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C
hanges in the hydrological cycle with widespread conse-
quences for humans and ecosystems are expected across the 
world under global warming1–4. Water availability on land, 

determined by precipitation (P) minus evapotranspiration (ET)5–8, 
represents a major concern in this context. Identifying and attrib-
uting changes in water availability due to historic human-induced 
climate change has been hindered by length and quality of obser-
vational records1, natural climate variability8,9 and additional effects 
from aerosol emissions10. Nevertheless, there is growing evidence 
of human influence on observed P changes11,12, ET changes from 
hydrological models13, trends in continental-scale river flow14, 
trends in drought severity10 and trends in global root zone soil mois-
ture from reanalysis and climate models15.

There are large uncertainties concerning both drought changes 
in the recent past1 and future water availability projections6. The 
ET response to warming is a key component of these uncertain-
ties. Earlier drought assessments with the Palmer Drought Severity 
Index16, a metric that relies on temperature-based potential ET, 
pointed to a substantial increase in aridity since the 1970s17,18. 
However, this was shown to be overestimated by using a modi-
fied version of the index that also accounts for available energy, air 
humidity and wind speed when computing potential ET19. More 
importantly, climate models indicate that actual ET does not fol-
low the increasing rate of potential ET under warming induced 
by an increasing concentration of atmospheric CO2

5,20,21. In addi-
tion, a simplified expectation of enhanced patterns of P – ET under 

global warming has been suggested22 but was shown not to apply 
for annual averages over land6,23,24. There are also reports of an 
observed increase in the annual range between wet and dry season 
P over land, although mainly due to wetter wet seasons,25 as well as 
projected decreases in dry season P over the Amazon26 and in dry  
season P – ET over most of the Northern Hemisphere7,8.

Here we analyse how dry-season water availability, represented by 
minimum monthly P – ET, has changed over the past century using 
new observation-based data. On the one hand, we employ recently 
published datasets of global runoff (R)27 and terrestrial water storage 
fluctuations (ΔTWS)28 from 1902 to 2014 to obtain water availabil-
ity estimates according to the water balance P � ET ¼ Rþ ΔTWS

I

. 
The datasets for both R and ΔTWS are reconstructions from sta-
tistical data-driven models (DDM) calibrated with observations, 
which perform well compared with state-of-the-art hydrological 
models27,28. Near-surface air temperature and P data are used as 
explanatory variables for both reconstructions. On the other hand, 
we also employ the mean P – ET of multiple land-surface model 
(LSM) simulations that are driven with observational atmospheric 
data29. The atmospheric forcing data used for both the DDM and 
LSM reconstructions are from the Global Soil Wetness Project Phase 
3 (GSWP3)30. Although these reconstructions are not exempt from 
caveats such as not accounting for land-use changes (DDM), local 
land–atmosphere feedbacks (LSM) and groundwater withdrawal 
(DDM and LSM), they are complementary and increase confidence 
in our analysis.

Observed changes in dry-season water availability 
attributed to human-induced climate change
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Human-induced climate change impacts the hydrological cycle and thus the availability of water resources. However, previous 
assessments of observed warming-induced changes in dryness have not excluded natural climate variability and show conflict-
ing results due to uncertainties in our understanding of the response of evapotranspiration. Here we employ data-driven and 
land-surface models to produce observation-based global reconstructions of water availability from 1902 to 2014, a period 
during which our planet experienced a global warming of approximately 1 °C. Our analysis reveals a spatial pattern of changes 
in average water availability during the driest month of the year over the past three decades compared with the first half of the 
twentieth century, with some regions experiencing increased and some decreased water availability. The global pattern is con-
sistent with climate model estimates that account for anthropogenic effects, and it is not expected from natural climate vari-
ability, supporting human-induced climate change as the cause. There is regional evidence of drier dry seasons predominantly 
in extratropical latitudes and including Europe, western North America, northern Asia, southern South America, Australia and 
eastern Africa. We also find that the intensification of the dry season is generally a consequence of increasing evapotranspira-
tion rather than decreasing precipitation.
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Changes in dry-season water availability (in mm month−1) are 
computed as:

Δ P � ETð Þ ¼ P � ETð Þpres� P � ETð Þpast

where P � ETð Þpres
I

 is the average of minimum monthly P – ET from 
the recent period 1985–2014 and P � ETð Þpast

I

 is the average from 
the reference period 1902–1950. We omit the period 1951–1984, 
during which anthropogenic aerosol emissions had the highest 
confounding effect on the response of climate to greenhouse gas 
emissions10,31. In the tropics, we consider minimum P – ET from all 
months of the year, whereas in extratropical latitudes (>23.5°), we 
focus only on the warmer months: May–September in the Northern 
Hemisphere and November–March in the Southern Hemisphere.

Pattern of change in dry-season water availability
Changes in minimum monthly P – ET since the early 1900s are 
shown throughout the world on the basis of DDM (Fig. 1a) and 
LSM reconstructions (Fig. 1b). There is an agreement in the sign 
of the changes between these reconstructions over 59% of all land 
grid cells, excluding Antarctica, Greenland and deserts with annual 
P below 100 mm (see Extended Data Fig. 1). The DDM (LSM) data 
indicate a predominant decrease in dry-season water availability 
over 57% (56%) of the land area, whereas there is increased water 
availability in the remaining 43% (44%) (see also Extended Data  
Fig. 2). In regions with drying dry seasons, there is a median decrease 
of 2.1 mm month−1 since the first half of the twentieth century for 
the DDM and 2.8 mm month−1 for the LSM, whereas in regions with 
wetter dry seasons, the median increase is 1.8 mm month−1 for the 
DDM and 2.7 mm month−1 for the LSM. In addition, note that there 
is little sensitivity of the observed patterns of change in dry-season 
water availability to the definition of the reference period (Extended 
Data Fig. 3). Different stochastic realizations of the ΔTWS recon-
struction (there are no stochastic realizations of the R reconstruc-
tion), as well as reconstructions from individual LSMs, also show a 
general agreement that supports the pattern of Δ(P – ET) (Extended 
Data Figs. 4 and 5). Finally, results are generally consistent when 
analysing minimum 3-monthly P – ET, as opposed to monthly 
(Extended Data Fig. 6).

Both observation-based reconstructions (DDM and LSM) 
indicate a pattern of enhanced dry seasons at extratropical lati-
tudes. Regions affected by an intensification of the dry season 
include Europe, western North America, northern Asia, southern 
South America, Australia, northern Andes and eastern Africa. 
Approximately three-fourths of the land area in these regions shows 
reduced water availability during the dry season for at least one of 
the reconstructions. However, dry-season water availability has also 
increased elsewhere; for example, in inland China, southeastern 
Asia and the Sahel.

climate change signal detected in observed change pattern
The multimodel mean of 36 coupled climate model simulations 
(Extended Data Table 1) with historical radiative forcing also suggests 
a decrease in dry-season water availability in many regions where 
this was observed (Fig. 1c). Conversely, simulations that exclude 
human influence while taking into account only historical natural 
radiative forcing do not capture the observed changes (Fig. 1d).  
Some differences are expected between the multimodel mean 
and observations; for example, the spatially smoother and weaker 
changes from the multimodel mean arise from averaging over sev-
eral different possible evolutions of the climate system, whereas 
the reconstructions correspond to the single observed evolution 
of the system (see Extended Data Fig. 7 for agreement in the sign 
of Δ(P – ET) between the individual climate models). In addition, 
higher observational and model uncertainties probably contribute 
to the disagreement in the Amazon and central Africa. Potential  

differences also may arise from the representation of land use 
changes. Nonetheless, climate simulations point to human-induced 
climate change as the underlying reason for the observed pattern of 
change in dry-season water availability.

To formally assess the influence of anthropogenic climate change 
on observed average minimum monthly P – ET, we formulate the 
null hypothesis that there is no difference between the pattern of 
observed changes in water availability and what is expected from 
natural climate variability. To test this, we first approximate natural 
climate variability by computing hundreds of estimates of changes 
in dry-season water availability from climate model simulations 
forced with pre-industrial conditions (Δ(P – ET)mdl,pi), while using 
equivalent 113-yr periods as for the observations. Then we obtain 
the spatial pattern Spearman correlation of each Δ(P – ET)mdl,pi  
estimate with the multimodel mean change during the same histo-
rical period as for the observations (Δ(P – ET)mdl,hist). The resulting  

∆(P – ET) (mm month–1)

–4 –2 0 2 4 >6<–6

a

b
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d

Fig. 1 | Patterns of change in dry-season water availability from 

observation-based reconstructions and climate models. a, DDM 

reconstruction. b, LSM reconstruction. c,d, Simulated changes based on 

multimodel mean of coupled climate models with historical radiative 

forcing that includes human-induced emissions (c) and with only natural 

historical radiative forcing (no human-induced emissions) (d). For d the 

latter period ends in 2005 because no further data are available. Grey lines 

indicate tropical boundaries at 23.5° S and 23.5° N. Antarctica, Greenland 

and desert regions with annual P below 100 mm are masked in grey.

NAtuRe GeOScIeNce | VOL 13 | JULy 2020 | 477–481 | www.nature.com/naturegeoscience478

http://www.nature.com/naturegeoscience


ARTICLESNATURE GEOSCIENCE

distribution gives the range of spatial correlations with the simu-
lated historical estimate that can be expected from natural climate 
variability alone. Finally, if the correlations of Δ(P – ET)mdl,hist with 
the observed change Δ(P – ET)obs given by the DDM and LSM 
reconstructions are greater than what is expected from natural vari-
ability, then we conclude that a response to anthropogenic climate 
change is detectable in the observed pattern (see Methods).

Our results indicate an extremely likely contribution of 
human-induced emissions to the observed pattern of changes in 
dry-season water availability (Fig. 2a), since there is a 99% prob-
ability that the spatial Spearman correlation between Δ(P – ET)mdl,hist 
and Δ(P – ET)obs is greater than what is expected from natural cli-
mate variability; thus, the null hypothesis is rejected. When evaluat-
ing spatial pattern agreement in the sign of Δ(P – ET) as opposed 
to the correlation, the corresponding probabilities are greater than 
98% for both the DDM and LSM reconstructions. In addition, the 
agreement between observations and the multimodel mean disap-
pears when replicating the analysis for historical simulations that 
include natural radiative forcing but no human-induced forc-
ing (Fig. 2b), suggesting that the considered climate models cap-
ture the observed change only if human influence is taken into 
account. Furthermore, these results are generally confirmed when 
analysing each LSM reconstruction individually, as opposed to the 
mean reconstruction (Extended Data Table 2). In addition, there is  
one reconstruction available that uses cruNcep32 as atmospheric 
forcing data (that is, CNRM-CM6–1-cruNcep) instead of the 
GSWP3 forcing. In this case, the level of agreement with the histo-
rical estimate from coupled climate models is also greater than  
what can be expected from natural climate variability with a prob-
ability of 92% (99.7% when analysing pattern agreement in the sign 
of the changes).

Individual changes in precipitation and evapotranspiration
The observed changes in dry-season water availability Δ(P – ET) 
result from changes in precipitation ΔP and evapotranspiration 
ΔET, since Δ(P – ET) = ΔP – ΔET. Figure 3 shows the separate 
contributions of these two terms for the DDM and LSM recon-
structions, as well as for the multimodel mean of climate model 
simulations with historical human-induced plus natural radia-
tive forcing. According to both the DDM and LSM reconstruc-
tions, ΔET favoured a decrease in available water on 64% of the 
land area, whereas this is the case on only 41% of the land for ΔP. 
Corresponding values from historical climate simulations are very 

similar, with 63% of land where ΔET favours a decrease in water 
availability and 44% of land where ΔP does. At extratropical lati-
tudes, in particular, it is clear that the decrease in dry-season P – ET 
is driven mainly by ET rates that outpace the increase in P (Fig. 4). 
At these latitudes, on the basis of the DDM (LSM) reconstruction, 
ET increases on 79% (86%) of the area with negative Δ(P – ET) and 
contributes more to the drying than P on 72% (74%) of it, high-
lighting the dominant role ET played to decrease water availabil-
ity. Corresponding percentages from historical climate simulations  
are even higher. However, within the tropics, the northern Andes 
and central Africa are noteworthy regions where decreases in  
P contribute to less available water during the dry season. In addi-
tion, we note that it is highly unlikely that ET would increase in 
locations where P decreases, since ET can be water limited; ΔP and 
ΔET show the same sign in 86% of all grid cells for the DDM recon-
struction, in 72% for the LSM reconstruction and in 78% for the 
climate models mean. Overall, our results portray how increased 
ET contributed to drier dry seasons, which is supported by other 
studies that highlight the importance of ET for the onset and ampli-
fication of drought33,34. This is also consistent with increasing atmo-
spheric water demand being more evenly distributed in space and 
time compared with changes in P. Meanwhile, it has been suggested 
that soil moisture limitation has caused a decline in the annual  
land ET trend35.

In conclusion, there are multiple lines of evidence indicating 
that changes in dry-season water availability since the first half of 
the twentieth century are attributable to human-induced climate 
change. Our results are based on new reconstructions of terres-
trial water dynamics from data-driven and land-surface models, 
together with historical climate model simulations. The fact that cli-
mate models only reproduce a pattern similar to the reconstructed 
changes in water availability when accounting for human-induced 
forcing indicates that it is highly unlikely that potential uncertain-
ties in the reconstructions could meaningfully alter our conclusions. 
Moreover, the reconstructions and historical climate model simula-
tions do not agree only on water availability changes, but also on the 
underlying contributions of P and ET to the changes (Fig. 4). The 
regional changes in available water during the driest month of the 
warm growing season are likely to have also affected the energy and 
carbon cycles through their link with the water cycle. Consistent 
with drying in extratropical latitudes, in recent years we have expe-
rienced more-frequent and widespread hot extremes36 possibly 
amplified by the coupling between soil moisture and temperature37. 
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Fig. 2 | Pattern correlations of changes in dry-season water availability between simulations with and without anthropogenic climate change 

and observation-based reconstructions. a, Spatial pattern Spearman correlation between the multimodel mean from historical simulations with 

human-induced plus natural radiative forcing and observed changes (that is, correlation of Δ(P – ET)mdl,hist and Δ(P – ET)obs) compared with an empirical 

probability density function of correlations expected from natural climate variability (that is, correlations of Δ(P – ET)mdl,hist and 320 estimates of 

Δ(P – ET)mdl,pi). b, Same as a but for the multimodel mean from historical simulations with natural radiative forcing only, that is, Δ(P – ET)mdl,histNat instead  

of Δ(P – ET)mdl,hist. Antarctica, Greenland and desert regions with annual P below 100 mm are omitted when computing the spatial correlations.

NAtuRe GeOScIeNce | VOL 13 | JULy 2020 | 477–481 | www.nature.com/naturegeoscience 479

http://www.nature.com/naturegeoscience


ARTICLES NATURE GEOSCIENCE

In addition, since vegetation productivity is sensitive to water avail-
ability38, observed dry-season changes could have influenced the 
land carbon sink39. The observed regional tendencies are projected 
to continue under further global warming, highlighting the need for 
timely climate action.

Online content
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Methods
Changes in dry-season water availability. �e de�nition of water available 
to society corresponds to that of renewable freshwater resources given by the 
long-term average �ow of streams and groundwater, that is, R + ΔTWS, which is 
equivalent to P – ET on the basis of the water balance. �erefore, here we de�ne 
dry-season water availability as annual minimum monthly P – ET, similar to 
previous studies7,8. Note that this de�nition does not include the actual magnitude 
of TWS, which is a�ected by P and ET from preceding months.

For the DDM reconstruction of water availability we use R and ΔTWS 
estimates P � ET ¼ Rþ ΔTWSð Þ

I

 from two new reconstructions calibrated with 
observations, which perform well compared with state-of-the-art hydrological 
models27,28. The reconstructions employ P and near-surface air temperature data 
as explanatory variables. It could be that potential additional influences on past 
continental water availability, for example land use changes and the response 
of vegetation to increasing atmospheric CO2

40,41, are not fully captured in these 
reconstructions. In addition, we employ P – ET data from six LSMs that are driven 
with observational atmospheric GSWP330 data and correspond to the Land 
Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP)29. The 
LSMs account for land use changes but do not include local land–atmosphere 
feedbacks. Note that Extended Data Table 2 also includes results from a single LSM 
reconstruction driven with observational atmospheric data from cruNcep32. These 
simulations are interpolated to a common 2.5° × 2.5° grid using second-order 
conservative remapping.

Monthly P – ET data are available during the period 1902–2014. For each year 
in this period, we identify the month with the lowest P – ET; that is, one value of 
(P – ET)min per year y. For grid cells within tropical latitudes (≤23.5°), we identify 
the month with minimum P – ET from all 12 months of each year, whereas in 
extratropical latitudes (>23.5°), we identify the month with minimum P – ET only 
from the period May–September in the Northern Hemisphere and from the period 
November–March in the Southern Hemisphere. We consider these periods to 
represent warmer months within the active vegetation season. Next we compute at 
each grid cell the average of (P – ET)min during the recent period 1985–2014 as:

P � ETð Þpres¼
1

30

Xy¼2014

y¼1985
P � ETð Þmin;y

ð1Þ

and correspondingly during the reference period 1902–1950 as:

P � ETð Þpast¼
1

49

Xy¼1950

y¼1902
P � ETð Þmin;y

ð2Þ

Last, we define the change in dry-season water availability as the difference 
between the recent and reference periods:

Δ P � ETð Þ ¼ P � ETð Þpres� P � ETð Þpast ð3Þ

We consider a multidecadal present and past period to reduce the influence of 
natural short-term interannual variability on the analysed change. Extended  
Data Fig. 3 shows the sensitivity of the observed change to the definition of the 
reference period.

Land area fraction. Data are available in a regular longitude–latitude grid. 
Therefore, grid cells do not have an equal size, with smaller grid cells at higher 
latitudes. Hence, for calculating the land area fractions, we must assign a weight to 
each grid cell on the basis of size. Here we compute these weights (wi) as the size of 
each grid cell at latitude lati relative to the size of the largest grid cells located at the 
Equator, given by:

Wi ¼
sin lati þ 0:5 ´ resð Þð Þ � sin lati � 0:5 ´ resð Þð Þ

sin 0:5 ´ resð Þ � sin �0:5 ´ resð Þ

�

�

�

�

�

�

�

�

ð4Þ

where lat is the vector indicating the latitude of each grid cell centre, and ranges 
from −90 + (0.5 × res) to 90 − (0.5 × res) with increasing step or resolution denoted 
by res.

Attribution of changes in dry-season water availability to human-induced 
climate change. Here we follow a simple attribution approach based on a 
correlation analysis using observation-based reconstructions (obs) and different 
climate model simulations (mdl)14,42. Employed simulations from the fifth 
phase of the Coupled Model Intercomparison Project (CMIP5) are bilinearly 
interpolated to a common 2.5° × 2.5° grid and detailed in Extended Data Table 
1. They include historical simulations (hist) with radiative forcing from both 
human-induced emissions (greenhouse gases and aerosols) and natural forcing 
(volcanic and solar activity), historical simulations (histNat) with natural forcing 
only, and simulations with greenhouse gas levels set to pre-industrial conditions 
(pi)43. Both hist and histNat simulations end in 2005. We extend hist simulations 
with those from the Representative Concentration Pathway 8.5 (RCP 8.5)44 until 
2014 to match the observational record period. Following the same procedure 
as for the reconstructions, we obtain for each model the change in dry-season 
water availability as the difference between equation (1) and equation (2). The 
multimodel mean is denoted as Δ(P – ET)mdl,hist. We also obtain Δ(P – ET)mdl,histNat. 

However, note that because there are no data to extend histNat simulations, 
equation (1) is adjusted as follows:

P � ETð Þpres¼
1

21

Xy¼2005

y¼1985
P � ETð Þmin;y

ð5Þ

In addition, we obtain 320 estimates of changes in dry-season water availability 
from pi simulations (Δ(P – ET)mdl,pi) by considering 113-yr periods and computing 
the difference between the last 30 years and the first 49 years of the period, as for 
the observations. Given that these pi simulations do not include additional forcing 
from greenhouse gas emissions, they represent possible changes resulting only from 
natural climate variability. Because of model resolution, the latitudinal tropical 
boundary is set at 22.5° instead of 23.5°. Observed changes denoted by Δ(P – ET)obs 
are recomputed after averaging to a coarser 2.5° grid resolution to match the model 
data. Note that when comparing Δ(P – ET)mdl,histNat with Δ(P – ET)obs, the changes 
are between the recent period 1985–2005 (instead of 1985–2014) and the reference 
period 1902–1950.

The logic behind our attribution methodology is as follows:

 1. �e multimodel mean of coupled simulations with historical forcing 
(mdl,hist) estimates the response of the climate system to the external forcing 
given by human-induced climate change.

 2. �e spatial correlation between this multimodel mean and the observations, 
that is corr(mdl,hist and obs), quanti�es the similarity between the observed 
response and the estimated response to human-induced climate change.

 3. �e null hypothesis is that there is no signal in the observations resulting 
from human-induced climate change, and therefore corr(mdl,hist and obs) is 
only a consequence of natural climate variability (ncv).

 4. To test this hypothesis, we need estimates of possible responses of the climate 
system arising only from ncv to obtain a distribution of corr(mdl,hist and ncv).

 5. �e ncv estimates are approximated using coupled climate model simulations 
without any of the external forcing from human-induced climate change, also 
referred to as simulations forced with pre-industrial conditions (pi).

 6. If corr(mdl,hist and obs) is greater than almost all the estimates of 
corr(mdl,hist and ncv), then the null hypothesis is rejected with high con�-
dence. �is indicates that the observed response includes a signal stemming 
from the external forcing given by human-induced climate change.

 7. Furthermore, if the null hypothesis cannot be rejected when using the 
multimodel mean of coupled simulations with only historical natural forcing 
(mdl,histNat) as opposed to full historical forcing (mdl,hist), then the in�u-
ence of human-induced climate change on the observed response is con�rmed.

In summary, if the spatial Spearman correlation between Δ(P – ET)mdl,hist and 
Δ(P – ET)obs is greater than what is expected from natural climate variability (that 
is, correlations between Δ(P – ET)mdl,hist and each of the hundreds of estimates of 
Δ(P – ET)mdl,pi), then we could conclude that a response to the historical forcing 
is detectable in the observed pattern. Next, if the spatial Spearman correlation 
between Δ(P – ET)mdl,histNat and Δ(P – ET)obs is not different than what is expected 
from natural climate variability (that is, correlations between Δ(P – ET)mdl,histNat 
and estimates of Δ(P – ET)mdl,pi), then it is unlikely that historical natural radiative 
forcing is causing the observed pattern. Thus, it would follow that it is highly likely 
that human-induced climate change is causing the pattern of observed changes in 
dry-season water availability.

Contribution of changes in P and ET to changes in dry-season water 
availability. Changes in dry-season water availability given by equation (3) result 
from changes in both P and ET, as follows:

Δ P � ETð Þ ¼ ΔP � ΔET ð6Þ

Increases in P and decreases in ET favour an increase in dry-season water 
availability, whereas decreases in P and increases in ET favour a decrease in 
available water. For the DDM reconstruction, we use P data from GSWP330 and 
derive ET from the water balance ET ¼ P � R� ΔTWS

I

. Conversely, the LSM 
reconstructions directly estimate ET and, therefore, avoid the potential for error 
amplification, which arises when computing ET as a residual. As described in the 
preceding, there is one value of (P – ET)min per year corresponding to the month 
with the lowest P – ET. Pmin and ETmin then correspond to the values from this 
month. By replacing (P – ET) in equations (1) and (2) with P and ET separately, 
we obtain Ppast, Ppres, ETpast and ETpres. The contributions of changes in P and ET to 
changes in dry-season water availability are computed as:

ΔP ¼ Ppres � Ppast ð7Þ

ΔET ¼ ETpres � ETpast ð8Þ

Data availability
Precipitation data from the Global Soil Wetness Project Phase 3 (GSWP-3) 
are available at https://doi.org/10.20783/DIAS.501. The runoff reconstruction 
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dataset GRUN is available at https://doi.org/10.3929/ethz-b-000324386, and the 
reconstruction of changes in terrestrial water storage is available at https://doi.
org/10.6084/m9.figshare.7670849. The land-surface model reconstructions and 
CMIP5 climate model data used in this study are available at https://esgf-node.llnl.
gov/projects/esgf-llnl/.
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Extended Data Fig. 1 | Agreement between reconstructions from data driven (DDM) and land surface models (LSM). Mean change in dry season water 

availability from the DDM and LSM reconstructions (that is mean of Fig. 1a, b of the main article). Shown are only grid cells where both reconstructions 

agree on the sign of change. Grey lines indicate tropical boundaries at 23.5°S and 23.5°N. Antarctica, Greenland and desert regions with annual P below 

100 mm are masked in grey.
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Extended Data Fig. 2 | temporal evolution of land area fraction with decrease in dry season water availability. Δ(P – ET) is obtained as the difference 

between average P – ET from a 30-year period centered around the indicated year and average P – ET from the reference period 1902–1950. Lines indicate 

the DDM estimate, as well as the mean of individual LSM reconstructions and the mean of individual climate model simulations. The shaded area 

indicates the ensemble range of the 6 individual LSM reconstructions. The ensemble range of individual climate model simulations is not shown, but in 

the most recent period corresponds to 0.42–0.71 for models with full historical forcing (hist) and 0.46–0.54 for models with only natural historical forcing 

(histNat). Antarctica, Greenland and desert regions with annual P below 100 mm are omitted.
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Extended Data Fig. 3 | Sensitivity to the definition of the reference time period. The reference period considered in Fig. 1 of the article is 1902–1950, 

whereas here we consider 4 alternative options: (a, b) 1902–1930, (c, d) 1911–1940, (e, f) 1921–1950 and (g, h) 1951–1980. Note that during the period 

1951–1980 the influence of aerosol emissions was relatively high. Plots from the DDM reconstruction are shown on the left (a, c, e, g) and plots from the 

LSM reconstruction on the right (b, d, f, h). Grey lines indicate tropical boundaries at 23.5°S and 23.5°N. Antarctica, Greenland and desert regions with 

annual P below 100 mm are masked in grey.
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Extended Data Fig. 4 | contribution of Δ(ΔtWS) to Δ(P – et) from the DDM reconstruction (Fig. 1a) and associated uncertainty. a, Δ(ΔTWS) is the 

difference in average ΔTWS corresponding to the month with minimum P – ET between years in the periods 1985–2014 and 1902–1950. Note that based 

on the water balance Δ(P – ET) = Δ(ΔTWS) + ΔR. The ΔTWS reconstruction used in the article corresponds to the mean of 100 stochastic realizations, 

whereas no stochastic realizations of the R reconstruction are available. b, Fraction of stochastic realizations of Δ(ΔTWS) that result in positive Δ(P – ET) 

at each grid cell. Grey lines indicate tropical boundaries at 23.5°S and 23.5°N. Antarctica, Greenland and desert regions with annual P below 100 mm are 

masked in grey.
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Extended Data Fig. 5 | Agreement between reconstructions from six individual land surface models used for the mean LSM reconstruction (Fig. 1b). 

Fraction of reconstructions with positive Δ(P – ET) at each grid cell. Grey lines indicate tropical boundaries at 23.5°S and 23.5°N. Antarctica, Greenland 

and desert regions with annual P below 100 mm are masked in grey.
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Extended Data Fig. 6 | Sensitivity to the definition of dry season water availability. Dry season water availability is represented by minimum monthly 

P – ET in Fig.1 of the article, whereas here we use minimum 3-monthly P – ET. Grey lines indicate tropical boundaries at 23.5°S and 23.5°N. Antarctica, 

Greenland and desert regions with annual P below 100 mm are masked in grey.
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Extended Data Fig. 7 | Agreement in the sign of Δ(P– et) between individual climate model simulations. Fraction of individual climate model simulations 

with positive Δ(P – ET) at each grid cell for (a) simulations with full historical forcing and (b) simulations with only natural historical forcing. Grey lines 

indicate tropical boundaries at 23.5°S and 23.5°N. Antarctica, Greenland and desert regions with annual P below 100 mm are masked in grey.
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Extended Data Table 1 | List of climate model simulations

CMIP5 simulations used for the attribution analysis. We distinguish simulations with combined historical and RCP8.5 radiative forcing (hist) from 1902 to 2014, simulations with only historical natural 

forcing (histNat) from 1902 to 2005, and long-term simulations with pre-industrial radiative forcing (pi). One initial condition simulation per model is considered, that is the “r1i1p1” member. *Corresponds to 

member “r1i1p2” because no “r1i1p1” simulation is available.
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Extended Data Table 2 | Attribution of changes in dry season water availability to human-induced climate change based on 
reconstructions from individual land surface models

Analysis analogous as for Fig. 2 from the article. Values indicate the probability that the spatial pattern Spearman correlation between multi-model mean Δ(P – ET) from historical simulations and from 

a single land surface model reconstruction is greater than what is expected from natural climate variability. Results are shown for historical simulations with human-induced plus natural radiative forcing 

(Hist) and for simulations with natural radiative forcing only (Hist. Nat.). The probabilities for the multi-model mean of the land surface model reconstructions with GSWP-3 forcing (LSM) as well as for the 

data-driven reconstruction (DDM) are also provided.
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