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Abstract— This paper deals with the problem of 
controller design for DC microgrids that feed constant 
power loads. To design the proposed controller, first by 
the use of the exact feedback linearization approach, the 
linear model of Brunovsky's canonical representation of 
the system has been obtained to address the nonlinearity 
problem of the system. Then, the desired control 
technique is developed by a combination of sliding mode 
and backstepping control approaches in which a nonlinear 
disturbance observer is utilized to estimate the 
disturbance. The overall stability of the system is analyzed 
based on the Lyapunov approach. A suitable and practical 
sliding surface is one of the controller strengths that allow 
the bus voltage to track the reference voltage with high 
accuracy and fast transient response. Finally, to prove the 
mentioned claims, an experimental setup has been 
constructed and the proposed controller is implemented. 
The experimental results have been analyzed and error 
analysis is performed. The results confirm the superiority 
of the proposed controller compared to state-of-the-art 
controllers.  

Index Terms— Backstepping sliding mode control, 
Nonlinear disturbance observer, Constant power load, 
Boost converter. 

I. INTRODUCTION 

nvironmental problems and restrictions on the supply of 

fossil fuels have led to the growth and development of 

microgrids in modern power systems. Advances in renewable 

energy technologies, the development of innovations in power 
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electronics, and government support for renewable energy 

rates have led electrical companies to develop and expand 

distributed generation. Moreover, proximity to the place of 

consumption due to the development of microgrids has been 

expressed as a suitable solution to mitigate the problems of 

traditional power networks [1-3]. 

Some loads are inherently constant power load (CPL), 

however in some cases, due to the type of operation and 

control of converters, these devices will behave like a CPL 

[4]. For example, using a multi-converter in a cascade 

structure and applying a tight control to the load converter, 

even when the actual network loads are inductive or resistive, 

the multi-converter system will tend to act as a CPL. This 

behavior makes a negative incremental impedance in the input 

terminal, which negatively affects the stability and voltage 

quality of the system. In other words, in these conditions, the 

system represents a non-minimum phase characteristic that is 

difficult to control. Accordingly, the primary cause of 

instability is the negative impedance phenomenon caused by 

the CPLs while the nonlinearity of the system complicates the 

design of the controller. Therefore, the issues of voltage 

regulation and stability of microgrids in the presence of CPLs 

are essential challenges of future power networks [5]. In case 

of negligence or failure to address these issues, instability and 

blackouts have spread to a higher level, where the possibility 

of the collapse of the whole system is not far from the mind 

and imagination [6]. 

Moreover, the presence of disturbance in industrial 

environments is a matter that should be considered along with 

sudden changes in load and input voltage of the power source 

as factors affecting the stability of the system [7]. Ensuring the 

system stability, improving the dynamic response, and limiting 

its overshoot in the presence of a disturbance, sudden load 

changes, and input voltage changes for the boost converter in 

the DC microgrid is the main goal of the controller design. 

So far, different methods have been developed to address 

the effect of negative impedance of CPLs, each of which has 

advantages and disadvantages. Eliminating this effect through 

passive damping is a practical and straightforward way in 

which the damping of the system is increased by adding 

passive elements [8]. This method is known as a simple 

method that stabilizes the system without the need to change 

or redesign the control loop [9]. Active damping is another 
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method that is performed by adding equipment, which injects 

a compensatory current into the circuit and by modifying the 

control loop [10]. 

The pole placement control technique is utilized to move 

the system’s pole to the left side of the imaginary axis. The 

new location of the pole should be chosen so that the overall 

closed-loop system be stable [11]. 

Moreover, the pulse adjustment method, which is based on 

providing digital control through pulse control and PWM 

guidance, is used to overcome this issue [12]. It should be 

noted that these techniques may adversely affect the dynamic 

response of the system. In addition, since the performance of 

these methods is based on the small-signal model, in practice, 

these methods can only guarantee the stability of the system to 

a limited extent and near the points of operation [13]. 

Therefore, these control methods are valid only locally and in 

case of significant disturbance, the control method is 

ineffective, and the system will be unstable. A DC microgrid 

in the presence of a CPL is a nonlinear switching system, 

therefore, the linear controller faces many limitations in 

dealing with this condition [14]. Accordingly, the design of a 

nonlinear controller is essential to stabilize these systems. 

Recently, the Exact Feedback Linearization (EFL) method 

has been successfully used to turn nonlinear systems into 

linear ones. Compared to other linearization methods, the non-

elimination of non-linear high-order terms of the system’s 

linearization process is one of the main advantages of this 

method [15]. As a result, the EFL technique has been widely 

used in the design of power conversion control systems 

[16,17]. In [14], AC/DC three-phase converter voltage control 

is implemented using the EFL technique. However, many of 

these controllers are designed by the assumption that the 

nonlinear model of the system is accurate while uncertainties 

or external disturbances are not considered. Moreover, this 

technique cannot be used directly for systems with unstable 

zero dynamics [18]. Therefore, when the system does not meet 

the exact linearization conditions, the zero dynamic stability 

must be considered and checked. Otherwise, the system may 

represent a non-minimum phase characteristic and exhibit 

harmful behavior [19]. This negatively affects the dynamic 

quality of the system and increases transient dynamics. In 

[18], based on EFL theory, the system is converted into a non-

minimum phase system with the help of small-signal inductor 

current injection at the output and a suitable controller is 

designed. 

In [20], a controller has been designed for the buck 

converter system with CPL to improve the dynamic 

performance of the system by using EFL with a combination 

of feedback and feedforward control methods. In [21], a robust 

control system has been designed using Kalman filter and 

feedback control. In [22, 23] a model predictive control 

method has been used to stabilize the boost converter in the 

presence of CPL. It should be noted that the high 

computational burden of this controller limits the practical 

implementation. 

If the zero dynamics of the system are unstable or the 

mathematical model of the system is not accurate, to ensure 

the proper performance of the controllers in different 

conditions, it is necessary to use robust controller design 

methods. To this aim, sliding mode control is used to deal with 

external perturbations, unmodeled dynamics, and parameter 

uncertainty [24-25]. 

Robust sliding mode control of bandwidth modulation 

ensures the stability of the systems by utilizing a new sliding 

surface [26]. Although the adverse effects of uncertainty of 

system parameters are limited and controlled by sliding model 

control, fixed sliding mode coefficients cause a strong 

chattering phenomenon in the control signal and cause severe 

fluctuations. In [27], a sliding mode controller for a buck 

converter system with a CPL at a constant switching 

frequency is proposed. By changing the input voltage and 

changing the level of load consumption, different operating 

points are created. However, the stability of the system in 

other conditions is well guaranteed by this controller. 

Nevertheless, the requirement to measure different values 

causes limitations in its applications. 

The adaptive backstepping technique is one of the most 

effective methods for designing systematic nonlinear control 

in stabilization problems which has been widely employed for 

the purposes of converter stabilization [28]. However, the load 

is supposed to be resistive and the stability analysis of the 

converters in the presence of a CPL is neglected.  

An effective technique to estimate uncertainties and 

disturbances in nonlinear systems is the nonlinear disturbance 

observer (NDO) [29,30]. Recently, a backstepping sliding 

control technique is used to deal with disturbances and 

possible changes in parameters [31]. Large-signal stability and 

step-by-step design are some advantages of this method. 

In this paper, in order to focus on the subject of controller 

design at the primary level, a simplified model of microgrids 

in the islanded mode in the form of a source, a converter, and 

power loads has been employed. In the following, it has been 

tried to solve the problem of microgrid instability due to the 

CPL by combining two control techniques, i.e., sliding mode 

control (SMC) and backstepping mode control (BMC), while 

an NDO is employed to estimate the uncertainties and 

disturbances. The Lyapunov-based approach is utilized to 

derive the stability condition. Therefore, the contributions of 

this paper can be outlined as: 

1) By using a combination of two types of controllers, the 

advantages of both are adopted and their weaknesses 

are covered. 

2) By using the NDO, it is possible to neutralize the 

adverse effects of uncertain CPLs. 

3) The need to change the output of the state equations to 

implement the EFL technique has caused the output 

voltage to be indirectly controlled and faced with 

inertia. Using a combination of two controllers with an 

NDO and using a suitable sliding surface has solved the 

problem of indirect control and inertia in the system. 

4) Due to the use of a suitable sliding surface and an 

increase in the degree of freedom in the design 

coefficients, the construction of the controller has 

become more accessible and possible. 
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The rest of the article is organized as follows: Section 2 

describes the basic principles and problem statement. In 

Section 3, the proposed controller is designed and proven to be 

stable. In Section 4, experimental results and comparative 

graphs are presented. Finally, the conclusion is mentioned in 

Section 5. 

II. BASIC PRINCIPLES AND PROBLEM STATEMENT 

Boost and buck converters are used to change the voltage level 

using components such as inductors, capacitors, diodes, and 

controlled switches. Changing the connection method and 

component values can reduce or increase the voltage and 

create other properties of converters. 

A simplified scheme of the DC power distribution system is 

shown in Fig. 1. As shown, a boost converter transfers power 

from the voltage source to the CPL and the resistive loads. To 

model the CPL, a dependent current source at the output is 

used. However, due to the changes in current and 

instantaneous voltage of the CPL, we are faced with a negative 

impedance . Negative impedance is the leading cause of 

instability in such systems . If the output voltage decreases due 

to disturbance, the negative impedance characteristic further 

reduces the output voltage, and if a proper controller is not 

designed, this will eventually make the system unstable and 

cause the voltage to collapse. 

Consider the following averaged model for the continuous-

conduction case of the boost converter shown in Fig 1: 

(1) 

{
 

 𝐿
𝑑𝑖𝑙
𝑑𝑡

= 𝑉𝑖𝑛 − (1 − 𝑢)𝑣𝑐

𝐶
𝑑𝑣𝑐
𝑑𝑡

= (1 − 𝑢)𝑖𝐿 −
𝑣𝑐
𝑅
−
𝑃𝐶𝑃𝐿
𝑣𝑐

     

where the common notations have been used. The goal is to 

regulate the output voltage 𝑣𝐶 to its setpoint 𝑣𝐶𝑟𝑒𝑓. Based on 

the location of  𝑣𝐶, the system is nonlinear. However, by 

considering another output, the system becomes completely 

linear, which will be discussed in the next section. 

III. CONTROLLER DESIGN 

To prepare the form of state equations, especially for the 

implementation of the backstepping sliding mode control 

(BSMC), a form of equations called EFL must be obtained. 

An appropriate output is selected to overcome the non-

minimum phase characteristic of the system, which results in 

indirect control of the capacitor voltage. Accordingly, the 

overshoot of the voltage is increased. Then, by using the 

Brunovsky transform, the canonical form of the system is 

obtained, and by applying feedback, the linear form of the 

system is obtained. Finally, microgrid instability in the 

presence of a CPL is addressed by employing a combination 

of sliding mode control and backstepping mode control. To 

achieve the goal, s suitable Lyapunov candidate function is 

employed to guarantee the stability of the system. Taking the 

advantage of these two types of controllers and the use of 

NDO will allow the final controller to operate in industrial 

environments. 

Wind 
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Fig. 1: Typical DC power distribution system and its equivalent circuit. 

 

By examining the possibility of complete linearization 

through the Lee Bracket derivative criterion, it is determined 

that if the capacitor voltage is selected as the output, the 

system is partially linear. However, by selecting the system 

energy as the output, the system becomes completely linear. It 

should be noted that in the new situation, the capacitor voltage 

control is indirectly possible, and adverse effects such as 

overshoot and slow control speed occur. 

Assume 𝛾1  is the sum of the energy stored in the system:  

𝛾1 =
1

2
𝐿𝑖𝑙
2 +

1

2
𝐶𝑣𝑐

2  (2) 

taking derivation from it, yields: 

𝛾1̇ = 𝑉𝑖𝑛𝑖𝑙 −
𝑣𝑐
2

𝑅
− 𝑃𝐶𝑃𝐿  (3) 

Consider the second state variable   𝛾2 as: 

𝛾2 = 𝑉𝑖𝑛𝑖𝑙 −
𝑣𝑐
2

𝑅0
  (4) 

where 𝑅0 is the nominal resistance of the resistive load. 

Taking derivation from 𝛾2, yields: 

𝛾2̇ =
𝑉𝑖𝑛

2

𝐿
+
2𝑣𝑐

2

𝑅0
2𝐶
− (

𝑉𝑖𝑛𝑣𝑐
𝐿

+
2𝑖𝑙𝑣𝑐
𝑅0𝐶

)(1 − 𝑢) 

+
2

𝑅0𝐶
(𝑃𝐶𝑃𝐿 −

𝑣𝑐
2

𝑅0
+

𝑣𝑐
2

𝑅
)  (5) 

    Now, define the auxiliary variable d, disturbances ℎ1  and 

ℎ2 as follows: 

𝑑 =
𝑉𝑖𝑛

2

𝐿
+
2𝑣𝑐

2

𝑅0
2𝐶
− (

𝑉𝑖𝑛𝑣𝑐
𝐿

+
2𝑖𝑙𝑣𝑐
𝑅0𝐶

) (1 − 𝑢) 
(6) 

ℎ1 = −𝑃𝐶𝑃𝐿 +
𝑣𝑐
2

𝑅0
−
𝑣𝑐
2

𝑅
 

(7) 

ℎ2 =
2

𝑅0𝐶
(𝑃𝐶𝑃𝐿 −

𝑣𝑐
2

𝑅0
+
𝑣𝑐
2

𝑅
) 

(8) 

    Then, the canonical form of the system is achieved by using 

the following definitions: 

(9) {
𝛾1̇ = 𝛾2 + ℎ1
𝛾2̇ = 𝑑 + ℎ2

 

To find out the reference values of the new state variables, 

define: 

(10) 𝛾1
∗ =

1

2
𝐿𝑖𝑟𝑒𝑓
2 +

1

2
𝐶𝑣𝑐𝑟𝑒𝑓

2  

(11) 𝑃𝑟𝑒𝑓 =
𝑣𝑐𝑟𝑒𝑓
2

𝑅0
− ℎ̂1 

where ℎ̂1 is the estimate of ℎ1 and is estimated using the 

following disturbance observers: 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on February 25,2022 at 17:43:50 UTC from IEEE Xplore.  Restrictions apply. 



0278-0046 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2022.3152028, IEEE
Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 

(12) {
ℎ̂1 = 𝑏1(𝛾1 − 𝑞1)

𝑞1̇ = 𝛾2 + ℎ̂1
 

and 

{
ℎ̂2 = 𝑏2(𝛾2 − 𝑞2)

𝑞2̇ = 𝜃 + ℎ̂2
 (13) 

where 𝑞1 and 𝑞2 is are auxiliary variables, and 𝑏1 and 𝑏2 are 

positive design coefficients of the observers, and 𝜃 =

−𝑘2𝜑2 − ℎ̂2 + 𝛾̈1 . 

Achieving a robust and adaptive controller is the result of 

combining two types of controllers. The initial steps are taken 

through BMC, and in the final step, SMC is used . 

Now, define the new error variables 𝜑1  and 𝜑2 , as follows: 

(14) {
𝜑1 = 𝛾1 − 𝛾1

∗

𝜑2 = 𝛾2 − 𝛾2
∗ 

The goal is to die out the error between 𝛾1 and 𝛾1
∗. 

(15) 𝜑1̇ = 𝜑 + 𝛾2
∗ + ℎ1 − 𝛾1

∗̇ 

Now, by selecting the Lyapunov function as follows: 

𝑉1 =
1

2
𝜑1
2 +

1

2
ℎ̃1

2
  (16) 

where ℎ̃1 = ℎ1 − ℎ̂1, now, taking derivation from it, yields: 

𝑉̇1 = 𝜑1𝜑̇1 + ℎ̃1ℎ̇̃1 (17) 

By selecting 𝛾2
∗, we have: 

(18) 𝛾2
∗ = −𝑘1𝜑1 − ℎ1 + 𝛾̇1

∗ 

According to the definition of the disturbance observer: 

(19) 𝑉̇1 = −𝑘1𝜑1
2 +𝜑1𝜑2 +𝜑1ℎ̃1 + ℎ1ℎ̇1 − 𝑏1ℎ̃1

2 

Now, taking derivation from (13), yields: 

(20) 𝜑̇2 = 𝛾̇2 − 𝛾̇2
∗ 

In this stage, consider the following Lyapunov function: 

(21) 𝑉2 = 𝑉1 +
1

2
𝛿2 +

1

2
ℎ̃2
2 

where ℎ̃2 = ℎ2 − ℎ̂2. The reaching phase is achieved in the last 

stage for the proposed BSMC, now by selecting a proper 

sliding surface the sliding phase is accomplished. 

Using the error dynamic is a common way to define the 

sliding surface. In order to improve the controller efficiency 

and increase the degree of freedom for the designer, a 

combination of the existing errors is suggested. It is suggested 

to select a dynamic sliding surface based on the linear 

combination of errors, 𝜑1  and 𝜑2 , as follows [31]: 

(22) 𝛿 = 𝑀𝜑1 +𝜑2 

Taking derivation from this sliding surface, yields: 

(23) 𝛿̇ = −𝛼𝛿 − 𝜂𝑠𝑔𝑛(𝛿) 
Taking derivation from (21), yields: 

𝑉̇2 = 𝑉̇1 + 𝛿𝛿̇ + ℎ2ℎ̇2  (24) 

where 𝛿𝛿̇ = 𝛿[(𝑀 + 𝑘1)(𝜑2 − 𝑘1𝜑1) + (𝑚 + 𝑘1)ℎ̃1 

                     +𝑑 + ℎ2 + ℎ̇̂1 − 𝛾̈1
∗]                 (25) 

and 

𝑑 = −(𝑀 + 𝑘1)(𝜁2 − 𝑘1𝜁1) − ℎ̇̂2 + 𝛾̈1
∗ − 𝛼𝛿 − 𝜂𝑠𝑔𝑛(𝛿) (26)       

According to the (6) and (26), we have: 

𝑢 = 1 −

𝑉𝑖𝑛
2

𝐿
 + 

2𝑣𝑐
2

𝑅0
2𝐶
 − 𝑑

𝑉𝑖𝑛𝑣𝑐
𝐿

 + 
2𝑖𝑙𝑣𝑐
𝑅0𝐶

                                                (27) 

Substituting the NDO relations and (19) into (25), yields: 

(28) 

𝑉̇2 = −𝑘1𝜑1
2 +𝜑1𝜑2 − 𝛼𝛿

2 + 𝜑1ℎ̃1 + ℎ̃1ℎ̇1 − 𝑏1ℎ̃1
2

− 𝑏2ℎ̃2
2 + ℎ̃2 ℎ̇̃2

+ 𝛿[(𝑀 + 𝑘1 + 𝑏1)ℎ̃1 + ℎ2] − 𝜂|𝛿| 

 Assuming that the disturbances are limited, yields: 

(29) {
|ℎ̃1| ≤ |ℎ̅1|

|ℎ̃2| ≤ |ℎ̅2|
 

(30) 
{
(𝑀 + 𝑘1 + 𝑏1)ℎ̃1 + ℎ̃2 ≤ (𝑀 + 𝑘1 + 𝑏1)ℎ̅1 + ℎ̅2

(𝑀 + 𝑘1 + 𝑏1)ℎ̅1 + ℎ̅2 = 𝛺̅
 

 

(31) (𝑀 + 𝑘1 + 𝑏1)ℎ̃1 + ℎ2 ≤ 𝛺̅ 

By defining: 

(32) 

{
 
 

 
 

𝜑𝑇 = [𝜑1 𝜑2]

𝜇 = [
(𝑘1 −

1

2
) + 𝛼𝑀2 𝛼𝑀 −

1

2

𝛼𝑀−
1

2
𝛼

]
 

(33) 

We have: 

𝜑𝑇𝜇𝜑 = ((𝑘1 −
1

2
) + 𝛼𝑀2)𝜑1

2 + (2𝛼𝑀 − 1)𝜑1𝜑2

+ 𝛼𝜑2
2 

Using relations (29) to (33), we have: 

(34) 
𝑉̇2 ≤ −𝜑

𝑇𝜇𝜑 −
1

2
𝜑1
2 +𝜑1ℎ̃1 + ℎ̃1ℎ̇1 + ℎ̃2ℎ̇2 − 𝑏1ℎ̃1

2

− 𝑏2ℎ̃2
2 − (𝜂 − 𝛺̅)|𝛿| 

Lemma 1: Assume that the coefficients m and n are 

positive, then, for any positive number 𝜁, the following 

inequality is held: 

(35) |𝜇|𝑚|𝜔|𝑛 ≤
𝑚

𝑚+ 𝑛
ζ|𝜇|𝑚+𝑛 +

𝑛

𝑚+ 𝑛
ζ−
𝑚
𝑛 |𝜔|𝑚+𝑛 

Based on this Lemma one can conclude that: 

(36) 

{
 
 

 
 𝜑1ℎ̃1 ≤

1

2
𝜑1
2 +

1

2
ℎ̃1
2

ℎ̃1ℎ̇1 ≤
1

2
ℎ̃1
2 +

1

2
ℎ̇1
2

ℎ̃2ℎ̇2 ≤
1

2
ℎ̃2
2 +

1

2
ℎ̇2
2

 

Combining relations (34) and (36), yields: 

(37) 
𝑉̇2 ≤ −𝜑

𝑇𝜇𝜑 +
1

2
ℎ1
2 +

1

2
ℎ̇2
2 − (𝑏1 − 1)ℎ̃1

2 − (𝑏2

− .5)ℎ̃2
2 − (𝜂 − 𝛺̅)|𝛿| 

Choosing the proper coefficients as follows: 

(38) {
𝑏1 > 2.5
𝑏2 > 2

 

(39) {
‖ℎ1‖ ≥ ‖ℎ̇1‖

‖ℎ̃2‖ ≥ ‖ℎ̇2‖
 

By combining relations (37), (38), and (39), we have: 

(40) 𝑉̇2 ≤ −𝜑
𝑇𝜇𝜑 − ℎ̃1

2 − ℎ̃2
2 − (𝜂 − 𝛺̅)|𝛿| 

Now, select the following conditions: 

𝜂 ≥ 𝛺̅  (41) 

𝜇 ≥ 0 → {
(𝑘1 −

1

2
) + 𝛼𝑀2 > 0

((𝑘1 −
1

2
) + 𝛼𝑀2)𝛼 − (𝛼𝑀 −

1

2
)2 > 0

  (42) 

Finally, it is straightforward to verify the derivative of the 

Lyapunov candidate function is negative, i.e., 𝑉̇2 ≤ 0. 
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Fig. 2: The overall scheme of the experimental platform using switches of 

boost and buck converter (two legs of a two-level converter) to implement a 

CPL.  

TABLE I: SYSTEM AND CONTROLLER PARAMETERS 

Value Description Variables 

96 V DC bus voltage reference 𝑉𝑟𝑒𝑓 

48 V Converter input voltage 𝑉𝑖𝑛  

10 kHz Switching frequency 𝑓𝑠  

850 μH Inductance L 

1100 μF Capacitance C 

40 Ω Resistance R 

2000,2000 NDO gains 𝑏1, 𝑏2 

1200, 300 controller gains M,  𝑘1 

2000, 1500 controller gains 𝛼, 𝜂 

IV. EXPERIMENTAL RESULTS 

The main aim of this section is to evaluate the efficiency of 

the proposed method in practice. To this end, an experimental 

testbed is established as shown in Fig. 2, and the ability of the 

proposed controller is evaluated in different conditions.  

As illustrated in Fig. 2, the experimental setup of a boost 

converter with resistive load and CPL comprised of a buck 

converter with resistive load is implemented using Semikron 

IGBT stack (SEMITEACH B6U+E1CIF+B6CI) and passive 

components. The dSPACE MicroLabBox with DS1202 

PowerPC DualCore 2-GHz processor board is adopted to 

control the duty cycle of the switch and generate associated 

PWM for both boost and CPL converters such that the desired 

output voltage is tracked. The electrical parameters for a 

typical boost converter are listed in Table I. 

In this study, three types of controllers have been used to 

compare and evaluate the ability of the proposed controller. 

a) The first controller is a Backstepping Mode Control 

with NDO (BMC_NDO). 

b) The second controller is a Backstepping Sliding 

Mode Control (BSMC). 

c) The third controller, which is developed in the 

current work, is a Backstepping Sliding Mode 

Control with Nonlinear Disturbance Observer 

(BSMC_NDO). 

 
Fig. 3: The output profile of constant power load changes.  

 
Fig. 4: The output voltage of the controller.  

 

Based on the proof presented in Section III, the method of 

calculating the constraints governing the positive control 

coefficients 𝑏1 > 2.5, 𝑏2 > 2 , 𝛼 > 0, 𝜂 > 0, 𝑘1 > 0, and 𝑀 > 0 

is shown. The values of M, 𝛼 and 𝑘1 must be such that satisfy 

(41). The values presented in Table I have been obtained by 

repeating and modifying the coefficients in order to achieve 

the best control response. 

A. Investigation of the effect of load power changes and 
zero power (load resistance) on output voltage:  

The primary purpose of the controller design is to regulate 

the output voltage at the reference value of 96 volts. To 

investigate the performance of the controller in contradiction 

of CPL changes, load changes are assumed as shown in Fig. 3 

in a time interval of 3 seconds. Although the controller is 

designed for a DC microgrid system that feeds a CPL, 

different reasons cause the CPL to change and represent a 

resistive behavior. Therefore, the controller is supposed to 

demonstrate good robustness against these changes. If the 

constant power load becomes zero due to the parallelism of 

resistor R, the final power is considered as an entirely resistive 

load. As shown in Fig. 3, the output load is initially set at 0 

watts (buck converter is off) and will be 200 Watts at 0.45 

seconds. It then changes to 400 watts at 0.7 seconds and 200 

watts at 1.7 seconds. As shown in Fig. 4, by evaluating the 

output voltage diagram, the robustness of all three controllers 

to power changes is determined. Fig. 5 shows the output 

voltage (zoom) at power change moments. As shown in Fig. 6, 

the difference between the output voltage and the reference 

value at 0.7 seconds for the proposed controller is less than 

other controllers. Fig. 7 shows the zoomed plot of the output 

voltage around 1.7 seconds when a sudden decrease occurs in 

the power. In this figure, the superiority of the proposed 

controller with less settling time and acceptable overshoot 

compared to other controllers is well demonstrated. 
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Fig. 5: The zoomed plot of the output voltage while the load changes.  

 
Fig. 6: The zoomed plot of the output voltage around 0.7 seconds.  

 
Fig. 7: The zoomed plot of the output voltage around 1.7 seconds.  

 

The second controller fluctuates by several volts when the 

power changes and is practically unable to control the voltage 

on the reference value of 96 volts. Checking the final value of 

the output voltage shows that the second controller is not able 

to follow the reference voltage and has a residual value.  

However, the proposed controller has a good performance 

against small power changes and resists high power changes, 

and the system remains stable. Moreover, the proposed 

controller exhibits good performance against a resistance load. 

B. Investigation of the effect of input voltage change on 
output voltage: 

The input voltage at the early step is set to 47 volts, the next 

0.25  seconds is set to 42 volts, the next 0.25  seconds is set to 

56 volts and this pattern is repeated once again. As illustrated 

in Fig. 8 when the input voltage changes, the output voltage is 

perfectly regulated. Fig. 9 well demonstrates the ability of the 

BSMC with the NDO to regulate the output voltage variations 

while the input voltage changes, and the grid feeds a CPL. 

This approves that the output voltage is well regulated and 

stabilized with the least acceptable fluctuations. 

 

 
 Fig. 8: The output voltage of the controller while the input voltage changes.  

 Fig. 

9: The zoomed plot of the output voltage controller while the input voltage 

changes.  

Although BSMC does not oscillate in the presence of 

disturbance, it is not possible to adjust the voltage to the 

reference value. As shown, it differs practically a few volts 

from the reference value. On the other hand, for BMC with 

NDO, although it offers acceptable voltage regulation, 

however, at moments of disturbance, it has more overshoot 
than the proposed controller. The proposed controller is more 

capable than other controllers in terms of performance 

characteristics. 

C. Investigation of the effect of sliding surface type on 
output voltage control:  

The main aim of this section is to examine the effectiveness 

of selecting a more complex sliding surface on voltage 

control. Indeed, the effectiveness of this choice on the 

possibility of building the controller is also a serious and 

undeniable challenge. 

1) The first choice: 

The sliding surface is selected as 𝛿 = 𝜑2  . Moreover, in this 

case, 𝛿̇ = −𝐾1𝑆𝑔𝑛(𝛿)− 𝐾2𝛿. 

In the BSMC, with this sliding surface, it is possible to 

control the output voltage at an acceptable level. In this 

controller, the coefficients of variables and the degree of 

freedom are coefficients 𝐾1 and 𝐾2. Proper selection of these 

coefficients provides the possibility of appropriate control; 

however, three fundamental problems occur in this case. 

- The ability to fine-tune the output voltage to the desired 

value. 

- The output range of voltage when changing power. 

- The ability to select the appropriate coefficient for all 

different operating conditions. 
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Fig. 10: Output voltage with different sliding surface for the proposed method. 

 
Fig. 11: Inductor current under different controls when the CPL load and input 

voltage change. 

 

2) Second choice: 
The sliding surface is selected as 𝛿 = 𝑀𝜑1 +𝜑2 , which is 

more complex than the simple sliding surface of the previous 

model, and with three degrees of freedom, including M, 𝐾1 
and 𝐾2 adds a lot of capabilities to the controller. 𝐾1 is the 

factor that helps to deal with disturbances. The coefficients M 

and 𝐾2 effectively affect the output voltage fluctuations and 

allow tight control of the output voltage. 

As shown in Fig. 10, although the use of a complex sliding 

surface does not appear to be effective in better controlling the 
output voltage, it should be noted that providing a degree of 

freedom in building the project has been very helpful. Using 

the M coefficient, it is possible to select other coefficients to 

an acceptable level. Moreover, if M is not used, other 

coefficients must be chosen so large to stabilize the system, 

which makes project construction almost impossible. In 

summary, to build a controller it is necessary to use a complex 

sliding surface with a further degree of freedom. 

D. Investigation of the effect of load power and voltage 
in changes and on inductor current:  

In order to design an appropriate control scheme, it is 

necessary to consider the limit of the inductor current. In Fig. 

11, the inductor current when the constant power load and 

input voltage change is shown. As can be seen, the proposed 

controller compared to other controllers represents an 

acceptable performance. It should be noted that the advantages 

of the proposed controller in dealing with power and voltage 

changes outperform the other controllers. 

 
Fig. 12: Quantitative comparison of error values of the controllers. 

 

TABLE II: ERROR ANALYSIS INDICES 

 MSE RMSE MAE 

B SMC with NDO 

(proposed controller) 
0.6271 0.7919 0.3135 

    BMS with NDO 0.7649 0.8746 0.3526 

     BSMC 18.58 4.31 4.22 

 

E. Error analysis 

To evaluate the ability of the proposed controller compared to 

state-of-the-art controllers, error analysis is performed. The 
data shown in Fig. 4 are analyzed using the Mean Squared 

Error (MSE), Root Mean Square Error (RMSE), and Mean 

Absolute Error (MAE) [32]. These indices are computed, and 

the results are plotted in Fig. 12. The method is that by 

changing the constant power load and input voltage, the output 

voltage is measured and the error indicators for each controller 

are analyzed separately. The results show a significant 

advantage of the proposed controller compared to other 

controllers. 

V. CONCLUSION 

In this paper, a novel control technique that uses a nonlinear 

disturbance observer is developed to deal with the effect of 

constant power load instability in DC microgrids. This control 

technique employs two different control approaches and tries 

to take advantage of them and cover the weaknesses of the 

approaches simultaneously. By comparing the output of 

different controllers, the effect of nonlinear disturbance 

observer in fine-tuning of the output voltage is quite apparent. 

Moreover, by choosing an appropriate sliding surface, it is 

possible to increase the controller adaptability level in other 

conditions. The experimental results have proved the idea of 

using several different control techniques simultaneously to 

achieve an efficient and straightforward method. 
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