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Observed increasing water constraint on
vegetation growth over the last three decades
Wenzhe Jiao1, Lixin Wang 1✉, William K. Smith2, Qing Chang3, Honglang Wang4 & Paolo D’Odorico 5

Despite the growing interest in predicting global and regional trends in vegetation pro-

ductivity in response to a changing climate, changes in water constraint on vegetation pro-

ductivity (i.e., water limitations on vegetation growth) remain poorly understood. Here we

conduct a comprehensive evaluation of changes in water constraint on vegetation growth in

the extratropical Northern Hemisphere between 1982 and 2015. We document a significant

increase in vegetation water constraint over this period. Remarkably divergent trends were

found with vegetation water deficit areas significantly expanding, and water surplus areas

significantly shrinking. The increase in water constraints associated with water deficit was

also consistent with a decreasing response time to water scarcity, suggesting a stronger

susceptibility of vegetation to drought. We also observed shortened water surplus period for

water surplus areas, suggesting a shortened exposure to water surplus associated with humid

conditions. These observed changes were found to be attributable to trends in temperature,

solar radiation, precipitation, and atmospheric CO2. Our findings highlight the need for a

more explicit consideration of the influence of water constraints on regional and global

vegetation under a warming climate.
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W
ater is fundamental for plant growth, and vegetation
response to water availability influences water, carbon,
and energy exchanges between land and atmosphere1–4.

Vegetation growth is expected to become more water constrained
in a warmer climate because warming results in an increase in
vapor pressure deficit and possible reductions in soil moisture5–8,
while the observed global patterns of greening9–11 and increasing
productivity4,12 may also enhance vegetation water demand. In
addition, higher temperature with more frequent extreme hot
days13,14, stronger radiation15, and land cover/land use changes4

may exacerbate water stress impacts12,16. Quantifying vegetation
response to water availability at large spatial and temporal scales
is challenging, as vegetation growth response to water availability
is influenced by many interacting factors, including biome type,
hydraulic strategy, water use efficiency, and location17–21.
Simultaneously, a short-term decrease in rainfall may have both
positive and negative effects on vegetation growth at different
locations. For example, although water deficit negatively impacts
many ecosystems, for ecosystems subjected to waterlogging or at
high latitudes where temperature is a major limiting factor, short-
term precipitation deficiency may result in higher temperatures,
leading to enhanced vegetation growth22–26.

Recent studies have documented vegetation response to water
availability in terms of the negative impact of drought on vege-
tation productivity2,27,28, the timescale of vegetation response to
drought18, and vegetation resilience and recovery from severe
drought19,29. Yet, it remains unclear whether the impact of water
availability on vegetation growth is changing in a warming cli-
mate. While various water deficit impacts have been documented,
to our knowledge, a comprehensive global assessment of changes
in long-term vegetation response to water constraints using the
full satellite record is still missing. This knowledge gap prevents an
adequate understanding of vegetation response to the expected
intensification of drought frequency, severity, and duration30–35,
and change in water availability36. In addition, recent studies
have suggested that the strength of the terrestrial carbon sink
might be shifting from an increasing to a decreasing trend6,37,38.
This is likely related to changes of water constraints on vegetation
growth.

In this study, we evaluated long-term trends of vegetation
response to water availability over the last three decades in the
extratropical Northern Hemisphere using a robust ensemble of
water availability indices and multiple indicators of vegetation
growth from 1982 to 2015. We used satellite-derived normalized
difference vegetation index (NDVI), enhanced vegetation index
(EVI), vegetation optical depth (VOD), solar‐induced chlorophyll
fluorescence (SIF), and gross primary productivity (GPP) as proxies
of vegetation growth; and self-calibrating Palmer drought severity
index (scPDSI) and Standardized Precipitation Evapotranspiration
Index (SPEI) aggregated over a range of time-scales as proxies of
water availability. Both SPEI and scPDSI are meteorological water
availability indices, and high to low values signify relatively wet to
dry conditions in a given area as compared to its long-term average.
Therefore, a year with low SPEI and scPDSI in a wet area may not
necessarily cause vegetation water stress and may still be wetter than
a year with high SPEI and scPDSI in a dry region39. The statistical
relationship between water availability indices and vegetation
growth has been widely applied to examine the response of vege-
tation growth to water availability18,40–42.

Results and discussion
Metrics to quantify the changes in water deficit, water surplus,
and vegetation response time. Here we evaluated the relation-
ship between:1) vegetation growth and SPEIs with time-scales
ranging from 1- to 24-months; and 2) vegetation growth and

scPDSI over a fixed time-scale. SPEIs calculated over a specific
time-scale represent the cumulative water balance over the total
months of the specified time-period (e.g., SPEI03 represents the
3-month cumulative water balance)18,39. A significant positive
correlation between NDVI and SPEI/scPDSI (p < 0.05) means
that NDVI is increasing with wetting and decreasing with drying,
suggesting that in the areas where this happens, vegetation
growth is constrained by water scarcity. We term the area asso-
ciated with significant positive correlation between NDVI and
SPEI/scPDSI (p < 0.05) as “vegetation water deficit regions”. In
contrast, a significant negative correlation between NDVI and
SPEI/scPDSI (p < 0.05) means that vegetation is less productive
under wetter condition and more productive under drier than
normal conditions, indicating a water surplus can limit vegetation
growth as a result of waterlogging or of the fact that in some
wetter years there might have been other factors such as tem-
perature and solar radiation limiting productivity. We term the
area associated with significant negative correlation between
NDVI and SPEI/scPDSI (p < 0.05) as “vegetation water surplus
regions”. A non-significant relationship between NDVI and SPEI/
scPDSI (p > 0.05) indicates that vegetation growth is neither
constrained by water scarcity nor by water surplus. To support
the water deficit and water surplus classification based on positive
and negative correlations between NDVI and SPEI/scPDSI, we
showed that most of the areas with significant positive correla-
tions between NDVI and SPEI/scPDSI (p < 0.05) were located in
dryland regions (arid, semi-arid, and sub-humid regions) (Fig. 1),
while most negative correlations were found in areas located
outside drylands (or “non-dryland” regions, Fig. 1) (see “Meth-
ods” for dryland vs. non-dryland definitions by aridity index).
Specifically, humid regions accounted for 95% and 96%, respec-
tively, of the significant negative RNDVI-SPEI03 (i.e., r-value
between NDVI and 3-month time-scale SPEI, namely SPEI03;
p < 0.05) and RNDVI-scPDSI (i.e., r-value between NDVI and
scPDSI; p < 0.05) (Fig. 1c and d). By contrast, drylands accounted
for 79% and 78% of the significant positive RNDVI-SPEI03 and
RNDVI-scPDSI (Fig. 1c and d). Moreover, the vast majority of semi-
arid and arid regions were associated with significant positive
RNDVI-SPEI03 (87% and 84%, respectively) and RNDVI-scPDSI (88%
and 89%, respectively) (Supplementary Fig. 1). This result is
consistent with the expectation that most drylands are water-
limited, while only some humid regions, mainly characterized by
peatlands, bogs, and other wetlands where waterlogging has been
reported to limit productivity43–45, experience water surplus. A
time lag typically exists between the onset of water scarcity and
the emergence of observable consequences on vegetation18.
Therefore, we defined the minimum vegetation response time to
water stress (“response time” hereafter) as the minimum lag time
between a drop in water availability (i.e., the onset of drier con-
ditions) and the first observed impact on vegetation productivity.
A shorter response time suggests a stronger susceptibility of
vegetation to water stress. Similarly, we also defined the max-
imum water surplus period (“water surplus period” hereafter) as
the maximum time between the start of drying and the last
observed positive effect on vegetation growth. Shorter water
surplus periods correspond to shorter periods in which vegetation
growth experiences water surplus. The response time and water
surplus period metrics allow us to quantify changes in the time of
vegetation response to changes in water availability. We quanti-
tatively attributed the observed changing responses of vegetation
growth to water availability to multiple meteorological factors and
atmospheric CO2 concentrations using attribution analysis.

Observed increasing water constraint on vegetation growth.
Multiple lines of evidence show a markedly increasing water
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constraint on extratropical Northern Hemisphere vegetation
growth over the last three decades, as evidenced by the expansion
of water-deficit regions and the shrinking of water surplus areas
over the last three decades. The spatiotemporal correlations,
RNDVI-SPEI03 and RNDVI-scPDSI, indicated that most water deficit
areas are located in temperate regions between 30° N and 50° N,
while most water surplus regions are located in high latitude
boreal regions above 50° N (Fig. 2a and b). This pattern is con-
sistent with the fact that high-latitude boreal regions are not water
limited but energy limited, and short-term precipitation defi-
ciency may result in higher solar radiation and temperature (and
in some areas less waterlogging), leading to enhanced vegetation
growth25. We separately analyzed the trends for regions asso-
ciated with water deficit and water surplus over the 1982–2015
period, and found remarkably divergent trends with a significant
expansion of water deficit regions and a contraction of water
surplus regions (Fig. 2c and d). The results were consistent when
using either RNDVI-SPEI03 or RNDVI-scPDSI (Fig. 2c and d).

To evaluate the robustness of our analysis, we used different
moving windows, tested the impacts of long-term NDVI trends,
tested the trends in sub-periods of the growing season, examined
croplands separately, used different vegetation growth indicators,
used water availability indicators at different time scales, and used
a different water availability indicator (soil moisture) to re-
conduct our spatiotemporal analysis. In addition to results based
on a 5-year moving window (Fig. 2), we used 10-year and 15-year
moving windows to evaluate the trends. The spatiotemporal
trends in RNDVI-SPEI03 and RNDVI-scPDSI obtained using the

10-year and 15-year moving windows (Supplementary Fig. 2)
showed great consistency with those from the 5-year moving
window analysis (Fig. 2a–d). To examine whether the observed
trends of productivity-moisture correlations were caused by the
long-term NDVI trend, we detrended NDVI using both linear
and nonlinear (moving average) methods and re-conducted
our analyses on spatiotemporal trends of RNDVI-SPEI03 and
RNDVI-scPDSI. The results (Supplementary Fig. 3) showed great
consistency with those from the non-detrended analysis
(Fig. 2a–d), indicating that the observed trends of productivity-
moisture correlations were not caused by the long-term NDVI
trend. To examine whether the shrinking of water surplus and the
increasing water deficit trends occurred in different sub-periods
of the growing season, we examined the spatiotemporal
productivity-moisture relationship for three sub-periods:
April–June, June–August, and August–October. The temporal
trends of significant changes (p < 0.05) in percentage areas
associated with water deficit and water surplus responses for
these three sub-periods (Supplementary Fig. 4) showed that the
shrinking of water surplus and expansion of water deficit
occurred in most of the sub-periods, except for the shrinking
water surplus, which was not significant in the April–June sub-
period (p > 0.05 for Blue line trend in Supplementary Fig. 4a and
d). It is likely because the increasing snowpack melting
exacerbated water surplus in the spring. Interestingly, croplands
showed increasing water constraint as well, except for irrigated
croplands46 (which only account for around 11% of all the grid
cells in the study area (Supplementary Fig. 5). In addition to

Fig. 1 Spatial distribution of the correlations between vegetation growth and water availability indices over the last three decades. a, b Show the

spatial distribution of correlation coefficients (RNDVI-SPEI03 and RNDVI-scPDSI) between normalized difference vegetation index (NDVI) anomaly and 3-month

Standardized Precipitation-Evapotranspiration Index (SPEI03) and Palmer Drought Severity Index (scPDSI) for the entire study period. Black dots indicate

significant Spearman correlations with p < 0.05; c, d are the statistical distributions of RNDVI-SPEI03 and RNDVI-scPDSI for arid, semi-arid, sub-humid, and

humid regions, respectively. The maximum and minimum extents of the colored boxes indicate the 25th and 75th percentiles and the whiskers represent

the 5th and 95th percentiles, respectively.
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NDVI, we also used the VOD from 1988 to 2015, MODIS EVI,
SIF, and GPP from 2000 to 2015 and GIMMS3g GPP from 1982
to 201147 as vegetation growth indicators. Specifically, we
evaluated to what extent the changes in the relationship between
vegetation growth and water availability indices (SPEI03 and
scPDSI) detected using NDVI were also consistently found
with these other productivity indicators (i.e., VOD, SIF, EVI,
and GPP). Our results showed comparable patterns of the
changing correlations across all combinations of vegetation
growth indicators and water availability indices. The trends of
RVOD-SPEI03 and RVOD-scPDSI (1982-2011), RSIF-SPEI03, REVI-SPEI03,
RGPP-SPEI03, RSIF-scPDSI, REVI-scPDSI, and RGPP-scPDSI (2000–2015)
were all comparable to the patterns of RNDVI-SPEI03 and
RNDVI-scPDSI (1988–2015) for the overlapping periods (Supple-
mentary Fig. 6). To support the analysis based on 3-month time-
scale of SPEI (SPEI03) as water availability indicator, we re-
calculated the spatiotemporal vegetation-SPEI correlations based
on SPEIs at all time-scales ranging from 1 to 24 months (SPEI01-
SPEI24) as water availability indicators. The significant negative
and positive trends in the correlation between NDVI anomaly
and SPEI (p < 0.05) were confirmed at all time-scales ranging
from 1 to 24 months (Supplementary Fig. 7). In addition to
SPEI and scPDSI, we also used European Space Agency (ESA)
Climate Change Initiative (CCI) program based soil moisture as
water availability indicator to evaluate the robustness of
spatiotemporal trends of RNDVI-SPEI03 and RNDVI-scPDSI. The
spatiotemporal relationship between vegetation growth and soil
moisture (RNDVI-SM) showed comparable patterns to the ones
found using SPEI and scPDSI as water availability indicators
(Supplementary Fig. 8).

To further support the water constraint analysis based on
spatiotemporal vegetation-moisture correlations, we examined
the temporal trend of NDVI anomalies under drought conditions
(SPEI03 <−1.28 and scPDSI <−1) (see “Methods”). We found a
significant decreasing trend (p < 0.05) in the drought-related
NDVI z-score time series (i.e., increasing drought impact on
vegetation growth) over the last three decades. The decreasing
NDVI anomalies under drought (Supplementary Fig. 9) indicates
an increasing drought impacts on vegetation growth, which
further supports our finding that the vegetation water constraint
is increasing over the last three decades.

Moreover, the mean correlation coefficient (r-value) between
NDVI anomaly and SPEI03 across all the grid cells in the Northern
Hemisphere has increased steadily over the last three decades,
switching from negative to positive for the whole extratropical
Northern Hemisphere (Supplementary Fig. 10). This result
indicates that the extratropical Northern Hemisphere vegetation
growth is becoming increasingly constrained by water deficit, in
agreement with our observations that significant positive correla-
tions (p < 0.05) are typically associated with water deficit while
negative correlations are typically associated with water surplus
(Fig. 1). The increase in atmospheric CO2 levels is expected to lead
to higher vegetation water use efficiency20, and increase plant water
availability, especially in drylands48,49. As such, CO2 increase would
induce a more negative correlation between NDVI anomaly and
SPEI03 in water deficit regions. However, this study finds a steady
increase of r-value between NDVI anomaly and SPEI03 in both
water deficit and water surplus regions (Supplementary Fig. 11),
indicating that CO2 induced water saving is not sufficient to
counteract the increasing water constraint.

Fig. 2 Spatiotemporal distribution of the statistically significant correlations between vegetation growth and water availability indices over the last

three decades. a, b Show distribution of correlation coefficients (RNDVI-SPEI03 and RNDVI-scPDSI) between normalized difference vegetation index (NDVI)

anomaly and 3-month Standardized Precipitation-Evapotranspiration Index (SPEI03) and Palmer Drought Severity Index (scPDSI). The horizontal axis of

the color legend is the correlation coefficient between NDVI anomaly and SPEI03 (scPDSI) for the entire study period, the vertical axis of the color legend is

the trend of correlation coefficient for the 30 five-year moving windows, no color indicates unvegetated regions. The chartreuse color stands for vegetation

water surplus regions where water surplus has been decreasing; navy color indicates vegetation water surplus regions that have been experiencing an

increase in water surplus; magenta color is used for water deficit regions that have been seeing an increase in water deficit; and regions colored in yellow

are characterized by water deficit and a decrease in water deficit. c, d Show the temporal trends of significant changes in percentage areas associated with

water deficit and water surplus responses using 5-year moving windows. Blue color stands for the water surplus response and red color for water deficit

response. All the trends of water deficit and water surplus responses are significant in linear trend test and Mann–Kendall trend test (p < 0.05). X-axes of

(c, d) are binned using 5-year moving window to smooth out time series fluctuations and highlight the trends.
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Further, a decreasing water deficit response time and shortened
water surplus period were observed between the onset of water
availability change and their observable impact on vegetation
across the extratropical Northern Hemisphere. We evaluated the
response time and water surplus period based on the statistically
significant correlations between NDVI and SPEIs at different
time-scales (see “Methods”). Over the study period, 44% of the
Northern Hemisphere regions had NDVI positively correlated to
at least one time-scale of SPEIs (Fig. 3a) and 38% of the Northern
Hemisphere regions had NDVI negatively correlated to at least
one time-scale of SPEIs ranging from 1 to 24 months (Fig. 3b).
This indicates that 44% of the Northern Hemisphere regions can
be considered water deficit region and 38% of the Northern
Hemisphere regions can be considered water surplus region for at
least one month over the last 30 years. More importantly, our
analysis indicates that about 14% of the Northern Hemisphere
land area showed a significant decrease (p < 0.05) in response
time, whereas 6% showed a significant increase (p < 0.05) in
response time, resulting in an overall expansion of regions with
decreased water deficit response time. In other words, there is an
expansion of regions exhibiting a shorter water deficit response
time, which corresponds to an increased vegetation susceptibility
to stress induced by water scarcity (Fig. 3c). Similarly, about 6%
of the Northern Hemisphere regions showed an increased water
surplus period while 15% of the regions showed a decreased water
surplus period, resulting in an overall expansion of regions with
decreased water surplus period (i.e., shortened water surplus
period) (Fig. 3d). Based on the previous results, a shorter water

surplus duration is expected to favor plant productivity in water
surplus regions. The shorter water deficit response time and
shortened water surplus period across the Northern Hemisphere
are also in support of the notion that vegetation growth in the
Northern Hemisphere over the last three decades has become
increasingly limited by water scarcity and not by surplus.

We finally evaluated the role of air temperature, precipitation,
solar radiation, and atmospheric CO2 in mediating vegetation
responses to water availability by carrying out an attribution
analysis. We applied a partial correlation algorithm (see “Methods”)
to attribute the RNDVI-SPEI03 and RNDVI-scPDSI to meteorological and
atmospheric CO2 drivers (i.e., air temperature, precipitation, solar
radiation, and atmospheric CO2). The partial correlation of each
factor was calculated for each grid cell (Supplementary Fig. 12). The
factor associated with the largest absolute value of partial correlation
was identified as the dominant factor to the RNDVI-SPEI03 and
RNDVI-scPDSI in that grid cell (Fig. 4a and b). The area associated
with each dominant factor was then calculated for the water deficit
and the water surplus regions separately (Fig. 4c and d). The area
fraction associated with each dominant factor was calculated for the
water deficit and the water surplus regions, respectively (i.e., the
dotted blue and red color regions as identified in Fig. 1a and b).
While the partial correlation analysis revealed that there was no
single driver responsible for the increasing vegetation water
constraint, RNDVI-SPEI03 and RNDVI-scPDSI were attributable to
precipitation and radiation for a relatively large portion of both
the water deficit and water surplus regions (Fig. 4c and d).
Specifically, we found that in water surplus regions (i.e., the dotted

Fig. 3 Geographical distribution of maximum areas associated with water surplus and water deficit responses as well as the areas associated with

changed response times to water surplus and water deficit over the last three decades. a Presents the maximum area composite of significant positive

correlation (water deficit response) between normalized difference vegetation index (NDVI) anomaly and Standardized Precipitation-Evapotranspiration

Index (SPEIs) from 1- to 24-month time-scale (gold color); b the maximum area composite of significant negative correlation (water surplus response)

between NDVI anomaly and SPEIs from 1- to 24-month time-scale (green color); c area associated with change of response time to water deficit; d area

associated with change of response time to water surplus response. The red and blue bars in (c, d) represent the areas of decreased and increased

response time, respectively.
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blue regions in Fig. 1a), 29% and 30% of RNDVI-SPEI03 was
attributable to precipitation and radiation, respectively (Fig. 4c).
Similarly, in water deficit regions (i.e., the dotted red color regions
in Fig. 1a), 30% and 27% of RNDVI-SPEI03 was attributable to
precipitation and radiation, respectively (Fig. 4c). The areas where
RNDVI-scPDSI was explained by precipitation and radiation were
consistent with those for RNDVI-SPEI03 (Fig. 4c and d). It was also
found that in water surplus regions 21% and 20% of the RNDVI-

SPEI03, and 22% and 22% of the RNDVI-scPDSI were attributable to
temperature and CO2, respectively (Fig. 4c and d). In water
deficit regions, 21% and 21% of RNDVI-SPEI03, and 23% and 21% of
RNDVI-scPDSI were attributable to temperature and CO2, respectively
(Fig. 4c and d). The most likely explanation that the observed
productivity-moisture correlations were attributable to a greater
extent to precipitation and radiation in both water deficit and water
surplus regions is that these two meteorological variables capture
water and energy constraints and are closely related at large spatial
scales. For example, most of the water deficit regions (e.g., the
regions in the south and west of the United States) showed
decreasing precipitation and slightly increasing radiation (Supple-
mentary Fig. 13a and b); whereas water surplus regions (e.g.,
southeast United States and multiple regions in Russia) showed
increased shortwave radiation and to a lesser extent decreasing
precipitation (Supplementary Fig. 13a and b). The fact that in some
regions temperature is the major attribution factor for the observed
correlation patterns is likely due to the increasing frequency in
extreme hot days14, which in turn are associated with higher
atmospheric water demand6. In high-latitude water surplus regions,
plants affected by cell damage caused by more frequent extreme
hot days may consistently experience reduced growth even in
drier periods. In water deficit regions higher temperature and
solar radiation increase evapotranspiration/potential evapotran-
spiration making the soils drier, exacerbating vegetation water stress
exposure15,50. For the regions where RNDVI-SPEI03 and RNDVI-scPDSI

are dominated by CO2, we may be capturing an increase
in vegetation water use efficiency under increasing CO2

concentrations20. To evaluate the robustness of our attribution
analysis, we also used a “relaimpo”51 relative importance analysis to
quantify the relative contributions of each factor. Results from the
relative importance analysis were comparable to those from the
partial correlation analysis (Supplementary Fig. 14).

These results, which appear to be robust with respect to
possible trends induced by sensor aging/shift and other sources of
uncertainty such as drought legacy effect and grid cell

contaminations (see “Methods”), provide multiple lines of
evidence for an overall increase of water constraints on
extratropical Northern Hemisphere vegetation growth over the
last 30 years. With future warming, regions experiencing water
constraints will likely increase, resulting in a reduction of carbon
uptake across the extratropical Northern Hemisphere, thus
potentially amplifying the global carbon-climate feedback.
Consistent with previous studies23,37,38, we found that the
increasing vegetation water constraints are associated with
increasing negative drought impacts hidden in the overall
greening trends, with plants becoming increasingly sensitive to
drought. With the projected increasing frequency and severity of
drought events31, the increasing water constraint is likely to be
the one major factor causing the strength of the terrestrial carbon
sink to shift from an increasing to a decreasing trend under
climate change. More importantly, even without drought, the
increasing vegetation water constraint could be one of the main
factors counteracting the fertilization effect from CO2 and
nitrogen on vegetation growth, leading to a decreasing trend of
terrestrial carbon sink under the warming climate.

Methods
Satellite observation data. The third-generation biweekly Advanced Very High
Resolution Radiometer (AVHRR) NDVI (GIMMS-NDVI3g, available at https://
ecocast.arc.nasa.gov/data/pub/gimms/3g.v0) data were used in this study as a proxy
for vegetation growth between 1982 and 2015. The study period of 1982–2015 was
selected to balance the data availability for vegetation growth and water availability
indicators. For example, the Standardized Precipitation-Evapotranspiration Index
(SPEI) dataset is currently available only to the year 2015. The GIMMS-NDVI3g
data have corrections for sensor degradation, cloud cover, inter-sensor differences,
solar zenith angle, viewing angle effects, and volcanic aerosols, making them widely
used to study the vegetation dynamics under warming climate4,13. Ku-band
vegetation optical depth (VOD) was selected from 1988 to 2015. The maximum
value composite method was applied to composite daily VOD into monthly
datasets, and the cubic resampling method was used to aggregate 0.05° spatial
resolution into 0.5° to match the spatial resolution from climate datasets. Daily Ku-
band VOD data52 were obtained from https://zenodo.org/record/2575599 #.Xzi-
vuMBKipp. Moderate Resolution Imaging Spectroradiometer (MODIS) based
enhanced vegetation index (EVI) and gross primary production (GPP), as well as
solar-induced chlorophyll fluorescence (SIF) data derived from discrete the
Orbiting Carbon Observatory-2 (OCO-2) SIF and MODIS observations (GOSIF)53,
were selected from 2000 to 2015 as complementary proxies for vegetation growth
and were used here for evaluating the robustness of the observed trends based on
NDVI. GOSIF uses a combination of the OCO-2 SIF with MODIS version 6 data,
which alleviated the issue of sensor degradation. Monthly GOSIF data were
obtained from http://data.globalecology.unh.edu/data/GOSIF/. Version 6 of EVI
(MOD13A3) and GPP (MOD17A2H) were aggregated to 0.5° × 0.5° to match the
resolution of meteorological data. In addition, GPP data from 1982 to 2011 based
on MODIS GPP algorithm driven by GIMMS fraction vegetation absorbed

Fig. 4 Attribution of meteorological factors and atmospheric CO2 to the correlations between normalized difference vegetation index (NDVI) anomaly

and water availability indices over the last three decades. a, b are the spatial distributions of the dominant factor influencing RNDVI-SPEI03 and RNDVI-scPDSI,

respectively. The dots show the regions that RNDVI-SPEI03 or RNDVI-scPDSI variations are significantly explained by precipitation, radiation, temperature, and

atmospheric CO2. c, d The percentage areas where the water deficit and water surplus responses can be explained by one of the four dominant factors (i.e.,

precipitation, temperature, radiation, and CO2). Pre: precipitation, Rad: radiation, Tmp: temperature, CO2 : atmospheric CO2.
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photosynthetically active radiation (fPAR) and leaf area index (LAI) data47 were
used to evaluate the robustness of the observed trends using EVI and GPP and to
make up for the absence of MODIS-based vegetation growth data before 2000. The
maximum value composite method and the cubic resampling method were used to
composite 8-day and bi-weekly data into monthly with 0.5° spatial resolution for
the remote sensing-based data to match the spatial and temporal resolution of
water availability indices and climate data13. The detailed evaluation of MODIS
algorithm based GIMMS-GPP from 1982 to 2011 could be found in Smith et al.47.

Gridded water availability indices. Standardized Precipitation-
Evapotranspiration Index (SPEI) and self-calibrating Palmer Drought Severity
Index (scPDSI) are widely used as water availability indices to quantify water deficit
onset, duration, magnitude, and spatial extent5,19,29,34. The monthly scPDSI, cal-
culated based on balance model of precipitation, temperature, and potential eva-
potranspiration (PET)54,55 were provided by the Research Data Archive at the
National Center for Atmospheric Research (NCAR). The monthly scPDSI was
aggregated to 0.5° × 0.5° using cubic resampling method. Monthly SPEI was cal-
culated based on historical probability distribution of precipitation minus potential
evapotranspiration (PET)39. Both SPEI and scPDSI used Penman-Monteith
method to calculate PET. The main difference between SPEI and scPDSI is that
SPEI provides multiple time-scales and scPDSI is with fixed time-scale39. The 0.5°
with 1–24 time-scales of SPEI were selected in this study to characterize the
cumulative water balance conditions from the previous 1–24 months39.
1–24 month time-scale of SPEIs were obtained from http://digital.csic.es/handle/
10261/153475, and scPDSI from 1982 to 2015 are available at https://rda.ucar.edu/
datasets/ds299.0/. Aridity index (AI) is defined as the ratio of mean annual rainfall
to mean annual potential evapotranspiration. Aridity index was used identify arid
(AI < 0.2), semi-arid (0.2 ≤AI ≤ 0.5), sub-humid (0.5 ≤AI ≤ 0.65), and humid
(AI ≥ 0.65) regions56,57. The spatial AI dataset was obtained from https://cgiarcsi.
community/data/global-aridity-and-pet-database/. The 30 arc seconds spatial
resolution was aggregated to 0.5° × 0.5° using cubic resampling method to match
the resolution of water availability indices and meteorological data. In addition to
SPEI and scPDSI, Essential Climate Variable (ESA) soil moisture data (version
05.2)58–60 (www.esa-soilmoisture-cci.org/) was used as an additional water avail-
ability indicator to evaluate the water constraint and water surplus trends. The
daily ESA soil moisture data were aggregated into monthly using monthly mean
values.

Forcing datasets. Monthly meteorological (including air temperature, precipita-
tion, incoming shortwave radiation) and atmospheric CO2 data with spatial
resolution of 0.5° × 0.5° were used to quantify the attributions of the observed
relationships between vegetation growth and water availability indices from 1982 to
2015. Monthly air temperature and precipitation data with a spatial resolution of
0.5° × 0.5° were obtained from Climate Research Unit (CRU) at the University of
East Anglia (CRU TS 3.23)61. The shortwave radiation data was obtained from the
Terrestrial Hydrology Research Group at Princeton University62 (http://hydrology.
princeton.edu/data/pgf/v2/0.5deg/monthly/).

Trend analyses of vegetation and water availability relationships. To examine
the general change of vegetation growth responses to water availability, we con-
ducted the analyses of the spatiotemporal relationship between the growing season
(April to October) NDVI anomaly and the two water availability indices (SPEI03
and scPDSI) for each grid cell over the Northern Hemisphere from 1982 to 2015.
SPEI03 represents 3-month Standardized Precipitation-Evapotranspiration Index.
NDVI anomaly was used to remove the effect of seasonality, and we calculated the

NDVI anomaly based on z-score of NDVI using the formula of Aj;i ¼ ð
NDVI j;i� �NDVI j

σ
Þ,

where Aj;i denotes NDVI anomaly for the month j in year i, �NDVIj denotes the

averaged NDVI of month j over 1982–2015; σ stands for the standard deviation of
NDVI for month j over 1982–2015. Spearman rank correlation coefficients (r-
values) between NDVI anomaly and the two water availability indices (RNDVI-SPEI

and RNDVI-scPDSI) were used to represent the NDVI and SPEI (or scPDSI) rela-
tionship. Grid cells with significant positive and negative correlations (p < 0.05)
between vegetation indicators and water availability indices were defined as grid
cells associated with water deficit and water surplus, respectively. The ratio between
the sum of all the grid cells associated with water deficit and total grid cells was
defined as the percentage area associated with water deficit across the Northern
Hemisphere each year. The same approach was used to calculate the percentage area
associated with water surplus across the Northern Hemisphere each year. Given that
the time-scales at which different biome types respond to water availability may
differ noticeably19, in addition to SPEI03, we further estimated the correlations
between NDVI anomaly and SPEI separately for 1 to 24 month time-scales. In
addition to SPEI and scPDSI, ESA soil moisture data was used as one additional
water availability indicator and spatiotemporal relationships between the growing
season (April to October) NDVI anomaly and ESA soil moisture were also
conducted.

To quantify the spatiotemporal dynamics of water deficit and water surplus
regions over the last three decades, the trends of correlation coefficients between
vegetation growth indicators and water availability indices of 5-year moving
window for each grid cell were analyzed using linear and Mann–Kendall trend test

(e.g., Fig. 2a and b). We used 5-year moving window in our trends analysis in this
study to smooth out time series fluctuations and highlight trends. Ten-year and 15-
year moving window also used in our study to evaluate the robustness of the 5-year
moving window trend analysis. A longer the moving window resulted in less total
time series points and a reduction in fluctuations from time point to time point,
which helped to highlight any potential long-term trend. We focus our
presentation of the results on the 5-year moving window analysis since it
maximized the number of time series points while still consistently highlighting
any emergent long-term trends in the data. To analyze the changes in areas
associated with water deficit/water surplus across the Northern Hemisphere, the
trend of percentage area associated with water deficit/water surplus was analyzed
with a 5-year moving window using linear and Mann–Kendall trend analysis (e.g.,
Fig. 2c and d). To evaluate the robustness of the relationships between NDVI and
the two water availability indices, we used the same method to analyze the
relationships between VOD, SIF, EVI, and GPP and the two water availability
indices across the Northern Hemisphere (e.g., Supplementary Fig. 6). Temporal
consistency analysis based on multiple independent satellite observations imply
that the observed changes in vegetation water deficit and water surplus responses
were not caused by inadequate corrections of sensors for sensor aging and sensor
shift63. To examine whether the trends of observed productivity-moisture
correlations were caused by long-term NVDI trends, we repeated the same analyses
of RNDVI-SPEI03 and RNDVI-scPDSI on detrended NDVI time series, using both linear
and nonlinear detrending methods. For the linear detrending method, we first
tested the linear trend significance for each pixel from 1982 to 2015 and then
removed the slope of any significant increasing or decreasing trend (p < 0.05) in
each pixel. For non-linear detrend method, we extracted the non-linear trend using
interannual moving average method. The non-linear trend was extracted using the
decompose function in R. We also find that the drought legacy effect (i.e., reduced
vegetation growth and incomplete recovery after extreme drought events)64,65 is
unlikely to play a dominant role in influencing the trend of vegetation response to
water availability since we found similar trends in NDVI responses to 1 month
SPEI to 24 months SPEI (Supplementary Fig. 7). Nevertheless, multiple
uncertainties may affect the understanding of the water constraint changes on
vegetation in our study. These may include uncertainties of water availability and
vegetation indices at high latitudes, uncertainties of vegetation growth indicators
due to snow and/or cloud contamination, and uncertainties due to unaccounted for
insect and fire disturbances66. However, because we found multiple lines of
evidence of increasing vegetation water constraint, we do not expect these
uncertainties to affect our key findings.

To further test the vegetation water constraint trends in addition to
spatiotemporal vegetation-moisture correlations, we examined the temporal trend
of NDVI anomalies under drought. To examine the drought impacts on vegetation
while minimize impacts from other confounding factors such as CO2 fertilization
and lengthening of the growing season, we used both linear and nonlinear
detrending methods for each grid cell. Linear detrending consisted in removing the
slope of monthly NDVI for five years intervals between 1982 and 2015. Nonlinear
detrending consisted in removing the moving average of interannual trend. The de-
trended NDVI anomaly was then calculated based on the de-trended z-score of
growing-season (April–October) NDVI. We then analyzed the change of de-
trended NDVI anomaly under drought conditions. We extracted all the grid cells of
de-trended NDVI anomaly that are under drought conditions indicated by 3-
month time-scale SPEI (SPEI03) and scPDSI from 1982 to 2015. scPDSI <−1 and
SPEI03 <−1.28 were defined as drought conditions2.

Analysis of vegetation response time to water availability. It has been well
documented that climate conditions accumulatively impact vegetation growth and
plants have lagged response to climate over a period of time67–69. The concept of
drought time-scale of n months indicates n months of cumulative water
balance39,70,71 and significant relationship between NDVI and n-month time scale
SPEI (p < 0.05) indicates the existence of a significant relationship between a n-
month cumulative water balance indicator and vegetation growth (p < 0.05)18.
Accordingly, we defined the minimum SPEI time-scale (in the 1–24 month range)
associated with significant positive correlation to NDVI anomaly (p < 0.05) as the
minimum water deficit response time for each grid cell. Similarly, we defined the
maximum SPEI time-scale associated with significant negative correlation to NDVI
anomaly as the maximum water surplus period (p < 0.05) for each grid cell. We first
extracted the maximum area associated with significant vegetation water deficit by
accounting for all the grid cells with significant positive correlation between NDVI
anomaly and SPEIs (p < 0.05) in the subsequent 1- to 24- months. A given grid cell
was classified as having vegetation constrained by water scarcity when at least one
of the subsequent 1–24 month SPEIs exhibited a significant positive correlation
with NDVI (low SPEI with low NDVI, p < 0.05). If in a given grid cell SPEIs had
significant positive correlation with NDVI (p < 0.05) with more than one time lags,
the minimum time-lag associated with significant positive correlation was used.
Similarly, we extracted the largest areas associated with significant water surplus
(p < 0.05) by accounting for all the grid cells with significant negative correlation
between NDVI anomaly and SPEIs (p < 0.05) in the subsequent 1- to 24- months.
A given grid cell was classified as having vegetation affected by water surplus when
at least one time-lag exhibited a significant negative correlation between SPEI and
subsequent NDVI (low SPEI with high NDVI, p < 0.05). If more than one time-lag
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exhibited a significant negative correlation between SPEIs and NDVI (p < 0.05) for
a given grid cell, the maximum time-lag associated with a significant negative
correlation (p < 0.05) was used. We then analyzed the trends of minimum water
deficit response time and maximum water surplus period separately for each grid
cell based on a 5-year moving window. The linear trend test was applied for each
grid cell over the period of 1982–2015 to examine the significance (p < 0.05) of
trend for vegetation response time to water availability. Since we separately
examined the change of water deficit and water surplus regions, a grid with both
positive and negative correlation did not affect our analysis.

Attribution analysis. The contributions of meteorological factors (mean annual
air temperature, precipitation, and shortwave radiation), and atmospheric CO2 to
the observed trends of vegetation growth and water availability relationships were
assessed using partial regression models. We fitted full models for r-values of the
correlations between NDVI anomaly and water availability indices as a function of
mean growing season air temperature, mean growing season precipitation, mean
growing season shortwave radiation, and atmospheric CO2 of each 5-year moving
window for each grid cell. We used the p-value (p < 0.05) of multivariate regression
models to examine whether these factors are statistically contributed to the changes
of correlations between NDVI anomaly and water availability indices (RNDVI-SPEI

and RNDVI-scPDSI). To determine the most important contributor of the RNDVI-SPEI

and RNDVI-scPDSI temporal dynamics, we ranked these factors based on the absolute
value of partial correlation coefficients of each factor. This method was applied for
every grid cell of the study region to extract the most important contributor of the
RNDVI-SPEI and RNDVI-scPDSI temporal dynamics based on the spearman partial
correlation coefficient. To evaluate the robustness of the attribution analysis based
on partial regression models, we also used Lindeman, Merenda and Gold (lmg)
relative importance algorithm51 to test the relative importance of the meteor-
ological factors and the atmospheric CO2 in explaining the variance of RNDVI-SPEI

and RNDVI-scPDSI. The algorithm was based on variance decomposition for multiple
linear regression models; the relative importance of each factor was calculated
based on variance of RNDVI-SPEI and RNDVI-scPDSI they explained. The relative
importance was performed with the “relaimpo” package51 in R. This method was
applied to every grid cell within the study region.

Data availability
The Advanced Very High Resolution Radiometer GIMMS-NDVI3g is available at

https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v0. 1–24 month time-scale of SPEIs were

obtained from http://digital.csic.es/handle/10261/153475, and scPDSI from 1982 to 2014

is available at https://rda.ucar.edu/datasets/ds299.0/. Aridity index dataset is available at

https://cgiarcsi.community/data/global-aridity-and-pet-database/. Atmospheric CO2 data

could be available from Mauna Loa Observatory provided by the Scripps Institution of

Oceanography (Scripps CO2 program). GIMMS-GPP from 1982 to 2011 is available at

https://wkolby.org/data-code/. Monthly air temperature, shortwave radiation, and

precipitation data are available at http://hydrology.princeton.edu/data/pgf/v2/0.5deg/

monthly/. Monthly GOSIF data were obtained from http://data.globalecology.unh.edu/

data/GOSIF/. Moderate Resolution Imaging Spectroradiometer (MODIS) based EVI and

GPP datasets are available at are available from the NASA Land Processes Distributed

Active Archive Center at https://lpdaac.usgs.gov. Ku-band VOD datasets are available

from https://zenodo.org/record/2575599#.XyLqfLdME0M. Essential Climate Variable

(ECV) soil moisture data could be obtained from www.esa-soilmoisture-cci.org/.

Irrigated area extracted using Global Map of Irrigation Areas from Food and Agriculture

Organization of United Nations (FAO): http://www.fao.org/aquastat/en/geospatial-

information/global-maps-irrigated-areas/latest-version/.

Code availability
All R and Python code can be available from LW upon reasonable request.
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