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ABSTRACT

Feedback between the North Atlantic Oscillation (NAO) and winter sea ice variability is detected and

quantified using approximately 30 years of observations, a vector autoregressive model (VAR), and testable

definitions of Granger causality and feedback. Sea ice variability is quantified based on the leading empirical

orthogonal function of sea ice concentration over the North Atlantic [the Greenland Sea ice dipole (GSD)],

which, in its positive polarity, has anomalously high sea ice concentrations in the Labrador Sea region to the

southwest of Greenland and low sea ice concentrations in the Barents Sea region to the northeast of

Greenland. In weekly data for December through April, the VAR indicates that NAO index (N) anomalies

cause like-signed anomalies of the standardized GSD index (G), and that G anomalies in turn cause oppo-

sitely signed anomalies of N. This negative feedback process operates explicitly on lags of up to four weeks in

the VAR but can generate more persistent effects because of the autocorrelation of G. Synthetic data are

generated with the VAR to quantify the effects of feedback following realistic local maxima of N and G, and

also for sustained high values of G. Feedback can change the expected value of evolving system variables by as

much as a half a standard deviation, and the relevance of these results to intraseasonal and interannual NAO

and sea ice variability is discussed.

1. Introduction

The North Atlantic Oscillation (NAO) strongly in-

fluences weather and climate over the North Atlantic

and surrounding continents, and its forcing mechanisms

and predictability have received considerable attention

(Marshall et al. 2001; Trigo et al. 2002; Hurrell et al.

2003). Although the NAO is generally considered to be

an internal mode of atmospheric variability, it has im-

portant interactions with other components of the cli-

mate system. The NAO strongly impacts North Atlantic

sea surface temperatures (SSTs), and a weak but non-

negligible influence of tropical and extratropical SST on

the NAO has been found (Marshall et al. 2001; Kushnir

et al. 2002; Czaja et al. 2003; Mosedale et al. 2006).

There are also important interactions between the

NAO and winter sea ice on synoptic to decadal time

scales. As the leading mode of variability, the NAO

might be expected to exert an influence on the spatial

distribution of winter sea ice via wind-driven anomalies

of sea ice velocity, surface vertical heat flux, and possibly

horizontal oceanic heat flux. Observations show that

positive NAO years tend to have anomalously high sea

ice concentrations over the Labrador Sea and anoma-

lously low sea ice concentrations over the Barents Sea,

which is consistent with the NAO’s circulation pattern

(Deser 2000). Accordingly, there is strong observational

evidence connecting Arctic sea ice decline with the in-

creasing NAO trend from the 1960s to the early 1990s

(e.g., Rothrock and Zhang 2005), although a signal of

overall Arctic sea ice decline is emerging that is not

directly attributable to a trend in the overlying atmo-

spheric circulation (Deser and Teng 2008).

Modeling studies indicate that NAO-driven sea ice

variability in turn feeds back onto the NAO (Magnusdottir

et al. 2004; Deser et al. 2004; Alexander et al. 2004;

Kvamstø et al. 2004; Seierstad and Bader 2009). This is
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a negative feedback, meaning that the sea ice patterns

associated with the positive polarity of the NAO tend to

generate negative NAO-like atmospheric response pat-

terns. Deser et al. (2007) recently examined the tran-

sient response of an atmospheric global climate model

forced by a positive NAO-driven sea ice anomaly pat-

tern. Their results revealed that the negative feedback

process begins with a localized baroclinic response that

reaches peak intensity in 5–10 days and persists for 2–3

weeks. If the ice forcing is maintained for several months,

the atmosphere develops a larger-scale, equivalent baro-

tropic response that resembles the negative polarity of

the NAO, and this pattern is maintained primarily by

nonlinear transient eddy fluxes of vorticity (Deser et al.

2007) related in part to changes in tropospheric Rossby

wave breaking (Strong and Magnusdottir 2009b).

The research presented here was undertaken to test

whether the negative feedback from sea ice to the NAO

could be detected in observations and, if so, to quantify

this feedback. We tested for the presence of negative

feedback and investigated its effects within the frame-

work of a linear stochastic model representing the evo-

lution of the NAO index and sea ice concentration as

a vector autoregressive process. Mosedale et al. (2006)

recently used a similar statistical framework for exam-

ining the relationship between the NAO and Atlantic

SSTs and found that the SST-to-NAO feedback is re-

sponsible for slower-than-exponential decay in lag auto-

correlations of the NAO at lags longer than 10 days. We

describe our methods in section 2 with additional details

given in the appendix. The manuscript then proceeds

with three results sections in which we illustrate the in-

teraction between sea ice and the NAO, develop a linear

stochastic model of the interaction, and perform nu-

merical experiments with the model. The final section

of the manuscript provides a summary and discussion.

2. Data and methods

a. Data

We use National Snow and Ice Data Center (NSIDC)

sea ice concentrations derived from Nimbus-7 Scanning

Multichannel Microwave Radiometer and Defense Me-

teorological Satellite Program Special Sensor Micro-

wave Imager radiances (Cavalieri et al. 2008). These sea

ice data are available on 25-km grids nominally once

every two days for 1978–86 and once daily for 1987–

2007. There is a gap in the data from 3 December 1987 to

13 January 1988, so we do not include winter 1987/88 in

our study. For 2008, we use the NSIDC’s preliminary

version of the same sea ice data (Meier et al. 2008). We

also use sea level pressure and surface 10-m wind ve-

locity data from the National Centers for Environmental

Prediction (NCEP)–National Center for Atmospheric

Research (NCAR) Reanalysis for the same years.

Our study focuses on processes occurring at weekly

time scales during winter to early spring when the NAO

intensity and sea ice extent are at maximum. We thus

analyze weekly mean data for the 21 weeks with starting

dates ranging from 4 December through 23 April, where

4 December was chosen to give an integer number of

weeks in December. Where we calculate lagged corre-

lations for these 21 weeks, we incorporate weekly mean

values for data prior to 4 December or after 23 April as

needed. The data were detrended and, for each grid

point and week, seasonality was removed by subtracting

the 1978–2008 mean for that grid point and week. Data

processed as described above are referred to as ‘‘21-

week’’ data (e.g., 21-week sea level pressure).

b. Indices

To define the indices used in the study, we use em-

pirical orthogonal function (EOF) analysis. Specifically,

the leading eigenvector of the spatial covariance matrix

of the data is the first EOF, and the time series obtained

by projection of the data onto that EOF is the leading

principal component. Using 21-week data (defined in

section 2a), we define the NAO index (N) as the leading

principal component of sea level pressure for the period

4 December 1978 through 23 April 2008 over the do-

main used in Hurrell (1995): 208–808N and 908W–408E.

A portion of the associated EOF is shown in Fig. 1a and

features the well-known meridional seesaw with a posi-

tive (negative) center of action near 408N (658N). We

define a sea ice index for the same time period as the

leading principal component of 21-week sea ice con-

centration over the domain 408–908N and 908W–908E.

The EOF associated with this sea ice index (Fig. 1b)

resembles that found in observations by Deser et al.

(2000) and has a positive center of action to the south-

west of Greenland and a negative center of action ex-

tending from the Greenland Sea to the Barents Sea. We

refer to this sea ice variability pattern as the Greenland

Sea ice dipole (GSD) and denote its principal compo-

nent by G. As an example of the data, the N and G in-

dices for 2005–08 are shown in Fig. 2.

c. Linear stochastic model

We develop a linear stochastic model of the rela-

tionship between N and G within the framework of a

qth-order vector autoregression [VAR(q)]. The VAR

has two equations, one for the value of G at week t,

denoted Gt, and one for the value of N at week t denoted

Nt. For the so-called primitive or structural form of the

VAR, we write
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where Gt and Nt are assumed to be stationary, «Gt and «Nt

are white noise disturbances with respective standard

deviations sG and sN, and the associated disturbance

time series «G and «N are uncorrelated. The f terms allow

for the possibility of a contemporaneous influence of

one variable on another, and the coefficients inside the

summations provide a means for lagged relationships.

The system cannot be estimated directly unless one of

the f terms is restricted to zero (e.g., Sims 1980). We

choose the restriction f2 5 0, meaning that the sea ice

does not contemporaneously affect the NAO. This is

a reasonable assumption since transient boundary forc-

ing experiments show that it takes several weeks for the

NAO-driven sea ice variability to feed back onto the

NAO (Deser et al. 2007). At the same time, it is reason-

able to allow f1 to take on a nonzero value because the

integrated effect of one week of NAO-related atmo-

spheric variability can be expected to impact the spatial

distribution of sea ice during that same week via, for ex-

ample, wind-driven sea ice velocity anomalies. The VAR

in (2.1) provides a means for exploring the relationship

between N and G and invoking the testable definitions

of causality and feedback pioneered by Granger (1969).

More details of the methods associated with the VAR are

provided as the model is fit and synthetic data are gen-

erated with the VAR in section 3b and the appendix.

d. Comparing models

We will at times compare the relative predictive skill

or strength of two versions of a statistical model: un-

restricted and restricted. The second model is a restricted

version of the first in that one predictor has been elimi-

nated by restricting its regression coefficient to zero or, in

the case of an autoregressive model, the order of the re-

stricted model is reduced by one. To compare the models,

we used the log-likelihood ratio given by Sims (1980):

L [ (T � c)(logjS
r
j � logjS

u
j), (2.2)

where T is the number of usable observations, c is the

maximum number of regressors in the longest equation,

and jSuj and jSrj are the determinants of the covariance

matrices of the unrestricted and restricted model’s re-

siduals, respectively. The test statistic L has an asymp-

totic x2 distribution with degrees of freedom equal to the

number of restrictions in the system; it was tested for

significance at the 95% confidence level. We use L to

determine the appropriate lag order for autoregressive

models and also to compare models for the purpose of

testing for Granger causality.

3. Results

In the first results section (3a), we use correlations and

composite time series to illustrate the relationship be-

tween the observed NAO and sea ice variability. Then,

in section 3b, we use the VAR to model the observed

relationships and test for causality and feedback. Sec-

tion 3c presents the results of some experiments per-

formed with the VAR.

a. Illustrating the relationship between sea ice
and the NAO

The spatial patterns of the EOFs associated with N

and G (Fig. 1) suggest a physical relationship between

FIG. 1. (a) The EOF associated with the NAO index N contoured at 0.01 with negative values dashed and the zero

contour suppressed. The arrows show the correlation between surface wind velocity and the NAO index when each is

averaged over the 21-week extended winter (i.e., each arrow is tangent to the vector field r 5 [r(N, u), r(N, y)] and has

magnitude jrj). (b) The EOF associated with the sea ice index G contoured as in (a).
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the two underlying phenomena. The circulation anom-

alies around the NAO’s centers of action can induce sea

ice concentration anomalies via wind-driven sea ice ad-

vection anomalies as discussed in, for example, Deser

et al. (2000). Analysis of coupled model output further

indicates that NAO circulation anomalies induce sea

ice melting or freezing anomalies in the Labrador and

Barents Seas via wind-driven oceanic heat transport

(Koenigk et al. 2009; Strong and Magnusdottir 2009a).

When the NAO is in its positive polarity, sea ice con-

centrations tend to be anomalously high to the south-

west of Greenland and anomalously low over the region

extending from the Greenland Sea northeast into the

Barents Sea.

The principal components N and G are autocorrelated

and cross correlated on a variety of time scales and lags.

The autocorrelation functions in Fig. 3a show that G has

a longer time scale than N. The partial autocorrelation

functions in Fig. 3b indicate the amount of autocorre-

lation not accounted for by lower lags and suggest that

a model of this system might include lags of at least three

weeks. The contemporaneous correlation between G

and N is positive and accounts for 6% of the variance

(r 5 0.24 at lag zero; Fig. 4a). This positive r(N, G) at

zero lag motivates the inclusion of a f1 term in the VAR

and reflects the ability of NAO-driven circulations to

generate sea ice advection anomalies on the time scale

of days to a week. When N leads G by one or several

weeks (left side of Fig. 4a), the correlation r(N, G)

strengthens over the first week and remains positive,

which is consistent with the concept (e.g., Zhang et al.

2000) that thermodynamics are essential to the con-

nection between sea ice and the NAO. More specifically,

NAO-driven circulation anomalies may need to integrate

over several weeks in order to advect sufficient heat in the

ocean and atmosphere to generate the melting anomaly

patterns associated with the leading sea ice EOF.

When G leads N (right side of Fig. 4a), correlations

rapidly drop toward zero and then become increasingly

negative after three weeks. The correlation pattern when

G leads N may be observational evidence of the negative

feedback from sea ice to the NAO posited in previous

studies—a hypothesis we will test in section 3b. When

G and N are averaged over the 21 weeks making up each

extended winter (Fig. 4b), the overall correlation is pos-

itive, which is consistent with the dominance of positive

correlation on within-season time scales seen in Fig. 4a.

We now use a set of composite time series (Fig. 5) to

further explore the lagged relationships between N and

G. Lag zero in each composite corresponds to the time

of a locally extreme value of either N or G as indicated

in the caption for each panel in Fig. 5. We selected 29

distinct cases for each composite to have an average of

one case per year. These composite time series provide

a complementary view of the lagged relationships sug-

gested by Fig. 4a.

The composite results indicate that locally extreme

values of N tend to be followed by like-signed locally

extreme values of G. Based on the shaded interquartile

range in Fig. 5, more than 75% of the G values were

positive two weeks after the local maximum of N (Fig. 5a),

and approximately 75% of the G values were negative

one week after the local minimum of N (Fig. 5c). Ex-

amining the behavior of N about locally extreme values

of G suggests the presence of a negative feedback. Just

after G reaches a local maximum, the composite N time

series undergoes a strikingly rapid decrease, and ap-

proximately 75% of the N values in the composite are

negative one week after the composite G maximum

(Fig. 5b). The composite local minimum of G is followed

by a composite local maximum of N, and approximately

75% of the N values in the composite are positive two

weeks after the G minimum (Fig. 5d).

b. Modeling the relationship between sea ice
and the NAO

The correlation and composite results in section 3a

suggest the presence of causality and possibly feedback

FIG. 2. Examples of the indices N (bold with circles) and G (thin lines). The weekly values in the gray shaded

regions are used only when calculating lagged correlations for the data in the unshaded, 21-week windows. The tick

marks on the abscissa mark the week beginning on 1 January of the indicated year.
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in the relationship between observed sea ice and the

NAO. In this section, we formally test these hypothe-

sized interactions by fitting the VAR to our data and

invoking the testable definitions of causality and feed-

back introduced by Granger (1969). Specifically, one

variable X is said to Granger cause another variable Y,

denoted X 0 Y, if past values of X contain information

that improves the prediction of Y above and beyond the

information contained in past values of Y alone. If X

Granger causes Y and also Y Granger causes X, there is

a Granger feedback between X and Y, denoted X * 0 Y.

To determine if Granger causality is present in a system,

we compare the strength of a null model with Granger

feedback to the strength of a model with one direction

of causality eliminated. The relative strength of models

is assessed using a log-likelihood ratio test of the model

residuals at the 95% confidence level as described in

section 2d. If the model with feedback is stronger than

the null model with a direction of causality eliminated,

we conclude that Granger causality is present in that

direction.

For our application to N and G, we defined three models:

a full model with feedback, denoted by M[G * 0 N];

a model wherein only N Granger causes G, denoted by

M[G * L N]; and a model wherein only G Granger

causes N, denoted by M[G G 0 N]. The equations for

M[G * 0 N] are written out in (2.1), and the process

of transforming this system for the purpose of data

fitting is described in the appendix. The other two

models are developed from M[G * 0 N] by re-

stricting certain parameters to zero—a process also de-

scribed in the appendix. As an example, M[G * L N]

is the system (2.1) with the additional restriction gi 5 0

for i 5 1, . . . , q, meaning that N evolves unaffected by

past values of G. To determine the model order, we used

the log-likelihood ratio test described in section 2d to

incrementally compare M[G * 0 N] at some arbi-

trarily high-order q to itself at order q 2 1. The model

order was the first q for which the q 2 1 model had

a significantly larger residual error. Beginning this pro-

cess at q 5 7, the parsimonious model order was found

to be q 5 4.

The correlations in Fig. 4 and composites in Fig. 5

provide evidence of G * N and also G 0 N, suggesting

that M[G * 0 N] is the appropriate model. Indeed,

M[G * 0 N] has a significantly smaller residual error

than either M[G G 0 N] or M[G * L N] (see section

2d), meaning that Granger feedback is present in the sea

ice–NAO system. Parameter values for M[G * 0 N]

are given in Table 1 and its caption. The first-order in-

fluence of N on G is positive (b1) and the first-order

influence of G on N is negative (g1), consistent with the

correlations in Fig. 4 and the composite results in Fig. 5.

The white noise residual term to N («N) has a standard

deviation of sN 5 0.95, which is almost 3 times as large

as the corresponding noise term to G («G with standard

deviation sG 5 0.32). This reflects the short time scale of

N relative to G. The negative sign on f1 is consistent

with the positive contemporaneous correlation r(N, G)

in Fig. 4a. Here M[G * 0 N] accounts for 32% of N

and 92% of G, whereas M[G * L N] accounts for 30%

of N and 90% of G. These somewhat small differences

in performance are discernible as significant in part be-

cause of the large sample size. For longer averaging

FIG. 3. (a) Autocorrelation functions for N and G. (b) Partial

autocorrelation functions for N (black) and G (gray) with ap-

proximate 95% confidence limits shown by dashed lines at 62/
ffiffiffiffi
T
p

,

where T is the number of usable observations.
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periods, the effect of shorter-term fluctuations becomes

less pronounced and the influence of feedback becomes

a more important contributor to the total variance as

discussed in Mosedale et al. (2006).

The presence of feedback in the system also changes

the spread of the N and G distributions. To illustrate

this, we generated synthetic, perpetual wintertime series

N and G of length one million weeks using M[G * 0 N].

We then generated control time series N* and G* from

M[G * L N]. These control time series represent the

behavior of the system with feedback turned off via

elimination of the Granger causality G 0 N (i.e., gi 5 0

for i 5 1, . . . , 4). Turning off the negative feedback from

sea ice to the NAO increased the variance of N by a fac-

tor of 1.08 and increased the variance of G by a factor of

1.60. These are both statistically significant variance in-

creases under bootstrapping (e.g., Boos and Brownie

1989), meaning that sea ice and NAO-driven weather and

climate over the North Atlantic are significantly damp-

ened by the presence of this negative feedback.

c. Model experiments

To further explore the effect of feedback in the sea

ice–NAO system, we performed two additional sets of

experiments with the VAR. The first set, in section

3c(1), illustrates how feedback affects the evolution of N

and G following a realistic locally extreme value of G.

The second set, in section 3c(2), illustrates how feedback

affects the evolution of N and G following a sustained

high or sustained low value of G.

1) EFFECT OF LOCAL MAXIMUM OF G

For these experiments, we used as initial conditions

the composite values from 23 # t # 0 in Fig. 5b and then

advanced M[G * 0 N] and M[G * L N] forward for

20 weeks (Fig. 6a). Consistent with the convention in the

previous section, we denote the output from M[G * 0 N]

by N and G and denote the output from M[G * L N]

by N* and G*. We set the white noise terms «N and «G

to zero and produced single realizations, which is equiv-

alent to developing large ensembles of time series and

then averaging since the white noise has zero mean.

Although the initial conditions were based on a com-

posite around local maxima of G, the simulation results

are also informative regarding local minima of G since

the VAR output reflects across the time axis if all the

initial conditions are reflected across the time axis (i.e., if

the initial conditions are scaled by 21).

In the control model (M[G * L N]), the initial N*

and G* anomalies decayed monotonically toward zero

(dashed curve and curve with open circles in Fig. 6a). In

the simulation with feedback (M[G * 0 N]), the decay

of N was accelerated relative to the control because of

the negative feedback from the initially high G values;

N became negative after t 5 3 and then decayed toward

zero after t 5 10 (curve with filled circles in Fig. 6a). The

lower N values in turn forced a faster decay of G toward

zero, consistent with the first-order positive influence of

N on G.

We stated above that reflection of all the initial con-

ditions about the time axis reflects the results across the

time axis. It is informative to reflect only the G initial

conditions across the time axis (Fig. 6b) to illustrate

what happens when N and G are initially of opposite

sign. This can occur in observations despite the positive

contemporaneous correlation between N and G because

of the large autocorrelation of G and volatility of N.

Reflecting the initial G conditions across the time axis

of course had no effect on N* (curve with open circles,

Fig. 6b). Affected by the negative G, N decayed toward

zero monotonically and less rapidly than N*. These

results for like-signed versus oppositely signed initial

FIG. 4. (a) Lagged correlation between G and N where positive lag means G leads N. (b) Time series of G and N

after averaging the 21 weekly values of each extended winter. For example, the value for 1995 is the mean of the

weeks with starting dates from 4 December 1994 through 23 April 1995.
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conditions illustrate two points that will be treated more

generally in the remainder of this subsection. First, the

largest absolute difference between N and N* was greater

for like-signed initial conditions than oppositely signed

initial conditions (cf. Figs. 6b and 6a). Second, large like-

signed initial conditions tend to result in N changing sign

prior to decaying toward zero as in Fig. 6a, whereas large

oppositely signed initial conditions tend to result in a

monotonic decay of N toward zero.

The shifts in G and N due to feedback scale approxi-

mately linearly with the values of the initial conditions.

To illustrate this, we simplify the initial conditions by

setting them equal to constant values G0 and N0 from

t 5 23, . . . , 0 and then find DN, which is the signed

difference Nt 2 Nt* that has the largest absolute value

over the interval 1 # t # 20. In other words, DN is the

largest positive or negative change in the NAO index

attributable to feedback in the model. We likewise

define DG for the signed difference G 2 G*. Figures 6c

and 6d show surfaces of DG and DN for the two-

dimensional space of initial conditions 23.0 # G # 3.0

and 23.0 # N # 3.0. These two surfaces are well ap-

proximated by the following planes through the origin

(r2 . 0.99 for each):

D
G

5�0.13G
0
� 0.03N

0
and (3.1)

D
N

5�0.08G
0
� 0.03N

0
. (3.2)

FIG. 5. Composite time series in the temporal vicinity of local extrema of G or N as indicated in the title of each

panel; N is bold with filled circles, G is a thin curve, and shading shows the interquartile range of the time series it

bounds. For each composite, we selected the 29 largest nonoverlapping instances of each local extremum type.
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From these equations and Figs. 6c,d, we see that the

responses are strongest (DG 5 60.48 and DN 5 60.33)

when the initial conditions are like-signed, consistent

with the comparison of Figs. 6a and 6b made above. We

also see that DG and DN are both more sensitive to G0

than to N0.

The DG and DN results in Figs. 6c,d depart somewhat

from planar along an axis approximately paralleling

G0 5 0, with the departures for DN being more pro-

nounced. The abrupt changes in DN in Fig. 6d separate

two sets of results: 1) results in which the evolving N

monotonically approached zero and 2) results in which

the evolving N underwent a sign change and then de-

cayed toward zero. In the vicinity of the arrows, the

initial conditions were like-signed, as in Fig. 6a, and N

underwent a sign change before approaching zero. At

a critical value of G0, the N results transitioned to

monotonic decays as in Fig. 6b.

2) EFFECT OF SUSTAINED VALUES OF G

The second set of experiments with the VAR were

motivated by previously published boundary forcing

experiments in which the atmosphere was allowed to

evolve over an approximately constant sea ice anomaly

pattern representing an extreme value of G. To dupli-

cate this experimental setup in the VAR, we used the

same initial N and G conditions from Figs. 6a,b but then

maintained the sea ice at a constant value Gh equal to its

initial condition at time t 5 0. To model this system with

and without feedback, we wrote an equation for Nt af-

fected by Gh and an equation for Nt* not affected by Gh:

N
t
5 �

4

i51
g

i
G

h
1 �

4

i51
h

i
N

t�i
1 «

Nt
, and (3.3)

N
t
* 5 �

4

i51
h

i
N

t�i
* 1 «

Nt
, (3.4)

where parameters remain as given in Table 1. We cal-

culated (3.3) and (3.4) with «Nt 5 0, which is equivalent

to averaging over a large ensemble of realizations. The

resulting N and N* time series are shown in Figs. 7a,b.

The sustained positive and negative sea ice values in-

creased the maximal absolute response in N by ap-

proximately 50% over the response to realistic local G

extrema (see Figs. 7a,b versus Figs. 6a,b).

For the simulations shown in Figs. 7a,b, the difference

dt [ Nt 2 Nt* asymptotically approached 60.21, which is

20.14Gh (open circles in Figs. 7c,d). Further examples

would illustrate that the asymptotic approach of dt to

20.14Gh as t / ‘ holds generally and is independent of

the initial conditions of N. To show this analytically, we

write the equation for dt, which is (3.3) minus (3.4):

d
t
5 �

4

i51
g

i
G

h
1 �

4

i51
h

i
d

t�i
, (3.5)

where d
t�i

5 N
t�i
�N

t�i
* . Equation (3.5) is a fourth-

order, deterministic, linear difference equation with a

particular solution:

d 5

�
4

i51
g

i
G

h

1��
4

i51
h

i

, (3.6)

which is 20.14Gh for the parameter values in Table 1.

To obtain an expression for how dt asymptotically ap-

proaches d, we consider the general solution to (3.5),

which is the sum of the particular solution (3.6) and four

homogeneous solutions:

d
t
5 d 1 d

1
(0.70)t

1 d
2
(�0.19)t

1 Re[d
3
(0.05 1 0.35i)t

1 d
4
(0.05� 0.35i)t]. (3.7)

In (3.7), i is the imaginary unit, the numbers in paren-

theses are the roots of the characteristic polynomial of

(3.5), and d1, . . . , 4 are arbitrary coefficients determined

by four initial conditions. Since the absolute value of

each root is less than unity, (3.7) expresses an asymptotic

approach of dt to its particular solution. Fitting (3.7) to

the initial conditions in Figs. 7a and 7b yields the curves

in, respectively, Figs. 7c and 7d. These analytical results

match closely the differences Nt 2 Nt* obtained from the

model output (open circles in Figs. 7c,d).

4. Conclusions

Using observations from 1978–2008, we calculated two

weekly indices: an NAO index, N, and an index G rep-

resenting the seesaw of winter sea ice concentration be-

tween areas to the northeast and southwest of Greenland.

TABLE 1. Values of the parameters in the full VAR(4) model

M[G * 0 N] for lags i 5 1, . . . , 4. Parameter values not involving

lags are f1 5 20.14, sN 5 0.95, and sG 5 0.32. The value of a1 is in

excess of unity, but note that the coefficient in front of Gt21 for the

Gt equation is actually a1 2 f1g1 5 0.96 after solving for [Gt Nt]
T in

the system (2.1) [see Eq. (A3) in the appendix].

i 5 1 i 5 2 i 5 3 i 5 4

ai 1.01 20.15 0.03 0.07

bi 0.10 20.07 0.03 20.03

gi 20.38 0.55 20.30 0.08

hi 0.62 20.04 0.05 0.02
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We found that N and G are correlated on a variety of

time scales and lags and determined that a fourth-order

vector autoregressive model was appropriate for cap-

turing these relationships in weekly data. Based on the

VAR(4) model, we concluded that N Granger causes G

and also that G Granger causes N, meaning there is

Granger feedback in the winter NAO–sea ice system,

and found that N anomalies Granger cause like-signed

anomalies of G, consistent with the observational anal-

ysis in Deser et al. (2000). Our finding that G anomalies

Granger cause oppositely signed anomalies of N has not,

to our knowledge, been shown in observations before.

We quantified this negative feedback for the range of

initial conditions jGj, jNj # 3.0 by comparing a model

with feedback to a control model wherein Granger

feedback was turned off. With feedback turned off, the

variance of N was inflated by a factor of 1.06 and the

variance of G was inflated by a factor of 1.60, meaning

that the presence of negative feedback dampens the

variability of sea ice concentration over the North At-

lantic and, to some degree, NAO-driven weather and

climate as well. In the following, the phrase ‘‘feedback

response’’ will be used to refer to results from the model

with feedback (M[G * 0 N]) minus results from

the control model in which feedback was turned off

(M[G * L N]). The largest feedback responses for

N and G occurred when the initial conditions were like-

signed; also, N and G were more sensitive to the initial

value of G than to the initial value of N. Using local

extrema as initial conditions, the largest feedback re-

sponses were 60.33 for N and 60.48 for G. When G was

held constant at a value Gh for the entire experiment

rather than allowing G to evolve from the local maxi-

mum, the N response was approximately 50% larger for

realistic values of Gh. The N response to the sustained

Gh value asymptotically approached the value 20.14Gh

independent of the initial N value—a result we showed

analytically.

These findings provide an observational perspective

for interpreting boundary forcing experiments in which

the atmosphere is exposed to sustained sea ice anomalies

corresponding to large positive values of G. Sustained,

positive G-like sea ice anomalies generate a localized baro-

clinic response that lasts several weeks, after which wave–

mean flow interaction maintains a pattern of large-scale

height anomalies resembling the negative polarity of the

FIG. 6. (a) For like-signed initial conditions, output from the VAR with feedback (N and G) and without feedback

(N* and G*). (b) As in (a), but with the initial G conditions scaled by 21. (c) Surface showing the largest difference

DG [ G 2 G* as a function of constant initial conditions G0 and N0. (d) As in (c), but for DN [ N 2 N*. Additional

details are given in the text.
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NAO (Deser et al. 2007; Strong and Magnusdottir 2009b).

Our observational analysis indicates that G-like sea ice

anomalies tend to decay after a few weeks based on

autocorrelation and composite time series. The lack of

sustained G anomalies in observations may appear to

limit the time frame during which G anomalies can

generate large-scale, negative NAO-like height anomalies

via wave–mean flow interaction. However, we showed

21-week winters such as 2007/08 during which G was

consistently positive (Fig. 2) with a mean greater than

1.0 (Fig. 4b). We can think of such winters as naturally

occurring boundary forcing events wherein the atmo-

sphere was exposed to unusually large G for 21 weeks,

resulting in a reduction in the variance and value of the

NAO index.

Multi-month sustained sea ice anomaly patterns may

be of increasing relevance over the next century. The G

value for an entire extended winter or series of extended

winters could be markedly above or below average as

a result of projected changes in sea ice transport or

melting. Even if the energy spectrum of the associated

weekly values of G resembles the contemporary spec-

trum, the shift in the seasonal mean G could impact the

central tendency of the N distribution via the negative

feedback shown here. It would be difficult to detect such

a process operating in observations since the time scale

of the transient feedback process is within season, whereas

the relevant lags for the associated VAR and Granger

causality tests would be interannual and longer. Further

experimentation with coupled climate models will thus

be useful for investigating the interaction between NAO

and winter sea ice as each evolves under projected cli-

mate change.
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APPENDIX

To fit the VAR model to data (e.g., Enders 2004), we

concisely write (2.1) as

Fy
t
5 �

q

i51
A

i
y

t�i
1 e

t
, (A1)

FIG. 7. (a),(b) As in Figs. 6a,b, but with G held constant at its t 5 0 value Gh. (c),(d) Open circles show the

differences Nt 2 N*t from the corresponding panels above, and the curves show the general analytical solution given

in the text.
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where yt [ [Gt, Nt]
T, F and Ai are the 2 3 2 matrices on

the left- and right-hand sides, respectively, of (2.1), and

et [ [«Gt, «Nt]
T. Solving for yt yields

y
t
5 �

q

i51
B

i
y

t�i
1 e

t
, (A2)

where Bi 5 F21Ai and et 5 F21et. The system (A2) is fit

to data using seemingly unrelated regression (Zellner

1962), yielding values for Bi and the residuals et. To re-

cover the 3 1 4q parameters of the original model (2.1)

from the results of the fitting, we write out (A2)

G
t

N
t

 !
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q

i51

a
i
� f

1
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i
� f

1
h

i

g
i
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i
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 !
(A3)

and solve the system

A
i
5 FB

i
, i 5 1, . . . , q, and (A4)

S
«

5 FS
e
FT, (A5)

where S« is the covariance matrix of «t and Se is the

covariance matrix of et.

To define the null model where only N Granger causes

G (G * L N), we fit (A3) imposing the restriction

gi 5 0. To define the null model where only G Granger

causes N (G G 0 N) we impose the restriction bi 2

f1hi 5 0. Note that neither of these restrictions elimi-

nates the possibility of a contemporaneous effect of N

on G since f1 is unrestricted. The complete set of re-

strictions used in the full and null models is given in

Table 2.
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