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Abstract: This paper investigates the observer-based consensus tracking problem of multi- 

agent systems with one-sided Lipschitz nonlinearity. The agent dynamics considered here 

covers a broad family of nonlinear systems, and includes the well-known Lipschitz system as 

a special case. To achieve consensus tracking for such multi-agent systems, two types of 

observer-based protocols named the continuous protocol and the intermittent protocol are 

proposed. Furthermore, several multi-step design algorithms are presented to select the 

observer gains and the controller parameters of the proposed protocols. It is shown that the 

established sufficient criteria can not only ensure the observer error to approach to zero, but 

also realize the consensus tracking of multi-agent systems. The obtained results are illustrated 

by two simulation examples. 

Keywords: multi-agent systems, one-sided Lipschitz nonlinearity, observer, intermittent 

protocol.  

 

1. Introduction 

 

In the area of cooperative control, consensus is an important and fundamental problem. By 

designing distributed protocols, the purpose of the consensus for multi-agent systems is to 

make a group of agents to reach an agreement on certain quantities of interest [1]. It is 

well-known that the agent dynamics and the interaction topology are two key factors in 

achieving consensus, and much effort has been made along this line. In most existing results, 

the agents dynamics are assumed to be first-, second-, or high-order integrators, and general 

linear systems. Recently, the consensus problems of nonlinear multi-agent systems have been 

studied in [2-3], where the plant system consists of a linear part and a Lipschitzt nonlinear 

part. To reduce influence of the nonlinearity, the Lipschitz constant is desired as small as 

possible. However, this constant is based-region, and often dramatically increases as the 

operating region is enlarged. To overcome this drawback, the Lipschitz condition was 

generalized to one-sided Lipschitz one. This extension is motivated by some important 

applications such as numerical analysis [4], stiff problem [5-6] and birth death problem of a 

population [7]. For these problems, the one-sided Lipschitz constant is significantly smaller 

than the classical Lipschitz constant [8]. This makes it much more appropriate for estimating 

the influence of the nonlinear term. That is, One-sided Lipschitz can dig deeply into the 

nature of nonlinearity, and explore more information on the nonlinearity term. Hence, it 
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possesses inherent advantages in the control and observation theory, and in particular to 

address the observer design problem [9]. However, the existing investigations on the 

one-sided Lipschitz are only confined in the single system framework. To the best of our 

knowledge, until now, no results have been found on the study of consensus tracking for 

multi-agent systems with one-sided Lipschitz, and this motivates our research. 

The relative states between neighboring agents are not always available, while the relative 

outputs are easy to acquire. Thus, consensus by output feedback is easier to implement than 

one by state feedback in practice. Due to static output feedback being quite restrictive [10], 

observer-based (or dynamic) output feedback is an elegant alternative [11]. Existing results on 

this topic can be found in the literatures. To track an active leader, a novel distributed 

estimator-based protocol was designed in [12] for first-order agents. Subsequently, this result 

was extended to the second-order case in [13], and the finite-time tracking control in [14], 

respectively. For multi-agent systems with general linear dynamics, an observer-based 

consensus protocol was proposed in [15] by using the relative output information. Besides 

this full-order observer, the reduced-order observer was further investigated in [16]. A 

consensus tracking framework, including state feedback and output feedback, was presented 

for continuous-time multi-agent systems in [17], and the discrete-time counterpart in [18]. It 

should be pointed out that most of the existing results with respect to observer-type protocols 

mainly focus on integrator systems or general linear systems. Until now, few works on 

nonlinear multi-agent systems are found [19]. The traditional observer problem of a single 

nonlinear system has been studied for decades [8, 9, 20-22], and there are mainly four 

different approaches to design nonlinear observer [23]. Here, we only consider the case of 

one-sided Lipschitz agents. More specifically, the systems dynamics can be split into a linear 

part and a nonlinear part, where the linear part is assumed to be observable from system 

output, and the nonlinear part is one-sided Lipschitz. 

  On the other hand, the control inputs are inevitably missing in real control systems due to: 

1) some unpredictable external factors that break edges or vertexes, e.g., actuator failure, 

packet loss; 2) some intentional reasons such as communication cost limitation, and the 

controllers are purposefully suspended from time to time. The occasionally missing control 

inputs can make control discontinuous, e.g., intermittent control and impulsive control. 

Compared with the continuous case, the discontinuous control method is more economical 

and efficient. Therefore, it has aroused great interest among researchers, since it was proposed 

in [24]. More recently, the intermittent protocols were proposed in [25] to reach consensus 

tracking of linear multi-agent systems. This intermittent idea was also adopted in containment 

control of multi-agent systems with intermittent input saturation [26], and synchronization of 

complex network via randomly occurring control [27]. However, these results are only 

restricted in state feedback framework rather than output feedback case.  

Motivated by the above discussions, this paper aims to design the observer-based protocols 

for achieving consensus tracking for multi-agent systems with one-sided Lipschitz 

nonlinearity. Based on relative outputs between agents, we first design distributed state 

observers, and then, by using the observed states, construct the continuous protocol and the 

intermittent protocol. In summary, the main contributions of this paper are threefold: (1) we 

introduce one-sided Lipschitz condition in [9, 20-22] into multi-agent systems, and then 

extend the traditional observer design for a single nonlinear system to the observer-based 
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protocols design for multi-agent systems with one-sided Lipschitz; (2) Two types of 

observer-based protocols, namely the continuous protocol and the periodically intermittent 

protocol are proposed here. Compared with the former, the latter seems more practical and 

environment-friendly in engineering. The observer leads to dimension expansion of 

closed-loop systems, together with nonlinear term and intermittent communication network 

jointly making convergence analysis intractable. The multiple Lyapunov functions based on 

dwell time approach is used to overcome this difficulty. Compared to existing results, we 

extend the state feedback protocols in [2, 3] to the dynamic output feedback protocols, and 

extend continuous observer-based protocols in [19] to the intermittent case. (3) Multi-step 

algorithms are given to design the observer gains and the protocol parameters, which make 

the corresponding protocols easy to implement. Based on these algorithms, the sufficient 

criteria for achieving the consensus tracking are established. It should be pointed out that 

these criteria contain the dwell time information regarding topological graphs. Moreover, 

compared with the existing results, our results are more general and less conservative. 

The remainder of the paper is organized as follows. Section 2 provides some preliminaries 

and problem formulation. In Section 3, we construct two kinds of observer-based protocols, 

and analytically prove that they can solve consensus tracking problem for multi-agent systems 

with one-sided Lipschitz nonlinearity. Two simulation examples are given in Section 4, and 

finally, Section 5 concludes the whole paper.  

 

2. Preliminaries and problem formulation 

2.1. Preliminaries 
 

n�  denotes the n  dimensional real Euclidean space. Let �  be the non-negative integer 

set. ( , )   is the inner product in n� , i.e., for given , nx y� , then ( , ) Tx y x y , where 

Tx is the transpose of x . min ( )P  and max ( )P  denote the minimal and maximum 

eigenvalues of the symmetric matrix P , respectively. In symmetric block matrices, an 

asterisk ‘* ’ represents a term induced by symmetry.  

This paper considers a group of agents consisting of N  followers and one leader. The 

information exchange among N  followers is described by a weighed digraph ( , , )G V E A , 

where a node set is  1 2, , , Nv v v V  and an edge set is  E V V, and an adjacency 

matrix is N N
ija     �A , and 0ija   ( , )j iv v E , and 0ija   otherwise. The edge 

( , )j iv v  means agent i  can receive information from j  but not conversely. The Laplacian 

matrix of G  is denoted by [ ]ijlL , where ij ijl a  , i j , and 
1,

N

ii ijj j i
l a

 
 . We 

define the augmented graph G consisting of N  followers and a leader. The information 
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acquisition of the followers to the leader is represented by 1{ , , }Ndiag d d� D , where 

0id   if the follower i  has access to the leader’s state, and 0id   otherwise.  

Assumption 1. The directed graph G contains a spanning tree with the root node being the 

leader. 

  Denote  �L L D . A useful property is given in the following lemma. 

Lemma 1 [28]. If Assumption 1 holds, L  is invertible. Moreover, denote 

  1
1 , ( )

T T
N N   1 Lt   and  1, , Ndiag    , then    and T   L L   are 

positive definite matrices. 

 

2.2.  Problem formulation 
 

In this paper, the main purpose is to solve the consensus tracking problem for general linear 

multi-agent systems with one-sided Lipschitz. Base on the relative outputs between the 

neighboring agents, we construct state observers for each nonlinear agent, and then design 

distributed protocols by using the observed states. 
Consider a group of N  nonlinear agents, the dynamics of agent i  is given by  

( , ) ,

, 1, , .
i i i i

i i

x Ax D x t Bu

y Cx i N

   
  




                     (1) 

where the state n
ix R , control input p

iu R , and the measurement output q
iy R . 

, , ,A B C D  are constant real matrices with appropriate dimensions, and suppose that 

( , , )A B C  is controllable and observable. The function ( , ) : n nR R R       is a continuous 

vector-valued function denoting the intrinsic nonlinearity, which satisfies the following 

assumption.  

Assumption 2. 1).The nonlinear function    is said to be one-sided Lipschitz, if there exists 

R   such that 1, nx y D R    

  2
( , ) ( , ), .x t y t x y x y                                                 (2) 

where the smallest R   is called one-side Lipschitz constant, which depends on local 

region 1D   and dynamics  . If the condition (2) is valid everywhere in nR , then the 

function is said to be globally one-side Lipschitz. 

2).The nonlinear function    is said to be  quadratic inner-bounded if there exist 
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, R   such that 2, nx y D R      

                     2 2
( , ) ( , ) ( , ) ( , ), .x t y t x y x t y t x y                           (3) 

Noticeably, the constants ,    and   can be positive, negative or zero, while the 

well-known Lipschitz constant must be positive. Additionally, if the function ( , )ix t   is 

Lipschitz, then it is also both one-sided Lipschitz (e.g. with 0  ) and quadratically 

inner-bounded (e.g. with 0  and 0  ), but not vice versa [20]. 

Now we give an example that satisfies one sided Lipschitz condition but not Lipschitz.  

Consider Newton's law of universal gravitation 1 2
2

Gm m
F

r
 , i.e., 1 2Gm m

r
F

 . For 

given 1m  and 2m , denote 1 2a Gm m� ,  ( )f x r�   and  x F� , radius ( )f x  is the 

nonlinear function in force x , which can be expressed by  ( )
a

f x
x

 , ( 0)a  . For any 

1x , 2 (0, ]x b , and every 0M  , when 1x  and 2x  both approach to 0 , we have 

 
1 2

1 2 1 2

1 2 1 2 1 2

( ) ( )
a x xa a

f x f x M x x
x x x x x x


     


, which implies that 

( )f x  is not Lipschitz on any interval (0, ]b  . Conversely, we have 

   
2

21 2
1 2 1 2 1 2 1 2

1 2 1 2 1 2

( )
( ) ( ), ( ) ( )

2

a x xa a a
f x f x x x x x x x

x x b bx x x x

   
            

thus, ( )f x  is locally one sided Lipschitz with one sided Lipschitz constant 
2

a

b b
 .  In 

addition, ( )f x  is not quadratic inner-bounded, but some systems can simultaneously satisfy 

conditions (2) and (3), e.g., the famous supercritical Hopf bifurcation system, which is 

elaborated in Example 2 of Section 4. 

Remark 1. The nonlinear term of Example 1 in Section 4 satisfies 

1 2 1 2( )( ( ) ( )) 0x x f x f x    with 1x , 2 0x   and 1 2x x , which shows that the 

one-sided Lipschitz condition is different from the incrementally passive or slope-restricted 

nonlinearities addressed by [29 ].QUAD condition is proposed in [30-31] and it can be 

viewed as generalization of one-sided Lipschitz condition, so the results obtained in this paper 

can be easily extended to the case of QUAD condition. 
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In many practical cases, it is desired that the agents’ states can approach the time-varying 

reference state ( )s t , which can be generated by the virtue leader as follows [32]. 

 0( , ), (0) .s As D s t s s                         (4) 

Our control objective is to design the consensus protocols such that each agent in systems 

(1) can be synchronized to the trajectory (4). In the following section, two kinds of 

observer-based protocols, including the continuous protocol and the intermittent protocol, are 

proposed to reach the consensus tracking for nonlinear multi-agent systems.  

 

3. Main results 

In this section, the main theoretical results of this paper are given and analytically proven.  

 

3.1.  Consensus with the continuous observer-type protocol 
To begin with, the following observer is proposed for systems (1) 

           1 1

ˆ ˆ ˆ ˆ( , ) ( )

ˆ ˆ( ) ( ) ,

ˆ ˆ , 1, , .

i i i i i i i

N N

ij j i ij j ij j

i i

x Ax D x t Bu d F y y

F a y y a y y

y Cx i N




 

      


   


 

 





                  (5) 

where ˆix  is the estimation of ix , and ˆiy  is the output of the observer systems.   and F  

are a coupling strength and an observer gain matrix to be determined, respectively. To reduce 

the control cost, the reference state ( )s t  is available to only a small fraction of followers, 

thus the following protocol is given on the basis of the observed states.  

                                       
1

ˆ ˆ ˆ( ) ( )
N

i i i ij j ij
u d K x s K a x x 


                     (6) 

where   and K  are a coupling strength and a controller gain matrix to be designed, 

respectively. 0id   if the agent i  acquires the state of the leader, otherwise 0id  .  

Under the protocol (6), the dynamics concerned with the state and its estimation of systems 

(1) are given as follows: 

 

1

1

1 1

ˆ ˆ ˆ( , ) ( ) ( ),

ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( ) .

N

i i i i i ij j ij

N

i i i i i ij j ij

N N

i i i ij j j ij i ij j

x Ax D x t d BK x s BK a x x

x Ax D x t d BK x s BK a x x

d FC x x FC a x x a x x

 

 

 





 

       

       

      





 



     (7) 

The estimation errors and the tracking errors are respectively defined as:  

1 ˆi i ie x x   and 2i ie x s  , 1, ,i N  . 

It follows from (1) and (7) that  
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1 1 1 1 1 11

2 2 2 2 1 2 2 1 11

( ),

( ) ( ).

N

i i i i i ij j ij

N

i i i i i i ij j i j ij

e Ae D d FCe FC a e e

e Ae D d BK e e BK a e e e e

 

 





      


        







 (8) 

where 1 ˆ( , ) ( , )i i ix t x t   �  and 2 2( , ) ( , )i ie s t s t    � . By 

letting 1 11 12 1[ , , , ]T T T T
Ne e e e   and 2 21 22 2[ , , , ]T T T T

Ne e e e  , then the error system (8) can be 

written as the following compact form: 

1 1 1 1

2 2 2 1 2

( ) ( ) ,

( ) ( ) .

e I A e FCe I D

e I A e BKe BKe I D



 

       


        

 

  

L

L L
            (9) 

where L  is defined above in Lemma1, 1 11 12 1, , ,
TT T T

N      
    , and 

2 21 22 2, , ,
TT T T

N      
    . 

Before moving forward, a design procedure is given for selecting observer and protocol 

parameters. 

Algorithm 1. Under Assumptions 1 and 2, the observer (5) and the controller (6) can be 

designed as follows: 

1. Solve the following linear matrix inequality (LMI): 

2 1
1 2

2

( )
( )

02
*

T T I
PA A P C C I PD

I

      



        
   

       (10) 

to get a matrix 0P   and three positive scalars 1 2,   and  . Then, choose the observer 

gain matrix 1 TF P C  and the coupling strength max

1




 , where 

1 min ( )T     � L L  and max
1
max{ }j

j N
 

 
� . 

2. For arbitrarily given positive scalars 3 4,  , solve the following LMI: 

4 3
3 4

4

3 4

( )
( )

2
* 0 0

* * ( )

T T Q
AQ QA BB D Q

I

I

      


   

     
 

  
  
 
 

         (11) 

to get a matrix 0Q   and a positive scalar  . Then, select the controller gain matrix 

1TK B Q  and the coupling strength max

1




 . 
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Theorem 1. Let Assumptions 1 and 2 hold. If the LMIs (10) and (11) have feasible solutions, 

the consensus tracking of systems (1) and (4) can be realized under the observer (5) and the 

controller (6) constructed by Algorithm 1. 

Proof. Consider the following Lyapunov function candidate  

1
1 2 1 1 2 2( ) ( ) ( ) ( ) ( )T TV t V t V t e P e e Q e       .           (12) 

where  is defined as in Lemma 1, and P , Q  are positive define solutions of the LMIs 

(10-11).   is a small positive constant.  

By using facts that 1 TF P C and 1

max




 , the derivative of 1( )V t  along the 

trajectories of (9) gives  

 1 1 1 1 1

1 1 1 1

1 1 1 1

1 1

1
1 1

( ) 2 ( ) ( ) ( )

( ) ( ) 2 ( )

( ) 2 ( )

.
* 0

T

T T T T T

T T T T

T T T
N i i

ii
i i

V t e P I A e FCe I D

e PA A P C C e e PD

e PA A P C C e e PD

e ePA A P C C PD












       

            
        

      
          


 

  



 

L

L L

 (13) 

From (2), we get 1 1 1 1 0T T
i i i ie e e   , or equivalently, 

1 1
1 1

1 1

02
* 0

T
N i i

ii
i i

I
e eI

 


               
  

.                          (14) 

holds for any positive scalar 1 . Similarly, from (3), we have  

   1 1
2 1

1 1

0.2
*

T
N i i

ii
i i

I
e eI

I


 



               
  

                           (15) 

where 2  is an arbitrary positive scalar. Then, adding the left-hand side terms of (14) and (15) 

to the right-hand side of (13) yields  

      


1111

1 111 12
1 1

1 122

1 11 12 1

1 22 1

1 11 1

( )
*

*
T

T T
N i i

ii
i i

T

T

e e
V t

e e





 





     
          

     
           




 

 


�

                        (16) 
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where 11 12

22*

  
  

�  is defined in (10). Obviously, 0   means 11 0  . It is easy 

to see that  1lim ( ) 0
t

e t


  under the condition 0  , which indicates that the estimation 

error system is asymptotically stable. Then, the observed states of each agent can be used to 

construct the distributed protocol.  

On the other hand, by using facts that 1TK B Q  and 1

max




 , the derivative of 

2 ( )V t  along the trajectories of (9) gives  

 
 

1
2 2 2 2 1 2

1 1 1 1 1
2 2 2 2

1
2 1

1 1 1 1 1
2 2

1
2 2

2

( ) 2 ( ) ( ) ( )

( ) 2 ( )

2

* 0

2

T

T T T T

T

T T T
N i i

ii
i i

T

V t e Q I A e BKe BKe I D

e Q A A Q Q BB Q e e Q D

e Q BKe

e eQ A A Q Q BB Q Q D

e

  

  




 





    



    



         

      

  

      
          

  



  





 



L L

L

L 1 1
1

TQ BB Q e 

 (17)                  

From (2) and (3), we get   

2 2
3 1

2 2

02
* 0

T
N i i

ii
i i

I
e eI

  


               
  

and 2 2
4 1

2 2

0.2
*

T
N i i

ii
i i

I
e eI

I


  



               
  

 

(18) 

where  3   and  4   are arbitrary positive scalars. From (17) and (18), one gets that  


222 122 1

2 211 12 1 1
2 2 11

2 222

1 1
2 11 12 2 1

2 22 2 1

( ) 2
*

0
2

* 0 0
T T

T T
N i i T T

ii
i i

T T T T

e e
V t e Q BB Q e

e e e Q BB Q

 

  


 

 


 

 

     
            

          
                    

 
 



  
  

L

L


2

2

2

2 22 2 1 12 2+2T T

e



   

 
  

 


 

�

 

(19) 

where 
1 1 1 1 1 4 3

3 4
2 2

4

( )
( )

( ) 2
*

T T

ij

I
Q A A Q Q BB Q I Q D

I

      



    



           

. 

By applying Schur complement Lemma and the congruent transformation in matrix to the left 

hand of (11), we have 2 2( ) 0ij   , i.e., 22 0  . 
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From (16) and (19), it can be obtained that  

1 11 12 1

2 22 2

( )
*

T

TV t
  

 
  

     
         

 � . 

Due to the facts that 11 0   and  22 0  , we can select the small enough positive 

constant   such that 1
11 12 22 12 0T        holds, which is Schur equivalent to 0 . 

Therefore, one concludes that 1lim ( ) 0
t

e t


  and 2lim ( ) 0
t

e t


 , which means that the error 

system (9) is asymptotically stable. Thus, the protocol (6) can solve the observer-based 

consensus tracking problem for systems (1) and (4). This completes the proof. 

The observer (5) of each agent need have access to the information of j iy y , ˆ ˆj iy y  

and ˆi iy y   through communication network. This observer architecture requires a 

significant amount of computations and communication traffic, and then is not easy to 

implement in practice. To overcome this shortcoming, we will propose a simple and efficient 

observer. Specifically, the input iu  and relative output ˆi iy y   is only needed to estimate 

the agents’ state. Thus, this observer architecture (20) considerably reduces communication 

energy consumption.  

A local observer is given on the basis of its own information rather than network 

information with form  

ˆ ˆ ˆ ˆ( , ) ( ),

ˆ ˆ , 1, , .
i i i i i i

i i

x Ax D x t Bu F y y

y Cx i N

      


 




                 (20) 

where the variables are the same in (5). The protocol (6) is still adopted here. By similar 

deduction, the whole error system can be given as follows: 

1 1 1

2 2 2 1 2

( ) ( ) ,

( ) ( ) .

e I A FC e I D

e I A e BKe BKe I D 

      


        



   L L
        (21) 

Similar to Theorem 1, we can establish a sufficient condition for achieving consensus 

tracking of multi-agent systems. Its proof is omitted due to limited space. 

Corollary 1. Let Assumptions 1 and 2 hold. If the LMIs (22) and (23) have feasible solutions, 

the consensus tracking of systems (1) and (4) can be realized under the observer (20) and the 

controller (6) constructed by the following procedure. 

1. Solve the following LMI: 

2 1
1 2

2

( )
2 ( )

02
*

T T I
PA A P C C I PD

I

     



       
   

       (22) 

to get a matrix 0P   and positive scalars 1 2,  . Then, choose the observer gain matrix as 
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1 TF P C . 

2.For arbitrarily given positive scalars 3 4,  , solve the following LMI: 

4 3
3 4

4

3 4

( )
( )

2
* 0 0

* * ( )

T T Q
AQ QA BB D Q

I

I

      


   

     
 

  
  
 
 

        (23) 

to get a matrix 0Q   and a positive scalar  . Then, select the controller gain matrix as 

1TK B Q  and the coupling strength max

1




 , where max   and 1   are defined in 

Algorithm 1. 

 

3.2．Consensus with the intermittent observer-type protocol 
In the preceding subsection, the consensus tracking problem has been addressed under the 

assumption that the consensus protocol is continuous, i.e., each agent has to share relative 

outputs and estimated states with its neighbors all the time. However, the continuous protocol 

is hard to implement and unrealistic in engineering practice. Now, we will turn our attention 

to the consensus tracking with the intermittent protocol.  

In what follows, we will extend the fixed topology to switching topological graphs. A 

switching sign  ( ) : [0, ) 1, ,t m    , 2m   is introduced to describe the evolution 

of the underlying graph ( )tG . Denote  1 2, , , m  G G G  as the set of all possible switching 

graphs.  

Assumption 3. For each 1, ,i m  , the graph iG contains a directed spanning tree with 

the leader being the root. 

Assume that there exist time intervals 1[ , )k kt t  , k�  with 1[ , )k k
k

t t 



�
  (null set) 

and 1[ , ) [0, )k k
k

t t 


 
�
 , and then split 1[ , )k kt t  into subintervals 

11 2 1[ , ), , [ , ), , [ , )k kh hj j
k k k k k kt t t t t t   with 1

k kt t , 1
kh

k kt t  , such that the underlying 

topology is time-invariant for 1[ , )j j
k kt t t  , 1, 2kj h  . Due to various factors, control 

is intermittently actuated, i.e., the control is periodic, and in each period, the time consists of 

“work time” and “rest time”, which is illustrated in Fig. 1.  
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kt 1kt 
1kh

kt


k k

 
 

Fig. 1. Sketch of the intermittent control. 

Obviously, when 0k  , the intermittent control degenerates to the traditional continuous 

control; when 0k  , the intermittent control becomes the impulsive control. Therefore, the 

intermittent control bridges the gap between the continuous control and the impulsive control.  

Due to different reasons, the missing or rebuilding edges inevitably arise in the underlying 

topology graphs. Once all the edges are simultaneously missing, the null graph (or edgeless 

graph) appears, while partial edges are missing, the non-null graph arises (here we suppose 

that each graph is a directed spanning tree). Although event that all the edges are missing (null 

graph) is a rare event, its existence cannot be ruled out in practice. Thus, in this section, we 

consider switching graphs between several directed spanning tree graphs and the null graph. 

When the null graph is actuated, i.e., all the edges are missing, the control signals are 

automatically set at zero, and hence states and their estimates of each follower evolve 

according to its own intrinsic dynamics (see 24-b). Moreover, this rest time will last until the 

work time arrives, and control returns back to normal. Inspired by this, a periodically 

intermittent observer-type protocol is proposed as follows: 

             
 

( )

( ) ( )

1 1

1( ) ( )

1

ˆ ˆ ˆ ˆ( , ) ( )

ˆ ˆ( ) ( ) ,

ˆ ˆ ,

ˆ ˆ ˆ( ) ( ), [ , ).k

t
i i i i i i i

N Nt t
ij j i ij j ij j

i i

N ht t
i i i ij j i k kj

x Ax D x t Bu d F y y

F a y y a y y

y Cx

u Kd x s K a x x t t t



 

 





 

 




      

    





     

 





    (24-a) 

 
1

1

ˆ ˆ ˆ( , ),

0, [ , ).k

i i i
h

i k k

x Ax D x t

u t t t


   


 


                                     (24-b) 

where  ( )t
ija  is ( , )i j -th entry of the adjacency matrix ( )tA  associated with ( )tG , and 

( ) 0t
id   if the follower i  has access to the leader’s state at time t , and ( ) 0t

id   

otherwise. The rest of the variables are defined in (5) and (6). 

Similar to the above derivation process, the evolution of the estimation error and the 

consensus error can be described by the following switching systems:  
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( )
1 1 1 1

1( ) ( )
2 2 2 1 2

( ) ( ) ,

( ) ( ) , [ , ).k

t

ht t
k k

e I A e FCe I D

e I A e BKe BKe I D t t t



 



  

       


         

 

  

L

L L
(25-a) 

1 1 1

1
2 2 2 1

( ) ( ) ,

( ) ( ) , [ , ).kh
k k

e I A e I D

e I A e I D t t t


     


     




                          (25-b) 

where ( ) ( ) ( )t t t   �L L D , ( ) ( ) ( )
1{ , , }t t t

Ndiag d d  � D  and ( )tL  is the Laplacian 

matrix of ( )tG . We can see that the observer-based consensus tracking problem for systems 

(1) and (4) is transformed into the stability problem of the nonlinear switching systems (25-a, 

b). Therefore, the switching system theory can be applied to solve this problem. 

An algorithm is proposed to select parameters of the intermittent protocol. 

Algorithm 2. Under Assumptions 2 and 3, the observer-type protocol (24-a, b) can be 

designed as follows: 

1. Solve the following LMIs: ( )i T i
N  1L  to get vectors  1 , ,

Ti i i
N    and 

matrices  1 , ,i i i
Ndiag     . Moreover 0i   and 0i T i    L L , 1, ,i m  . 

Denote, 1
1 ,1

max { }ij
i m j N

r 
   

� ,  2 1 ,1
min { }iji m j N

r 
   

� ,  
1

0
2

r
r

r
�   and 

 2 min
1
min ( )i i i T i

i m
 

 
   � L L . 

2. Solve the following LMIs: 

2 1
1 2

2

( )
( )

02
*

T T I
PA A P C C I P PD

I

       



        
   

       (26) 

2 1
1 2

2

( )
( )

02
*

T I
PA A P I P PD

I

      



       
   

                      (27) 

to get a matrix 0P   and three positive scalars 1 2,   and  . Then, choose the observer 

gain matrix 1 TF P C  and the coupling strength 1

2

r



 .  

3. For arbitrarily given positive scalars 3 4,  , solve the following LMIs: 
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4 3
3 4

4

3 4

( )
( )

2
* 0 0

* * ( )

T T Q
AQ QA BB Q D Q

I

I

       


   

      
 

  
  
 
 

        (28) 

4 3
3 4

4

3 4

( )
( )

2
* 0 0

* * ( )

T Q
AQ QA Q D Q

I

I

      


   

     
 

  
  
 
 

                 (29) 

to get a matrix 0Q   and a positive scalar  . Then, select the controller gain matrix 

1TK B Q  and the coupling strength 1

2

r



 . 

Theorem 2. Under Assumptions 2 and 3, if the LMIs (26-29) have feasible solutions and 

inequality (30) also holds, the consensus tracking of systems (1) and (4) can be reached 

exponentially fast under the observer-type protocol (24-a, b) constructed by Algorithm 2. 

      0( 1) lnk k kh r                                (30) 

where positive parameters   and   are determined from (30), and then substituted into the 

LMIs (26-29). 1kh
k k kt t  � , 1k kh h

k k kt t � , k� , and 
1

0
2

r
r

r
� . 

Proof. Construct the following multiple Lyapunov function candidate for switching systems 

(21-a, b). 

11
1 1 2 2

11
1 1 2 2 1

( ) ( ) , [ , ),
( )

( ) ( ) , [ , ).

k

k

hT i T i
k k

hT T
k k

e P e e Q e t t t
V t

e I P e e I Q e t t t









      
 

   
       (31) 

where i  are defined in Algorithm 2, and ,P Q  are the positive definite solutions of 

(26-29), 1, ,i m  ,  k� . The subsequent proof is very similar to that of Theorem 1, and 

the necessary parts are given below.  

For 2
1, 1[ )t t t , we take the time derivative of ( )V t  along the trajectories of (25-a). 

Together with inequalities (26) and (28), one has ( ) ( ) 0V t V t  , and further has  

2
1 1( )2

1 1( ) ( )t tV t e V t   . On other hand, it follows from (31) that 2 2
1 0 1( ) ( )V t r V t  , where 

0r  is defined in step 1 of Algorithm 2. Thus, one gets 
2
1 1( )2

1 0 1( ) ( )t tV t r e V t  , i.e., 
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2
1 1 0( ) ln2

1( ) (0)t t rV t e V   . By recursion, one can get 
11

1 1 01 1( ) ( 2)ln1
1 1( ) (0)

ht t h rhV t re V     


.  

For 1 1
1 2[ , )ht t t , we take the time derivative of ( )V t  along the trajectories of (24-b), 

together with  (27) and (29), and have that ( ) ( ) 0V t V t  , i.e., 
11

2 1 1( ) 1
2 1( ) ( )

ht t hV t e V t    .  

Since the systems (25-a, b) switch at 2t t , it follows from (31) that  

   1 11 1
2 1 1 01 1

1

2 2
2

( ) ( ) ( 2)ln1

2

1
( ) ( )

(0)

(0)

h ht t t t h r

V t V t
r

r
e V

r

e V

 



 



    








�

. 

 where 1 1 1 1 0( 1) lnh r     k . By recursion, one gets that 1

1( ) (0)
k

jj

kV t e V






 , 

where 0( 1) lnj j j jh r     k . Moreover, from (30), 0j k  hold for all 

1, 2, ,j k   and k� .  

For any given 2t t , there exists an integer 2z   such that 1z zt t t   , thus time t  

has three cases. 

(a) For the case 1[ , )zh
z zt t t  , based on the above analysis, one gets  

         0 0

( 1)

( ) ( 2) ( 2)
0( ) ( ) ( ) (0)z z z

z t

t t h lnr h lnr z
z zV t e V t e V t e V


 




       


.          (32) 

where max
0 0( 2)zh lnr  


, max supz z zh h � , mink k  �

 k , 1max( )k k
k

t t 
 

�
, 

k� . Since 2z  , it follows from (28) that  

                    2
0( ) (0)

t

V t e V




 



.                             (33) 

(b) For the case 1zh
zt t  , 2z  , we have  

1

( 1)

0 0 2

2 2

( ) (0) (0)
z t t

zV t e V e V
r r

 
 

    
 

 

              (34) 

(c) For the case 1
1( , )zh

z zt t t
 , it follows from the fact that 1( ) ( )zV t V t   

1( ) (0) (0)
z

jj

t

V t e V e V






 


                        (35) 

According to (31) and (33)-(35), we can conclude that 

2

1 2
1 2

2

( )
(0)

( )
te t

e V
e t

  

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or equivalently              
1 2

2 1

( )
(0)

( )
te t

e V
e t








                          (36) 

where  1 1 1 1
1 1 min 1 min min minmin ( ), ( ), ( ), ( )r P r Q P Q        ,  1

2 0 2 0max ,1, r    , 

and 
4







. Thus, the consensus tracking for multi-agent systems (1) and (4) can be 

reached under the observer-type protocol (24-a, b) constructed by Algorithm 2. This 

completes the proof. 

Remark 2. The most existing results on consensus under time-varying topology are assumed 

to be arbitrary switching, which is based on the common Lyapunov function (CLF) method 

[33-35]. However, the arbitrary switching can potentially destroy the stability of a switching 

system, if the switches happen too frequently [36]. Besides, it is not easy to find, even do not 

possess a CLF to guarantee the switching system to be stable. Hence, the slow switching 

topology is considered here. The dwell time of each subsystem needs to satisfy inequality (30) 

and the multiple Lyapunov function is artfully constructed in (31). From the proof of 

Theorem 2, we can know that the energy function is exponentially decreasing during the 

former sub-period, and is exponentially increasing during the latter sub-period. However, 

from the whole period point of view, the energy function is decreasing in the average sense. 

Thus, the trajectories of the switching system (25-a, b) can exponentially converge to zero.  

Remark 3. The switching error system (25-a, b) consists of stable modes and unstable modes. 

The stable modes are caused by the topologies with several directed spanning trees, while the 

unstable modes are induced by the null-graph (i.e., all the edges are simultaneously missing). 

As reported in [37], the stability of systems (25-a, b) can be achieved if the total activation 

time of stable modes is long enough and the decay rates of stable modes are large enough. In 

this case, the negative effect of the unstable modes can be compensated, and this point can be 

observed from inequality (30). In this paper, topology structures and weights are assumed to 

be given prior. Under this assumption, observer-type protocols are designed to realize 

consensus tracking. Our work is different from the work in Yang et al. [38], where switching 

topologies and weights were designed to achieve target aggregation for a class of nonlinear 

multi-agent systems.  

Remark 4. In (24-b), 0iu  , 1, ,i N   means that the control inputs are completely 

missing. When the missing control inputs are nonexistent, i.e., 0k   for all k� , and 

all the switching graphs are also the same, i.e., 1 2 m    G G G , the observer-type 

protocol (24-a, b) reduces to (5-6), and Theorem 2 also degenerates to Theorem 1. 

Theorems 1 and 2 provide two observer-type protocols for achieving the consensus 

tracking for multi-agent systems with one-sided Lipschitz nonlinearity. Since the one-sided 

Lipschitz condition includes the usual Lipschitz counterpart as a special case, we can derive 

the following Corollaries 1 and 2 from Theorems 1 and 2, respectively. 

Assumption 4. The non-linear function   is said to be locally Lipschitz, if there exists a 

constant 0l   such that 3, nx y D R    
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( , ) ( , )x t y t l x y    .                   (37) 

The smallest constant 0l   satisfying (37) is known as the “Lipchitz constant”. 

Corollary 2. Let Assumptions 1 and 4 hold. If the LMIs (38) and (39) have feasible solutions, 

the consensus tracking of systems (1) and (4) can be realized under the observer (5) and the 

controller (6) constructed by Algorithm 3. 

Algorithm 3. 1. Solve the following LMI: 

             
2

5

5

0
*

T TPA A P C C l I PD

I

 


   
 

 
              (38) 

to get a matrix 0P   and positive scalars 5  and  . 

2. Solve the following LMI: 

6
1 2

6

* 0 0

* *

T TAQ QA BB D Q

I

l I




  

  
 

  
  

          (39) 

to get a matrix 0Q   and positive scalars 6  and  . The rest of variables, the form of the 

observer and the controller are the same as those in Algorithm 1. 

Corollary 3. Under Assumptions 3 and 4, if inequality (40) holds and the LMIs (41-44) have 

feasible solutions, the consensus tracking of systems (1) and (4) can be reached exponentially 

fast under the observer-type protocol (20-a, b) constructed by Algorithm 4. 

0( 1) lnk k kh r         .                        (40) 

where positive parameters   and   are determined from (40), and then substituted into the 

LMIs (41-44).  

Algorithm 4. 1. Solve the following LMI: 

          
2

7

7

0
*

T TPA A P C C l I P PD

I

  


    
 

 
             (41) 

2
7

7

0
*

T TPA A P C C l I P PD

I

  


    
 

 
              (42) 

to get a matrix 0P   and positive scalars 7  and  . 

2. Solve the following LMI: 

                 8
1 2

8

* 0 0

* *

T TAQ QA BB Q D Q

I

l I

 


  

   
 

  
  

             (43) 
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                 8
1 2

8

* 0 0

* *

T TAQ QA BB Q D Q

I

l I

 


  

   
 

  
  

             (44) 

to get a matrix 0P   and positive scalars 8  and  . The rest of variables, the form of the 

observer and the controller are the same as those in Algorithm 2. 

Remark 5. The state feedback protocols were proposed in [2, 3] for achieving consensus of 

multi-agent systems with Lipschitz, and corollary 1 extends it to the observer-based protocol. 

Furthermore, Corollary 2 also extends the continuous controller by outputs feedback [19] to 

the intermittent case. Therefore, the results given here are more general than the existing ones. 

On the other hand, the two variables 5  and 6  are brought in conditions (38) and (39) to 

increase free degree of design. Hence, the existing result (Theorem 2 in literature [19]) can be 

recovered from our result, which is elaborated as follows.  

By letting 2
5 l  , the LMI (38) is Schur equivalent to: 

2 0T T TPA A P C C I l PDD P     .                  (45) 

But the LMI (27) in [19] is Schur equivalent to： 

                    
22 0T TPA A P C C I l D PP     .                 (46) 

It is easy to get that the left side of the LMI (45) is no greater than that of the LMI (46). By 

letting 2
6 l  , the LMI (39) is Schur equivalent to the LMI (28) in literature [19].  

 

4. Simulation examples 

In this section, two simulation examples are provided to verify the effectiveness of 

Theorems 1 and 2, respectively.  

Example 1. Mechanical revolving model 

 Fig. 2 shows the schematic of a physical system [39]. In the figure, J  represents inertia 

of the revolving cylinder; R , the radius of the cylinder; H , the viscous friction coefficient 

of the revolving part;  , the angular rotation, F , the force added by a motor whose power 

is a constant value, while F is input force from the time-varying power.  

1o
2o

F F 

R 

H

J

 
Fig. 2. A mechanical revolving model. 
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A state space description of this system is given by: 

H a FR

J J J

 

 


 

 

   




 

where   is the angular velocity, FR a  , a  is a constant, i.e. 
a

F
R

 . The system can 

be described by the (1) with appropriate parameter, where 
0 1

0 1.2
A

 
   

, 
0

1
B

 
  
 

, 

 1 0C  , 
1 0

0 1
D

 
  
 

, 

2

0

( , ) 4.25x t

x

 
     
 

, x


 

  
 

, u F  . Obviously, ( , )x t  

is not a Lipschitz function in 2
3 1 2, 0}D x x x   � � . However, it is one-sided Lipschitz in 

2�  with 0  , and it is also quadratic inner bounded in 2
2 1 2{ , [1, )}D x x x    � �  

with 1   . We can take 2   and 0.5   . 

The problem is formulated as follows. Let one unforced system be the leader agent, which 

produces a desired state trajectory. The rest of four systems act as the follower agents, and 

these agents can acquire output information from their neighbors. The interaction topology of 

agents is described in Fig. 3. All the weights on the edges are one. The objective of consensus 

tracking control is to design protocol iu  for follower agent i , such that their rotation angles 

and angular velocities can synchronize to those of the leader agent. By calculations, we have 

max 2  , and 1 0.3290  . Taking 3 10  , 4 20  , and solving the LMIs (22-25), one 

has 

212.4748 40.2710

40.2710 335.5439
P

 
  
 

,
1.9388 -0.0002

0.0002 0.0468
Q

 
   

, 

1 248.1737  , 2 478.3136  , 634.3238  , 516.7981  . 

Then, the observer and controller gain matrices are given by, respectively  

0.0048

-0.0006
F

 
  
 

,  0.5 0K  . 

Set 3 3max

1

3.2 10 3.1416 10



      and. 3 3max

1

=3.9 10 3.8561 10



    , The 

initial conditions of (0), (0)is x , ˆ (0)ix  are randomly chosen from the square[ 4, 4] [ 4, 4]   . 
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As show in Fig. 4 and Fig. 5, both the estimation errors ˆi ix x  and the tracking errors 

ix s are approaching to zero. Thus, consensus tracking is achieved when the 

observer-protocol (5-6) is applied to the four followers.  

 

 

Fig. 3. Network topology 1G  
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   Fig. 4. Evolution of the estimation errors ˆi ix x  for 1,2,3,4.i   
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Fig. 5. Evolution of the tracking errors ix s  for 1, 2,3,4.i   
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Example 2. Supercritical Hopf bifurcation system 

Consider a multi-agent system consisting of four followers and a leader, described 

respectively by (1) and (4) with 

1

1
A



 

  
 

, 
1 0

0 1
D

 
  
 

, 
0

1
B

 
  
 

,  0 1C  ,   � .  

and one-sided Lipschitz fuction 
2 2

1 1 2
2 2

2 1 2

( )
( , )

( )
i i i

i

i i i

x x x
x t

x x x

  
   

  
, 1, 2,3,4.i   The leader (1)  

is represented in the polar coordinates 1 coss r  , and 2 sins r   by  

3r r r   and 1  .                  (47) 

The system (47) describes the motion of a moving object mode, and is also a famous example 

about supercritical Hopf bifurcation, whose dynamics behaviors are elaborated in [40]. From 

[20], we know that ( , )ix t  are one-sided Lipschitz in 2� and 0  . Also, the system is 

locally Lipschitz in 2
3 { : }D x x r   � , the Lipschitz constant l  is 33r , i.e., the Lipschitz 

constant rapidly increases with the increase of  r . Letting 2
2 { : }D x x r  � , some 

calculations yield 
2

4min ,
4 4

r
 

 
    

 
 , and thus ( , )ix t are also the quadratic inner 

bounded, when  
2

0, 0
4

     [16]. We take 0.01, 0.01u    ,  1  . The 

switching topologies are illustrated in Fig. 6, where the graph is ( ) 1t  G G  for 

[ , 0.4)t k k  s, ( ) 2t  G G  for [ 0.4, 0.9)t k k   s, and ( ) 0t  G G  for 

[ 0.9, 1)t k k   s. All the weights on the edges are one. By calculations, we get that 1 2r  , 

0 2r  and 2 0.5273  . From (30), we can take 15   and 4  . By taking 

3 10  , 4 20   and solving the LMIs (22-25), we obtain  

3.3771 13.0087

13.0087 84.5619
P

 
   

,
0.0664 0.3055

0.3055 3.1408
Q

 
  
 

, 

1 2.9969  , 2 20.9288  , 7.7429  , 2.5348  . 

Then, the observer and controller gain matrices are given by, respectively  
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0.1118

0.0290
F

 
  
 

,  0 0.5K  . 

Set 1

2

10 9.6143
r




    and 1

2

30 29.3681
r




   . The initial conditions of 

(0), (0)is x , ˆ (0)ix  are randomly chosen from the square [ 4, 4] [ 4, 4]   . As shown in Fig. 

7 and Fig. 8, both the estimation errors ˆi ix x  and the tracking errors ix s are 

approaching to zero. Thus, consensus tracking is achieved when the intermittent protocol 

(24-a, b) is applied to the four followers.  

  

 

      

(a) 1G .                   (b)  2G                                    (c)  0G  

                          Fig. 6. Switching networks.  
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Fig. 7. Evolution of the estimation errors ˆ
i ix x  for 1,2,3,4.i   
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Fig. 8. Evolution of the tracking errors ix s  for 1,2,3,4.i   
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Fig. 9. Evolution of 2e  
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5. Conclusion 

This paper has addressed the consensus tracking problem for general linear multi-agent 

systems with one-sided Lipschitz nonlinearity. Two types of observer-based protocols have 

been designed, under which it has been theoretically shown that both the estimation errors and 

the tracking errors approach to zero. The obtained results are more general 

and less conservative than the existing ones. Finally, two numerical examples are given to 

illustrate the effectiveness of the proposed design approach. Future work is to consider the 

cooperative control problems for other types of nonlinear multi-agent systems.  
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