ocean.ices.dk/iroc) and corresponds137

to hydrographic profiles, collected six times a year, used for the period January 1985 to October138

2015. The time series presented here is averaged over the 50 - 200 m depth range and between139

71.5◦ N and 73.5◦ N (Ingvaldsen et al. 2003), and is thus representative of the subsurface temper-140

ature and salinity variability. We also use observations from the Kola section (available through141

www.pinro.ru), extending from 73.0◦ N to 74.0◦ N along 33.5◦ E (orange line, Figure 1), as a142

proxy for the AW temperature in the central Barents Sea. Along the section, Conductivity Tem-143

perature Depth (CTD) profiles have been collected between 7 to 9 times per year and we use the144

subset from January 1985 to December 2015 (Bochkov 1982; Ingvaldsen et al. 2003). We consider145

again the depth range between 50 and 200 m (i.e the sub-surface), which is below the depth of the146
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summer mixed layer and is the depth range over which the core of AW enters the Barents Sea147

(Ingvaldsen 2005).148

In order to examine the variability and long-term trends over the wider region than just149

these two sections, temperature and salinity fields from the EN4 dataset are analysed (EN4.2.0,150

www.metoffice.gov.uk/hadobs/en4). EN4 comprises in situ ship CTD profile data and Argo float151

data optimal-interpolated on a 1◦, monthly z-grid with 42 levels (Gouretski and Reseghetti 2010).152

Data used in this analysis are from the January 1985 to December 2016 period. Between 1985 and153

2015, there is a minimum of 2 profiles of temperature and salinity per year in the northeastern Bar-154

ents Sea. It should be noted that there is a summer bias in this dataset based on when most of ship155

based profiles were collected. To accommodate the variability in profile sampling the uncertainty156

values provided in EN4 are considered throughout this study (Good et al. 2013).157

Additional temperature and salinity fields are retrieved from the MIMOC ocean climatology158

project (www.pmel.noaa.gov/mimoc), which optimally interpolates in situ ship CTD profiles and159

Argo float data onto a 0.5◦ σ -grid followed by an 81 level z-grid (Schmidtko et al. 2013). The160

monthly climatology is weighted to be representative of 2007 to 2011. MIMOC data was included161

in this study as its higher spatial resolution allows a better description of the 3D structure of the162

front than EN4 data, although it does not provide information on the interannual variations of the163

fields.164

b. Methods165

The Barents Sea SST seasonal climatology is calculated from the OSTIA data. To resolve the PF,166

the magnitude of the gradient in SST for both the latitude and longitude directions are calculated167

using the equation: |∇T(x,y)|=
√

(∂T/∂x)2 +(∂T/∂y)2.168
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In order to characterise the temporal and spatial variability in SST over the Barents Sea, em-169

pirical orthogonal functions (EOF) are calculated using the singular value decomposition (SVD)170

method (Thomson and Emery 2014). EOF analysis extracts the main mode of SST interannual171

variability, providing us with a spatial pattern and an associated time-varying index referred to as172

the principal component (PC). The area selected for EOF analysis covers the Barents Sea (10◦ E –173

65◦ E and 68◦ N – 80◦ N, see green box, Figure 1). Prior to the EOF decomposition several steps174

were taken. These are: (1) data points within 28 km (5 grid cells) of land were removed as well175

as the Kara Sea and any isolated inlets with restricted connectivity to the Barents Sea that would176

be unrepresentative of the variability in the Barents Sea; (2) the seasonal cycle was then removed177

from the SST monthly means in each grid cell by applying a 12-month running mean to the data;178

(3) the mean SST at each grid cell was then removed, (4) finally SST in each grid cell was divided179

by its respective standard deviation. We also compute correlations between the PC and other fields180

which were also subject to a 12-month running mean.181

A 2-tailed Welch’s t-test is used to estimate the significance of a difference between two given182

time periods, while a 2-tailed Student’s t-test is used for the significance of linear trends in monthly183

SST. For estimating the 95%-level significance of correlations, a 2-tailed Student’s t-test is used184

and an appropriate reduction in degrees of freedom associated with a 12-month running mean is185

accounted for.186

In this study, the criteria used to define the different water masses mostly follows previous187

definitions found in the literature (e.g. Loeng (1991); Table 1). The main adjustment made to188

existing definitions is the minimum density set for the BSW definition (σ > 27.85 kg m−3); it189

ensures that we reject the warm and fresh surface water that is not dense enough to sink into the190

Arctic Ocean. Note that our results are mostly insensitive to the exact definition of the different191

water masses. For the EN4 and MIMOC datasets, potential density is determined using TEOS-192
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10 (McDougall et al. 2012). Practical salinity and potential temperature are also estimated and193

presented throughout to allow direct comparison to results found in the literature.194

In order to quantify the changes of the BSW properties over time, we estimate the mean BSW195

temperature and salinity from EN4 data within a domain in the north eastern Barents Sea (Northern196

Basin, 44◦ E – 54◦ E and 76.5◦ N – 78.5◦ N, see cyan-dashed box, Figure 1). We only consider197

the depth range 100 – 300 m, as in this region, BSW is isolated from the atmosphere by the ArW198

layer, inhibiting further modification before BSW reaches the Arctic Basin. ArW properties are199

defined in the 0 – 100 m layer within the same region from EN4. Surface BSW properties south200

of the PF are defined from EN4 in the Central Basin (40◦ E – 50◦ E and 74.5◦ N – 76.5◦ N, see201

yellow-dashed box, Figure 1)202

3. Seasonal and Interannual Variability of Sea Surface Temperature in the Barents Sea203

In this section, we characterize the temporal and spatial variations of SST over the Barents Sea.204

SST, by which the surface expression of PF is defined in Section 4, is representative of air-sea205

interactions that are key to the formation of BSW. We first examine the seasonal cycle because this206

has been suggested, from model analysis, to play an important role in BSW formation (Årthun207

et al. 2011; Dmitrenko et al. 2014). When averaged over the Barents Sea domain (see green208

box in Figure 1), the amplitude of the SST seasonal cycle amounts to 1.69 ◦C, with minimum209

and maximum occurring in April and July, respectively. This value is large when compared to210

the standard deviation of the mean SST once the seasonal cycle is removed, which amounts to211

0.41 ◦C. Clearly, SST is dominated by seasonal variability. The annual winter reduction in SST is212

key to the formation of BSW through heat loss and given this is an annual event suggests a link213

between BSW and the 1 – 2.5 year residence time of AW within the Barents Sea (Smedsrud et al.214

2010; Årthun et al. 2011).215
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Maps of seasonal mean SST, over the period 2005 – 2016 are shown in Figure 3a-d. It reveals216

a pool of warm AW in the southwestern Barents Sea with a tongue of AW in Central Basin.217

This warm AW tongue is intensified in winter and spring but present throughout the year. In218

the southwestern Barents Sea, SST increases from 4 ◦C in spring to 8 ◦C in summer. In the219

remainder of the Barents Sea, the SST also increases by 4 ◦C between spring and summer but220

approaches -1.8 ◦C in the spring due to the presence of sea ice (Figure 4a-d). The sea ice edge also221

shows strong seasonality, retreating to the northern margins of the Barents Sea in summer, while222

advancing towards Central Bank from the north and the south-east in winter. As discussed later in223

this section, the long term trend in SST changes in 2005, posing the question of a possible change224

of SST seasonal cycle across the full period considered. The most striking difference between225

the 1985 – 2005 (Figure 3) and the 2005 – 2016 (Figure 4) time periods is the location of the226

sea ice edge, with appreciably larger areas of open water post-2005 in all the seasons. This is227

accompanied by changes in SST where the seasonal sea ice has retreated.228

This seasonality is primarily driven by the seasonal cycle of the net surface heat flux with a229

contribution from AW heat transport (Ding et al. 2016; Smedsrud et al. 2010). In the northern230

Barents Sea, seasonal surface heat fluxes roughly balance over a year. In contrast there is a net231

heat flux from ocean to atmosphere in the southern Barents Sea, suggesting the importance of heat232

brought here by AW for the formation of BSW (Smedsrud et al. 2010).233

To examine SST variability on interannual and longer time-scales, the seasonal cycle is first234

removed and EOF analysis is performed (see Section 2 for methodology). The trend is not removed235

as this could be related to multidecadal variability discussed later in this section. The first mode236

(EOF 1) of variability in SST explains 72.9% of the variance. As the second mode explains less237

than 10% of the variance, we only discuss EOF 1. The spatial pattern of EOF 1 is a positive238

anomaly across the full Barents Sea (Figure 5a). PC 1 has a periodicity of 6 to 10 years but239
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also exhibits multidecadal variability (Figure 5c). PC 1 is strongly correlated with the interannual240

variations of SAT over the Barents Sea where SAT leads by 2 months (Figure 5b). Regressing241

PC 1 on the SAT fields reveals an area of significant positive correlation over the Arctic Ocean,242

eastern Arctic shelf seas and northern Russia. Lag correlations with AW temperature show AW243

leads SST by 2 to 4 months. PC 1 is significantly correlated with the variation of AW temperature244

at the Kola section (r = 0.89, lag = -2 months, Figure 5d) and the Fugløya–Bear Island section245

(r = 0.80, lag = -4 months, Figure 5d). PC 1 is also anti-correlated with the variations of the sea246

ice extent in the Barents Sea (r = -0.93, lag = 1 month, Figure 5e).247

These correlations suggest that, when mode 1 is in positive phase, SST is warm in the Barents248

Sea, the sub-surface AW temperature is warmer than average, sea ice extent is low and SAT is249

warmer than average. A mechanism that could explain this mode is an increase in the temperature250

of the AW inflow to the Barents Sea, which would in turn reduce sea ice extent in the Barents Sea,251

both acting to increase AW heat loss to the atmosphere (Smedsrud et al. 2010) and resulting in252

warmer SAT. During a positive phase of this mode, both the increase of oceanic heat lost and the253

decrease of the sea ice extent will most likely affect the formation of BSW, as discussed in more254

detail in Section 5.255

We could not find a significant correlation between PC 1 and SLP variations across the Barents256

Sea. This is at odds with the results of Herbaut et al. (2015), which suggested a link between257

the variations sea ice (and thus SST) and SLP. The different results could be due to the different258

periods considered as they only considered the variations up to 2004.259

In summary, our lagged correlation analysis is consistent with heat carried in the AW inflow260

gradually influencing both SAT and BSW SST as it propagates from Fugloya-Bear Island section261

to the Kola section and onwards to the interior Barents Sea where SAT can feed heat back to SST.262

Our results suggest AW inflow temperature may be at least as important as SAT in setting the263
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Barents Sea SST. Indeed, this BSW-SST-forcing mechanism is supported by the conclusions of264

Smedsrud et al. (2010) who found that AW heat input has a bigger impact on SST variability than265

SAT forcing. The mechanism proposed here is also consistent with the results of Schlichtholz266

and Houssais (2011) who found that the temperature of recirculating AW exiting the Barents Sea267

through the BSO was driven by SAT within the Barents Sea.268

We now examine the SST multidecadal variability. We find a significant positive linear trend269

of up to 0.05 ◦C year−1 in the western Barents Sea for the period from 1985 to 2004 (pre-2005;270

Figure 2b). Post-2005 (2005 to 2016) however, the SST in the western Barents Sea stabilises, such271

that the trend becomes insignificant here while a positive trend of roughly 0.10 ◦C year−1 arises in272

most of the eastern Barents Sea (Figure 2c). A positive trend is also found in the analysis of Singh273

et al. (2013) for the time period 2002 to 2010. The shift in SST trend since 2005 is consistent274

with the results of Herbaut et al. (2015), who found a significant reduction of both the mean and275

variance of the winter sea ice concentration after 2005. The positive trend in the eastern Barents276

Sea coincides with an increase in AW temperatures observed at the Kola section (Figure 5e). As277

AW temperature at the Kola section is correlated with PC 1, this suggests mode 1 also captured278

part of the variability at multidecadal or longer time scales. As suggested by Smedsrud et al.279

(2010), an increase in AW heat transport would manifest in an expansion of a warm heat anomaly280

in the Barents Sea basin resulting in an increase in the surface area in which heat loss takes place.281

The change in trend across the eastern Barents Sea could represent the expansion of this surface282

area.283

Although the SST dataset is limited to 1985 onwards, there are other datasets which have been284

used to address longer term variability in the Barents Sea. A 16–20 year and 30–50 year timescale285

fluctuation was found in ∼100 year observational datasets of both sea ice concentration and SLP286

(Venegas and Mysak 2000). These timescales are too long to be fully resolved in our analysis287
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period, so we can not fully distinguish between long term trend and natural variations occurring288

on these timescales. Yet, the results of Venegas and Mysak (2000) suggest that the sea ice extent289

variations on the 16–20 year timescale are likely linked with SLP anomalies. Our time period of290

32 years should capture some variability at the 16–20 year time period which could be manifested291

as the change in temperature occurring in 2005. However, as our EOF 1 is not driven by SLP292

variations, we hypothesis that the change occuring in 2005 is likely the manifestation of a regime293

shift rather than natural variability causing SLP to become decoupled across this time period. This294

hypothesis is also supported by the analysis of the observed sea ice extent from 1850 onward by295

Onarheim and Årthun (2017), who found that the winter sea ice extent is at its lowest level since296

1990. This is discussed in relation to long-term trends in Section 5.297

4. The Polar Front’s Constraint on the Sea Ice Edge298

The magnitude of the 2D gradient in SST shows the surface manifestation of fronts in the Barents299

Sea (Figure 3e-h). Starting in the west, a front follows Spitsbergen Bank but then bifurcates at300

Central Bank and splits into two branches (Figure 3e), in agreement with the results of Oziel et al.301

(2016). The southern branch of this front (referred to hereafter as the Barents Sea Front) follows302

the western side of Central Bank southward, dividing the Barents Sea into an AW-influenced303

western region and a BSW-influenced eastern region. The Barents Sea Front is most prominent304

during winter and spring (Figure 3e,h) and has been discussed in greater detail by Oziel et al.305

(2016, 2017).306

Further to the north, the PF divides the eastern Barents Sea into an ArW-influenced northern307

region and a BSW-influenced southern region. Our results show the PF to be a persistent feature308

following the ∼220 m isobath throughout the year, although Oziel et al. (2016) found that the309

PF was positioned further north than the present analysis with no fixed position. Their analysis310
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was limited by the dataset used, comprising temperature and salinity in situ profiles collected in311

the Barents Sea, which captures only the sub-surface expression of the front in the 50 to 100 m312

depth range. SST observations reveal that the PF pathway on the east side of the Barents Sea313

follows the southern sides of Great Bank and Ludlov Saddle eastward to Novaya Zemlya Bank314

(Figure 3e-h). At Novaya Zemlya Bank, the PF extends northward along Novaya Zemlya Bank to315

78◦ N. It should be noted that a second, weaker thermal-surface front exists in the SST data due to316

the transition from freezing ice-covered water to warmer ice-free water. The thermal-surface front317

does move with the sea ice edge and sometimes coincides with the more permanent PF.318

Previous studies have investigated several aspects of the PF (Våge et al. 2014; Oziel et al. 2016)319

but the dynamics controlling it are still poorly pinned down. Here we present some evidences that320

the PF is controlled by potential vorticity constraints. Within the Barents Sea, the PF is closely tied321

to the 220 m isobath (Figures 3 and 4), which is located on a steep slope separating the northern and322

southern Barents Sea (Figure 1). Potential vorticity constraints usually force currents to flow along323

topographic contours rather than across them (Taylor 1917; Proudman 1916). Planetary potential324

vorticity (q) can be estimated by the equation q= f/h, where f is the coriolis parameter and h is the325

depth. The planetary potential vorticity contours in the Barents Sea follow closely the bathymetry326

contours as f is roughly constant in the region. In the case of a basin with a shallower northern327

outflow depth than inflow i.e. a ridge, an idealised model with potential vorticity constraints drives328

anticyclonic/clockwise circulation around the basin and eastward along the ridge in the northern329

hemisphere (Yang and Price 2000). This is consistent with the path of the PF we resolved by330

the OSTIA SST (Figure 3), as well as the eastward flow found in velocity observations on the331

southwestern slope of Great Bank (Våge et al. 2014) and simulations showing eastward flow along332

the southern slope of Great Bank (Slagstad and McClimans 2005; Lind and Ingvaldsen 2012).333
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Following Pratt (2004), additional evidence that the PF is constrained by potential vorticity can334

be provided by estimating the Froude number associated with the flow across the ridge towards335

the eastern boundary (i.e Novaya Zemlya Bank in our case). The Froude number is given by336

F = u/(g′d)1/2, where u is current speed, g′ is reduced gravity and d is depth of the layer at337

the ridge. Here we take u = 0.2 m s−1 (based on observations by Våge et al. (2014), assuming338

current speed is constant along the ridge), and values for g′ and d are calculated from MIMOC339

data (Figure 7), obtaining a Froude number of 0.3. Following the argument developed by Pratt340

(2004) and given that in our case the height of the ridge occupies roughly 1/3 of the water column,341

a Froude number greater than 0.2 suggests that the Great Bank–Ludlov Saddle ridge imposes a342

hydraulic control on the flow associated with the PF, providing further evidence that the PF is343

constrained by potential vorticity.344

We next examine time variations of the PF, in relation to the position of the sea ice edge over345

time. According to Smedsrud et al. (2010), the PF sets the limit on surface area available for winter346

heat loss over the Barents Sea. Logically, the PF may also play a role in determining the volume of347

summer freshwater input from sea ice melt water. Thus the interplay between the eastern Barents348

Sea PF and mobile sea ice edge mediates the properties of BSW that will be carried into the Arctic349

as AIW. A comparison of SST gradients and sea ice concentration shows that the sea ice edge350

follows the PF in both the eastern and western Barents Sea during winter and spring from 2005351

to 2016 (Figure 3a-d) but this was not the case before 2005 (Figure 4). Steele and Ermold (2015)352

suggest that during the expansion and retreat of seasonal sea ice, the edge loiters at fronts where353

there is a gradient in temperature inhibiting further expansion. This then implies that the expansion354

of sea ice south of the PF before 2005 could be consistent with cooler SST or stronger northerly355

winds enabling greater transport of the mobile sea ice pack across the PF enabling it to loiter closer356

to the Barents Sea Front.357
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We then focus on the interannual variability of the PF and its relationship with the sea ice edge358

(Figures 6). To perform this analysis, the SST gradient is calculated meridionally and these gra-359

dients are averaged zonally within the box shown as a blue-dashed line on Figure 1. Zonally-360

averaged SST gradients on a given day are normalized by the daily standard deviation of the361

gradient in the same analysis box (Figure 1), in order to remove to potential large effect of the362

strong seasonality and interannual variability in the intensity of the SST gradient and sea ice ex-363

tent. Figures 6(a) shows that the PF is persistent in its location throughout the majority of the year.364

Between 1985 and 2004, the PF was covered by sea ice for parts of winter and spring but held365

position at 76.5◦ N, rather than moving south with the advancing winter sea ice edge as previously366

thought (Smedsrud et al. 2010). As expected, there is also a thermal-surface front at the position367

of the sea ice edge to the north of the PF in summer, but the PF is always present as a stronger and368

more persistent front at 76.5◦ N along the 220 m bathymetry contour.369

A change in the location of the winter sea ice edge relative to the position of the PF is also370

evident on decadal timescales (Figure 6). Unlike in the pre-2005 period, since 2005, the winter371

sea ice edge has been unable to sustain a southwards breach of the PF for more than a few days372

(Figure 6b). We define a region in the Barents Sea between the PF to the north and the Coastal373

Water front to the south shown by the dark-blue box in Figure 1, within which sea ice melt can374

be entrained into BSW. The change in 2005 has reduced the mean seasonal change in sea ice375

area in this region, from 77 000 km2 between 1985 and 2004 to 8 700 km2 between 2005 and376

2016. This provides useful information in efforts to predict the location of the winter sea ice in377

the Barents Sea (examples of predictions include Onarheim and Årthun (2017); Sigmond et al.378

(2016); Nakanowatari et al. (2014)). This is important because changes in sea ice conditions in379

the Barents Sea have been linked to widespread, anomalous atmospheric conditions over northern380

continents (Petoukhov and Semenov 2010; Yang et al. 2016).381
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At the same time, while remaining fixed to topography, the mean SST gradient across the PF382

increases significantly from 0.011 ±10−4 ◦C km−1 pre-2005 to 0.015 ±10−4 ◦C km−1 in post-383

2005 (Figure 6c). This steepening in the PF SST gradient coincides with a significant increase in384

AW temperature at the Kola section from 3.1 ±0.05 ◦C in the pre-2005 period to 4.0 ±0.05 ◦C in385

the post-2005 period. Given that the SST north of the PF is changing at a slower rate than south of386

the PF (Figure 2), the intensification of the PF can then be mainly attributed to the increase in AW387

temperature in the Barents Sea. One important consequence of the increase in AW temperature is388

that the heat content on the southern side of the front prevents sea ice from accumulating. A link389

between changes in sea ice and AW temperature has been discussed by Smedsrud et al. (2013)390

but not in relation to the PF. We asses this result in relation to trend and long-term variability in391

Section 5.392

In addition to the changes found in the southern side of the front, discussed above, changes in393

the properties of the ArW north of the PF could also occur. To the northeast of Svalbard where the394

AW lies close to the surface, Ivanov et al. (2016) have suggested that a positive feedback could395

exist between entrainment of warm AW and reduced midwinter sea ice thickness, due to a decrease396

of the stratification driven by change in salinity. The mean ArW properties from EN4 pre-2005397

were T = -1.15 ±0.04 ◦C, S = 34.463 ±0.014; while post-2005 they were T = -0.76 ±0.06 ◦C,398

S = 34.569 ±0.022 (Figure 1 shows the cyan-dashed box selected for ArW properties north of the399

PF). This significant increase in temperature and salinity could be caused by a similar process to400

the one described by Ivanov et al. (2016).401

The mean surface BSW properties pre-2005 were T = -0.22 ±0.03 ◦C, S = 34.828 ±0.009;402

while post-2005 they significantly increased to T = 0.50 ±0.05 ◦C S = 34.943 ±0.013 (Figure 1403

shows the yellow-dashed box selected for surface BSW properties south of the PF). The salinity404

increase is comparable for the surface BSW and ArW within the error bounds, but the increase in405
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the temperature of surface BSW is almost double the change in ArW temperature over the same406

period. The result on ArW density and surface BSW density is an increase of 0.071 ±0.017 kg m−3
407

and 0.054 ±0.009 kg m−3, respectively, indicating a decrease in the density gradient across the408

PF after 2005. This suggests that the steepening of the temperature gradient and weakening of the409

density gradient across the PF in the eastern Barents Sea are primarily driven by changes occurring410

in the southern side of the PF.411

Transect data through the eastern Barents Sea (Figure 7) show the SST gradient across the PF is412

the surface expression of a vertically-coherent front. In both the EN4 and MIMOC climatologies,413

the PF is present near 76.5◦ N as a negative south-north temperature gradient over the depth range414

0 – 100 m, and a similar sub-surface salinity gradient. The PF is a transition between the southern415

region that is temperature-stratified (α-ocean) and the northern region that is salinity-stratified (β -416

ocean) (Carmack 2007). Here, α is the coefficient of thermal expansion and β is the coefficient417

of haline contraction. This makes the PF an important transition zone where the contribution to418

density from temperature and salinity can be in balance. Note the presence of water that is too fresh419

to fit the BSW definition and too warm to fit the ArW definition between 77◦ N and 78◦ N over 0-420

50 m (Figure 7b,d). This water mass sits on the mixing line between BSW and ArW (Figure 7h),421

suggesting that mixing between BSW and ArW occurs at the front. Previous studies based on422

observations in the western Barents Sea have revealed the presence of interleaving between BSW423

and ArW along the PF that could enhance mixing (Parsons et al. 1996; Våge et al. 2014; Fer and424

Drinkwater 2014).425

On the northern side of the transect, the ArW layer (Table 1) is present in the MIMOC data over426

the depth range 0 – 100 m at 80◦ N and extends down to 50 m at 77◦ N. In EN4, the ArW layer427

extends to a deeper depth of 150 m at 80◦ N and 100 m at 77◦ N. The main difference between428

the EN4 climatology and the MIMOC climatology is the 1 ◦C cooler temperature of BSW in429
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the EN4 than in MIMOC (Figure 7c,d). This may represent a change in BSW temperature over430

time given that the MIMOC climatology is weighted to be characteristic of 2007 – 2011 whereas431

the EN4 climatology is an average over the period 1985 – 2016. Regardless of the difference432

in temperature between the two datasets, BSW occupies roughly the same area (black dots in433

Figure 7e,f). As BSW is denser than ArW (Figure 7g,h), it sits below ArW north of the PF at434

76.5◦ N. From Ludlov Saddle, BSW flows eastward and exits the Barents Sea through St. Anna435

Trough in a layer below ArW (Schauer et al. 2002). As the Central Basin is the source of BSW436

(Oziel et al. 2016), this suggests BSW propagates northwards of the PF either by subducting below437

ArW or by undergoing modification at the surface due to fast-mixing processes in the the upper438

portion of BSW that Rudels et al. (1996) has hypothesized occurs during winter heat loss.439

5. Atlantification of the Barents Sea and implications for Barents Sea Water440

As a consequence of the intensification of the PF since 2005, it now forms a persistent barrier441

to the formation and export of sea ice south of the PF (Figure 6). Having identified the forcing on442

BSW in Section 3, here we discuss the possible implications of the barrier imposed by the PF on443

the properties of the BSW exiting the Barents Sea:444

1. The northern limit of the surface area available for AW winter heat loss has become fixed to445

the location of the PF. The sub-surface EN4-averaged BSW temperature has warmed from446

-0.51 ±0.03 ◦C to -0.13 ±0.03 ◦C when comparing the pre-2005 and post-2005 periods (Fig-447

ure 6c, averaged over 100 – 300 m in the cyan-dashed box in Figure 1). The increase of the448

temperature at the Kola section between the same two periods is more than twice as large449

(0.9 ◦C). The observed reduction in Barents Sea ice extent has resulted in an increase of450

the surface heat flux from the ocean to the atmosphere (Long and Perrie 2017; Årthun et al.451
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2012), likely explaining the different rate of temperature increase between the BSW and the452

Kola section.453

Before 2005, the expansion and retreat of sea ice in the eastern Barents Sea buffered BSW454

properties against changes in AW temperatures (Smedsrud et al. 2010), but our analysis sug-455

gests that this buffering capacity has reduced since 2005, enabling the temperature increase456

of BSW in recent years visible on Figure 6d. Such a temperature change requires that most of457

the AW heat is lost to the atmosphere in the ice-free southern Barents Sea (which is consistent458

with the results of Smedsrud et al. (2010)) and that the heat lost by BSW through mixing with459

ArW north of the PF is small. While Lind et al. (2016) have pointed out that mixing between460

ArW and BSW can exist, in particular during years with lower sea ice cover, the heat lost461

through that process is most likely much smaller than the heat lost to the atmosphere south of462

the PF.463

2. The reduction of sea ice south of the PF reduces the seasonal freshwater input to BSW asso-464

ciated with local sea ice melt. Based on their model simulations, Ellingsen et al. (2009) found465

that between 1979 and 2007, melt water from imported sea ice contributed 0.02 Sv of fresh-466

water on average. This is enough to decrease the mean salinity of their simulated 1.1 Sv AW467

inflow (salinity 35.1) to salinity of 34.4. However, in their study, Ellingsen et al. (2009) does468

not account for the PF’s role in partitioning sea ice meltwater between BSW and ArW, and469

considers that the input of sea ice meltwater takes place entirely south of the PF, and thus can470

convert AW into ArW. Here we revisit their calculation, taking into account the partitioning471

of meltwater at the PF.472

To calculate the meltwater input south of the PF before 2005, we assume that the sea ice found473

south of the front was 1 m thick, which is a typical thickness for first-year ice in the Barents474
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Sea (Ellingsen et al. 2009; Smedsrud et al. 2010). In contrast to Ellingsen et al. (2009), we475

only consider the box that contains the area south of the PF and north of the Coastal Water476

front shown by the dark-blue box on Figure 1, and assume that the AW is not modified before477

it enters that box. Within this box, the reduction in sea ice area south of the PF by 68 300 km2
478

between the pre and post-2005 periods (Figure 6) corresponds to a 0.0022 Sv reduction in479

the freshwater input south of the PF after 2005 when the sea-ice is no longer present. This is480

assumed to mix ubiquitously into BSW.481

To calculate the dilution of AW by sea ice melt, we estimate the volume to be diluted by482

comparing the AW inflow to the BSW outflow. Following Gammelsrød et al. (2009), we483

assume a BSW transport leaving the Barents Sea between Novaya Zemlya and Franz-Josef484

Land of 1.25 Sv (observed transport scaled up by the difference between virtual current meters485

and modeled, whole-section transport). For comparison the net annual observed AW inflow486

through the BSO is 1.1 – 1.2 Sv (Skagseth 2008; Ingvaldsen et al. 2004) (excluding transport487

associated with Norwegian Coastal Current). This implies that there is no net storage of488

BSW in the Barents Sea, such that the volume of AW to be diluted is VAW = 1.1 Sv (note, a489

change of AW volume transport across our time period cannot be estimated from the available490

observations).491

The salinity of inflowing AW should also be taken into account when calculating a change492

in BSW salinity. As shown on Figure 5d, the mean properties of AW at the Fugløya–Bear493

Island section for 1985 to 2005 were T = 5.44 ±0.06 ◦C, S = 35.067 ± 0.003 and for 2005494

to 2016 they were T = 6.08 ±0.07 ◦C, S = 35.120 ±0.005 (the changes between the two495

periods are significant). Using these different salinity values and considering that the input496

of freshwater south of the PF vanishes after 2005, we perform a simple dilution calculation,497
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following the equation: C = [MAW +MFW ]/[VAW +VFW ], where C is the concentration of498

salt, M is the mass of salt and V is the volume, AW is Atlantic Water and FW is fresh sea499

ice meltwater. We also assume a constant salinity value of 3 for first-year sea ice (Ellingsen500

et al. 2009), and constant net AW inflow (BSW outflow) of 1.1 Sv (1.25 Sv) (Skagseth 2008;501

Gammelsrød et al. 2009). Based on this framework, pre-2005 the mean input of 0.0022 Sv502

of freshwater results in a reduction of -0.063 (-0.056) of the BSW salinity, while post-2005,503

the BSW salinity would equal the AW salinity which additionally increased by 0.053 across504

this time period. Our dilution calculation predicts a change of BSW salinity by ∼0.11, which505

is in broad agreement with the significant increase of BSW salinity estimated from the EN4506

dataset (from 34.844 ±0.003 to 34.900 ±0.002, Figure 6c). This suggests that the increase in507

BSW salinity is likely a combination of the change in sea ice area and the change in inflowing508

AW salinity.509

When comparing the mean BSW temperature over the two periods in EN4, it increases by510

0.38 ◦C, which is about a half of the 0.8 ◦C required to compensate density changes arising511

from the 0.056 mean salinity increase observed. These changes in temperature and salinity512

have led to a significant increase of BSW density from 1029.092 ±0.002 kg m−3 pre-2005 to513

1029.116 ±0.002 kg m−3 post-2005.514

The 0.024 kg m−3 increase in BSW density between the two periods has to be compared against515

the gain in density resulting from the transformation of AW to BSW. Pre-2005, the density trans-516

formation amounted to ∼0.33 kg m−3, a combination of 5.9 ◦C decrease and 0.23 salinity decrease517

(based on AW properties at the BSO). This means a further 8% density change in BSW relative to518

the pre-2005 era.519
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Our comparison of the two periods (pre and post 2005) suggests that a regime shift occurred520

in 2005. Yet, one needs to remember that there is well-known multidecadal variability affecting521

SLP, sea ice concentration, SAT and AW temperature (Venegas and Mysak 2000; Smedsrud et al.522

2013; Levitus et al. 2009; Ingvaldsen et al. 2003). Variability at a 30–50 year frequency is thought523

to be driven by the Atlantic Multidecadal Oscillation, suggesting that long-term variations in the524

Barents Sea are driven by large-scale fluctuations (Levitus et al. 2009). These variations are also525

affecting the formation, properties and volume of BSW on similar timescales (Årthun et al. 2011).526

Analysis by Onarheim and Årthun (2017) of an observed time-series of winter sea ice extent from527

1850 to 2017 in the Barents Sea complemented by analysis of climate simulations also emphasises528

the existence of variations with a 50 year periodicity. However, their results show winter sea ice529

extent in the Barents Sea has been lower since the 1990 than in the the rest of the time period and530

that there is an unprecedented negative trend in the last 30 years that has less than 5% probability531

of occuring in all preindustrial simulations. This suggests that winter sea ice in the Barents Sea532

has most likely not been inhibited by the PF during 1850 to 2005. Further evidence comes from533

the observations by Smedsrud et al. (2013), suggesting that Arctic SAT and AW temperature at the534

Kola section were both greater after ∼2000 than at any time from the last century.535

6. Conclusion536

The goal of this study was to investigate how changes and feedbacks between sea ice and the PF537

in the Barents Sea may have affected BSW properties over the past decades. We have identified538

and located the PF in the eastern Barents Sea using satellite SST observations, a feature that has539

been obscured by seasonal sea ice between 1985 and 2004. While a summer mixed layer and540

seasonal front does form in association with the melt of seasonal sea ice, as is the case in other541

regions (Dewey et al. 2017), the PF persists throughout the year as a front with steeper gradients542
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in salinity and temperature in the eastern Barents Sea at 76.5◦ N, running parallel to the 220 m543

isobath (Figure 3). The PF is a potential vorticity-constrained, shelf slope current at the steep544

ridge formed by Great Bank and Ludlov Saddle. Since 2005, the sea ice is inhibited in its winter545

southward extent by the increase in temperature gradients across the PF, a change most likely546

driven by an increase in AW temperature.547

Our results provide new evidence that, in addition to the natural multidecadal variability, the548

Barents Sea is currently undergoing atlantification, with the corresponding temperature and salin-549

ity increases catalysed by the observed PF constraint on the sea ice edge. The loss of winter sea550

ice south of the front represents a loss of freshwater input to BSW, a water mass which makes551

up 50 – 80% of AIW. As the stationary PF, rather than the mobile sea ice edge, has become the552

limiting factor controlling the northern boundary of the surface area available for AW cooling in553

winter, the buffering effect to BSW temperature from the variations of sea ice conditions has de-554

creased. Observations show a change in BSW properties over the same time period resulting in555

denser BSW, which could in turn result in a deeper settling depth of BSW once exported to the556

Arctic Basin through St. Anna Trough (Dmitrenko et al. 2015), with potential far-reaching impacts557

for the dense water outflow through Fram Strait (Lique et al. 2010; Moat et al. 2014) or the density558

of the Denmark Strait overflow (Karcher et al. 2011), both of which are important for the deeper559

branch of the AMOC.560
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TABLE 1. Definitions of the water masses present in the Barents Sea used in this study, along with definitions

used in previous studies. Note that Barents Sea Water can be referred to as Modified Atlantic Water in literature.

795

796

Water Mass Source Temperature Salinity Density

Atlantic Water (AW) Present Study T >3.0 S >35.0

Oziel et al. (2016) T >3.0 S >34.8

Loeng (1991) T >3.0 S >35.0

Arctic Water (ArW) Present Study T <0.0 S <34.7

Oziel et al. (2016) T <0.0 S <34.7

Loeng (1991) T <0.0 34.3 <S <34.8

Coastal Water (CW) Present Study T >2.0 S <34.7

Oziel et al. (2016) T >3.0 S <34.4

Loeng (1991) T >2.0 S <34.7

Barents Sea Water (BSW) Present Study T <2.0 S >34.7 σ >27.85

Schauer et al. (2002) σ >27.85

Oziel et al. (2016) T <2.0 S >34.8 σ >27.8

Loeng (1991) -1.5 <T <2.0 34.7 <S <35.0
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Fig. 7. Eastern Barents Sea transect at 44◦ E (shown in Figure 1) from the MIMOC and EN4 cli-837

matology during winter (December, January, February), EN4 is averaged over 1985 – 2016.838

The Polar Front is marked by the black triangle. (a,b) Salinity, (c,d) temperature and (e,f)839

potential density. White areas in (a-f) indicate grid cell with no data, black points show the840

grid cells containing BSW, and the EN4 sub-section (black dashed area) used to produce the841

BSW temperature and salinities (Figure 6). (g,h) T-S diagrams showing the different water842

39



masses present in (a-f). The color indicates the latitude of the profile. The green dotted area843

in (g,h) shows the limits of the BSW definitions, and AW, ArW and CW water masses are844

indicated (see Table 1 for their definitions) . . . . . . . . . . . . . . . 47845

40



FIG. 1. Bathymetry of the Barents Sea. The different lines and box indicate the area used for EOF analysis of

SST (green box), the region used for Hovmoller analysis (blue-dashed box), the cross-front transect (light-blue

line), the area selected for calculating the contribution of sea ice to AW/BSW (dark-blue box), the area selected

for 100 – 300 m BSW properties from EN4 data and 0 – 100 m ArW properties from EN4 data (cyan-dashed

box), the area selected for 0 – 100 m surface BSW properties from EN4 data south of the PF (yellow-dashed

line), the the Kola section (orange line) and the Fugløya–Bear Island section (red line).
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FIG. 2. (a) Mean SST across the Barents Sea with a 12-month running mean (blue line). The linear trend for

the periods 1985 to 2004 and 2005 to 2016 are shown (green lines). Trend in SST for the periods (b) 1985 to

2004 and (c) 2005 to 2016. Note that a different colour scale is used in the two panels. Trends are significant at

a level of 95% in un-hatched areas. The black line indicates the 220 m isobath.
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FIG. 3. SST seasonal climatology from 2005 to 2016 for (a) spring (March, April and May), (b) summer

(June, July and August), (c) autumn (September, October and November) and (d) winter (December, January

and February), respectively. Gradient in SST seasonal climatology from 2005 to 2016 for (e) spring, (f) summer,

(g) autumn and (h) winter, respectively. The sea ice edge is defined by 15% sea ice concentration (white line)

and the black line indicates the 220 m isobath.
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FIG. 4. As Figure 3 but for the seasonal climatology from 1985 to 2004.
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FIG. 5. (a) Spatial pattern of first EOF mode of SST variability. The black line indicates the 220 m isobath.

(b) Regression of PC 1 with SAT. Maximum correlation (r-value) is shown in the bottom left hand corner and

the location of the maximum correlation is shown by a black cross. Hatched areas are not significant at the

95%-level. (c) Time series of PC 1. (d) Time series of AW temperature at the Kola section (blue line, 12-month

running mean applied) and Fugløya–Bear Island (FB) section (green line, 12-month running mean applied). (e)

Time series of sea ice extent in the Barents Sea (12-month running mean applied). Correlations between each

variable and PC 1 are indicated.
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FIG. 6. (a) Magnitude of the meridional gradient in zonally-averaged SST between 35◦ E and 50◦ E (blue-

dashed box on Figure 1) and Polar Front location (dashed line). The magnitude is normalized on a daily basis

by its standard deviation to show the changes in the position of the front over time. Note that changes in

intensity over time cannot be deduced from (a). (b) Latitude of the sea ice edge for the same region. (c) mean

SST gradient between 76.3◦ N and 76.7◦ N before normalization (blue line, 12-month running mean applied)

and AW temperature from the Kola section (green line, 12-month running mean applied, section marked in

Figure 1). Gaps indicate missing data and sea ice coverage for AW and the SST gradient respectively. (d) BSW

salinity (blue line) and temperature (green line) between 100 and 300 m from the EN4 data, averaged in the

cyan-dashed box on Figure 1. Uncertainty values for EN4 data are shown by the shaded areas. Dashed green

and blue lines in (c) and (d) show the respective means for 1985 – 2004 and 2005 – 2016.
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FIG. 7. Eastern Barents Sea transect at 44◦ E (shown in Figure 1) from the MIMOC and EN4 climatology

during winter (December, January, February), EN4 is averaged over 1985 – 2016. The Polar Front is marked

by the black triangle. (a,b) Salinity, (c,d) temperature and (e,f) potential density. White areas in (a-f) indicate

grid cell with no data, black points show the grid cells containing BSW, and the EN4 sub-section (black dashed

area) used to produce the BSW temperature and salinities (Figure 6). (g,h) T-S diagrams showing the different

water masses present in (a-f). The color indicates the latitude of the profile. The green dotted area in (g,h)

shows the limits of the BSW definitions, and AW, ArW and CW water masses are indicated (see Table 1 for their

definitions)

878

879

880

881

882

883

884

885

47


